| /* SPDX-License-Identifier: MIT |
| * |
| * xen.h |
| * |
| * Guest OS interface to Xen. |
| * |
| * Copyright (c) 2004, K A Fraser |
| */ |
| |
| #ifndef __XEN_PUBLIC_XEN_H__ |
| #define __XEN_PUBLIC_XEN_H__ |
| |
| #include <xen/arm/interface.h> |
| |
| /* |
| * XEN "SYSTEM CALLS" (a.k.a. HYPERCALLS). |
| */ |
| |
| /* |
| * x86_32: EAX = vector; EBX, ECX, EDX, ESI, EDI = args 1, 2, 3, 4, 5. |
| * EAX = return value |
| * (argument registers may be clobbered on return) |
| * x86_64: RAX = vector; RDI, RSI, RDX, R10, R8, R9 = args 1, 2, 3, 4, 5, 6. |
| * RAX = return value |
| * (argument registers not clobbered on return; RCX, R11 are) |
| */ |
| #define __HYPERVISOR_set_trap_table 0 |
| #define __HYPERVISOR_mmu_update 1 |
| #define __HYPERVISOR_set_gdt 2 |
| #define __HYPERVISOR_stack_switch 3 |
| #define __HYPERVISOR_set_callbacks 4 |
| #define __HYPERVISOR_fpu_taskswitch 5 |
| #define __HYPERVISOR_sched_op_compat 6 |
| #define __HYPERVISOR_platform_op 7 |
| #define __HYPERVISOR_set_debugreg 8 |
| #define __HYPERVISOR_get_debugreg 9 |
| #define __HYPERVISOR_update_descriptor 10 |
| #define __HYPERVISOR_memory_op 12 |
| #define __HYPERVISOR_multicall 13 |
| #define __HYPERVISOR_update_va_mapping 14 |
| #define __HYPERVISOR_set_timer_op 15 |
| #define __HYPERVISOR_event_channel_op_compat 16 |
| #define __HYPERVISOR_xen_version 17 |
| #define __HYPERVISOR_console_io 18 |
| #define __HYPERVISOR_physdev_op_compat 19 |
| #define __HYPERVISOR_grant_table_op 20 |
| #define __HYPERVISOR_vm_assist 21 |
| #define __HYPERVISOR_update_va_mapping_otherdomain 22 |
| #define __HYPERVISOR_iret 23 /* x86 only */ |
| #define __HYPERVISOR_vcpu_op 24 |
| #define __HYPERVISOR_set_segment_base 25 /* x86/64 only */ |
| #define __HYPERVISOR_mmuext_op 26 |
| #define __HYPERVISOR_xsm_op 27 |
| #define __HYPERVISOR_nmi_op 28 |
| #define __HYPERVISOR_sched_op 29 |
| #define __HYPERVISOR_callback_op 30 |
| #define __HYPERVISOR_xenoprof_op 31 |
| #define __HYPERVISOR_event_channel_op 32 |
| #define __HYPERVISOR_physdev_op 33 |
| #define __HYPERVISOR_hvm_op 34 |
| #define __HYPERVISOR_sysctl 35 |
| #define __HYPERVISOR_domctl 36 |
| #define __HYPERVISOR_kexec_op 37 |
| #define __HYPERVISOR_tmem_op 38 |
| #define __HYPERVISOR_xc_reserved_op 39 /* reserved for XenClient */ |
| #define __HYPERVISOR_xenpmu_op 40 |
| #define __HYPERVISOR_dm_op 41 |
| |
| /* Architecture-specific hypercall definitions. */ |
| #define __HYPERVISOR_arch_0 48 |
| #define __HYPERVISOR_arch_1 49 |
| #define __HYPERVISOR_arch_2 50 |
| #define __HYPERVISOR_arch_3 51 |
| #define __HYPERVISOR_arch_4 52 |
| #define __HYPERVISOR_arch_5 53 |
| #define __HYPERVISOR_arch_6 54 |
| #define __HYPERVISOR_arch_7 55 |
| |
| #ifndef __ASSEMBLY__ |
| |
| typedef u16 domid_t; |
| |
| /* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */ |
| #define DOMID_FIRST_RESERVED (0x7FF0U) |
| |
| /* DOMID_SELF is used in certain contexts to refer to oneself. */ |
| #define DOMID_SELF (0x7FF0U) |
| |
| /* |
| * DOMID_IO is used to restrict page-table updates to mapping I/O memory. |
| * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO |
| * is useful to ensure that no mappings to the OS's own heap are accidentally |
| * installed. (e.g., in Linux this could cause havoc as reference counts |
| * aren't adjusted on the I/O-mapping code path). |
| * This only makes sense in MMUEXT_SET_FOREIGNDOM, but in that context can |
| * be specified by any calling domain. |
| */ |
| #define DOMID_IO (0x7FF1U) |
| |
| /* |
| * DOMID_XEN is used to allow privileged domains to map restricted parts of |
| * Xen's heap space (e.g., the machine_to_phys table). |
| * This only makes sense in MMUEXT_SET_FOREIGNDOM, and is only permitted if |
| * the caller is privileged. |
| */ |
| #define DOMID_XEN (0x7FF2U) |
| |
| /* DOMID_COW is used as the owner of sharable pages */ |
| #define DOMID_COW (0x7FF3U) |
| |
| /* DOMID_INVALID is used to identify pages with unknown owner. */ |
| #define DOMID_INVALID (0x7FF4U) |
| |
| /* Idle domain. */ |
| #define DOMID_IDLE (0x7FFFU) |
| |
| struct vcpu_info { |
| /* |
| * 'evtchn_upcall_pending' is written non-zero by Xen to indicate |
| * a pending notification for a particular VCPU. It is then cleared |
| * by the guest OS /before/ checking for pending work, thus avoiding |
| * a set-and-check race. Note that the mask is only accessed by Xen |
| * on the CPU that is currently hosting the VCPU. This means that the |
| * pending and mask flags can be updated by the guest without special |
| * synchronisation (i.e., no need for the x86 LOCK prefix). |
| * This may seem suboptimal because if the pending flag is set by |
| * a different CPU then an IPI may be scheduled even when the mask |
| * is set. However, note: |
| * 1. The task of 'interrupt holdoff' is covered by the per-event- |
| * channel mask bits. A 'noisy' event that is continually being |
| * triggered can be masked at source at this very precise |
| * granularity. |
| * 2. The main purpose of the per-VCPU mask is therefore to restrict |
| * reentrant execution: whether for concurrency control, or to |
| * prevent unbounded stack usage. Whatever the purpose, we expect |
| * that the mask will be asserted only for short periods at a time, |
| * and so the likelihood of a 'spurious' IPI is suitably small. |
| * The mask is read before making an event upcall to the guest: a |
| * non-zero mask therefore guarantees that the VCPU will not receive |
| * an upcall activation. The mask is cleared when the VCPU requests |
| * to block: this avoids wakeup-waiting races. |
| */ |
| u8 evtchn_upcall_pending; |
| u8 evtchn_upcall_mask; |
| xen_ulong_t evtchn_pending_sel; |
| struct arch_vcpu_info arch; |
| struct pvclock_vcpu_time_info time; |
| }; /* 64 bytes (x86) */ |
| |
| /* |
| * Xen/kernel shared data -- pointer provided in start_info. |
| * NB. We expect that this struct is smaller than a page. |
| */ |
| struct shared_info { |
| struct vcpu_info vcpu_info[MAX_VIRT_CPUS]; |
| |
| /* |
| * A domain can create "event channels" on which it can send and receive |
| * asynchronous event notifications. There are three classes of event that |
| * are delivered by this mechanism: |
| * 1. Bi-directional inter- and intra-domain connections. Domains must |
| * arrange out-of-band to set up a connection (usually by allocating |
| * an unbound 'listener' port and avertising that via a storage service |
| * such as xenstore). |
| * 2. Physical interrupts. A domain with suitable hardware-access |
| * privileges can bind an event-channel port to a physical interrupt |
| * source. |
| * 3. Virtual interrupts ('events'). A domain can bind an event-channel |
| * port to a virtual interrupt source, such as the virtual-timer |
| * device or the emergency console. |
| * |
| * Event channels are addressed by a "port index". Each channel is |
| * associated with two bits of information: |
| * 1. PENDING -- notifies the domain that there is a pending notification |
| * to be processed. This bit is cleared by the guest. |
| * 2. MASK -- if this bit is clear then a 0->1 transition of PENDING |
| * will cause an asynchronous upcall to be scheduled. This bit is only |
| * updated by the guest. It is read-only within Xen. If a channel |
| * becomes pending while the channel is masked then the 'edge' is lost |
| * (i.e., when the channel is unmasked, the guest must manually handle |
| * pending notifications as no upcall will be scheduled by Xen). |
| * |
| * To expedite scanning of pending notifications, any 0->1 pending |
| * transition on an unmasked channel causes a corresponding bit in a |
| * per-vcpu selector word to be set. Each bit in the selector covers a |
| * 'C long' in the PENDING bitfield array. |
| */ |
| xen_ulong_t evtchn_pending[sizeof(xen_ulong_t) * 8]; |
| xen_ulong_t evtchn_mask[sizeof(xen_ulong_t) * 8]; |
| |
| /* |
| * Wallclock time: updated only by control software. Guests should base |
| * their gettimeofday() syscall on this wallclock-base value. |
| */ |
| struct pvclock_wall_clock wc; |
| |
| struct arch_shared_info arch; |
| |
| }; |
| |
| #else /* __ASSEMBLY__ */ |
| |
| /* In assembly code we cannot use C numeric constant suffixes. */ |
| #define mk_unsigned_long(x) x |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #endif /* __XEN_PUBLIC_XEN_H__ */ |