| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (c) 2011-12 The Chromium OS Authors. |
| * |
| * This file is derived from the flashrom project. |
| */ |
| |
| #define LOG_CATEGORY UCLASS_SPI |
| |
| #include <common.h> |
| #include <div64.h> |
| #include <dm.h> |
| #include <dt-structs.h> |
| #include <errno.h> |
| #include <malloc.h> |
| #include <pch.h> |
| #include <pci.h> |
| #include <pci_ids.h> |
| #include <spi.h> |
| #include <spi_flash.h> |
| #include <spi-mem.h> |
| #include <asm/fast_spi.h> |
| #include <asm/io.h> |
| |
| #include "ich.h" |
| |
| #ifdef DEBUG_TRACE |
| #define debug_trace(fmt, args...) debug(fmt, ##args) |
| #else |
| #define debug_trace(x, args...) |
| #endif |
| |
| struct ich_spi_platdata { |
| #if CONFIG_IS_ENABLED(OF_PLATDATA) |
| struct dtd_intel_fast_spi dtplat; |
| #endif |
| enum ich_version ich_version; /* Controller version, 7 or 9 */ |
| bool lockdown; /* lock down controller settings? */ |
| ulong mmio_base; /* Base of MMIO registers */ |
| pci_dev_t bdf; /* PCI address used by of-platdata */ |
| bool hwseq; /* Use hardware sequencing (not s/w) */ |
| }; |
| |
| static u8 ich_readb(struct ich_spi_priv *priv, int reg) |
| { |
| u8 value = readb(priv->base + reg); |
| |
| debug_trace("read %2.2x from %4.4x\n", value, reg); |
| |
| return value; |
| } |
| |
| static u16 ich_readw(struct ich_spi_priv *priv, int reg) |
| { |
| u16 value = readw(priv->base + reg); |
| |
| debug_trace("read %4.4x from %4.4x\n", value, reg); |
| |
| return value; |
| } |
| |
| static u32 ich_readl(struct ich_spi_priv *priv, int reg) |
| { |
| u32 value = readl(priv->base + reg); |
| |
| debug_trace("read %8.8x from %4.4x\n", value, reg); |
| |
| return value; |
| } |
| |
| static void ich_writeb(struct ich_spi_priv *priv, u8 value, int reg) |
| { |
| writeb(value, priv->base + reg); |
| debug_trace("wrote %2.2x to %4.4x\n", value, reg); |
| } |
| |
| static void ich_writew(struct ich_spi_priv *priv, u16 value, int reg) |
| { |
| writew(value, priv->base + reg); |
| debug_trace("wrote %4.4x to %4.4x\n", value, reg); |
| } |
| |
| static void ich_writel(struct ich_spi_priv *priv, u32 value, int reg) |
| { |
| writel(value, priv->base + reg); |
| debug_trace("wrote %8.8x to %4.4x\n", value, reg); |
| } |
| |
| static void write_reg(struct ich_spi_priv *priv, const void *value, |
| int dest_reg, uint32_t size) |
| { |
| memcpy_toio(priv->base + dest_reg, value, size); |
| } |
| |
| static void read_reg(struct ich_spi_priv *priv, int src_reg, void *value, |
| uint32_t size) |
| { |
| memcpy_fromio(value, priv->base + src_reg, size); |
| } |
| |
| static void ich_set_bbar(struct ich_spi_priv *ctlr, uint32_t minaddr) |
| { |
| const uint32_t bbar_mask = 0x00ffff00; |
| uint32_t ichspi_bbar; |
| |
| minaddr &= bbar_mask; |
| ichspi_bbar = ich_readl(ctlr, ctlr->bbar) & ~bbar_mask; |
| ichspi_bbar |= minaddr; |
| ich_writel(ctlr, ichspi_bbar, ctlr->bbar); |
| } |
| |
| /* @return 1 if the SPI flash supports the 33MHz speed */ |
| static bool ich9_can_do_33mhz(struct udevice *dev) |
| { |
| struct ich_spi_priv *priv = dev_get_priv(dev); |
| u32 fdod, speed; |
| |
| /* Observe SPI Descriptor Component Section 0 */ |
| dm_pci_write_config32(priv->pch, 0xb0, 0x1000); |
| |
| /* Extract the Write/Erase SPI Frequency from descriptor */ |
| dm_pci_read_config32(priv->pch, 0xb4, &fdod); |
| |
| /* Bits 23:21 have the fast read clock frequency, 0=20MHz, 1=33MHz */ |
| speed = (fdod >> 21) & 7; |
| |
| return speed == 1; |
| } |
| |
| static void spi_lock_down(struct ich_spi_platdata *plat, void *sbase) |
| { |
| if (plat->ich_version == ICHV_7) { |
| struct ich7_spi_regs *ich7_spi = sbase; |
| |
| setbits_le16(&ich7_spi->spis, SPIS_LOCK); |
| } else if (plat->ich_version == ICHV_9) { |
| struct ich9_spi_regs *ich9_spi = sbase; |
| |
| setbits_le16(&ich9_spi->hsfs, HSFS_FLOCKDN); |
| } |
| } |
| |
| static bool spi_lock_status(struct ich_spi_platdata *plat, void *sbase) |
| { |
| int lock = 0; |
| |
| if (plat->ich_version == ICHV_7) { |
| struct ich7_spi_regs *ich7_spi = sbase; |
| |
| lock = readw(&ich7_spi->spis) & SPIS_LOCK; |
| } else if (plat->ich_version == ICHV_9) { |
| struct ich9_spi_regs *ich9_spi = sbase; |
| |
| lock = readw(&ich9_spi->hsfs) & HSFS_FLOCKDN; |
| } |
| |
| return lock != 0; |
| } |
| |
| static int spi_setup_opcode(struct ich_spi_priv *ctlr, struct spi_trans *trans, |
| bool lock) |
| { |
| uint16_t optypes; |
| uint8_t opmenu[ctlr->menubytes]; |
| |
| if (!lock) { |
| /* The lock is off, so just use index 0. */ |
| ich_writeb(ctlr, trans->opcode, ctlr->opmenu); |
| optypes = ich_readw(ctlr, ctlr->optype); |
| optypes = (optypes & 0xfffc) | (trans->type & 0x3); |
| ich_writew(ctlr, optypes, ctlr->optype); |
| return 0; |
| } else { |
| /* The lock is on. See if what we need is on the menu. */ |
| uint8_t optype; |
| uint16_t opcode_index; |
| |
| /* Write Enable is handled as atomic prefix */ |
| if (trans->opcode == SPI_OPCODE_WREN) |
| return 0; |
| |
| read_reg(ctlr, ctlr->opmenu, opmenu, sizeof(opmenu)); |
| for (opcode_index = 0; opcode_index < ctlr->menubytes; |
| opcode_index++) { |
| if (opmenu[opcode_index] == trans->opcode) |
| break; |
| } |
| |
| if (opcode_index == ctlr->menubytes) { |
| debug("ICH SPI: Opcode %x not found\n", trans->opcode); |
| return -EINVAL; |
| } |
| |
| optypes = ich_readw(ctlr, ctlr->optype); |
| optype = (optypes >> (opcode_index * 2)) & 0x3; |
| |
| if (optype != trans->type) { |
| debug("ICH SPI: Transaction doesn't fit type %d\n", |
| optype); |
| return -ENOSPC; |
| } |
| return opcode_index; |
| } |
| } |
| |
| /* |
| * Wait for up to 6s til status register bit(s) turn 1 (in case wait_til_set |
| * below is true) or 0. In case the wait was for the bit(s) to set - write |
| * those bits back, which would cause resetting them. |
| * |
| * Return the last read status value on success or -1 on failure. |
| */ |
| static int ich_status_poll(struct ich_spi_priv *ctlr, u16 bitmask, |
| int wait_til_set) |
| { |
| int timeout = 600000; /* This will result in 6s */ |
| u16 status = 0; |
| |
| while (timeout--) { |
| status = ich_readw(ctlr, ctlr->status); |
| if (wait_til_set ^ ((status & bitmask) == 0)) { |
| if (wait_til_set) { |
| ich_writew(ctlr, status & bitmask, |
| ctlr->status); |
| } |
| return status; |
| } |
| udelay(10); |
| } |
| debug("ICH SPI: SCIP timeout, read %x, expected %x, wts %x %x\n", |
| status, bitmask, wait_til_set, status & bitmask); |
| |
| return -ETIMEDOUT; |
| } |
| |
| static void ich_spi_config_opcode(struct udevice *dev) |
| { |
| struct ich_spi_priv *ctlr = dev_get_priv(dev); |
| |
| /* |
| * PREOP, OPTYPE, OPMENU1/OPMENU2 registers can be locked down |
| * to prevent accidental or intentional writes. Before they get |
| * locked down, these registers should be initialized properly. |
| */ |
| ich_writew(ctlr, SPI_OPPREFIX, ctlr->preop); |
| ich_writew(ctlr, SPI_OPTYPE, ctlr->optype); |
| ich_writel(ctlr, SPI_OPMENU_LOWER, ctlr->opmenu); |
| ich_writel(ctlr, SPI_OPMENU_UPPER, ctlr->opmenu + sizeof(u32)); |
| } |
| |
| static int ich_spi_exec_op_swseq(struct spi_slave *slave, |
| const struct spi_mem_op *op) |
| { |
| struct udevice *bus = dev_get_parent(slave->dev); |
| struct ich_spi_platdata *plat = dev_get_platdata(bus); |
| struct ich_spi_priv *ctlr = dev_get_priv(bus); |
| uint16_t control; |
| int16_t opcode_index; |
| int with_address; |
| int status; |
| struct spi_trans *trans = &ctlr->trans; |
| bool lock = spi_lock_status(plat, ctlr->base); |
| int ret = 0; |
| |
| trans->in = NULL; |
| trans->out = NULL; |
| trans->type = 0xFF; |
| |
| if (op->data.nbytes) { |
| if (op->data.dir == SPI_MEM_DATA_IN) { |
| trans->in = op->data.buf.in; |
| trans->bytesin = op->data.nbytes; |
| } else { |
| trans->out = op->data.buf.out; |
| trans->bytesout = op->data.nbytes; |
| } |
| } |
| |
| if (trans->opcode != op->cmd.opcode) |
| trans->opcode = op->cmd.opcode; |
| |
| if (lock && trans->opcode == SPI_OPCODE_WRDIS) |
| return 0; |
| |
| if (trans->opcode == SPI_OPCODE_WREN) { |
| /* |
| * Treat Write Enable as Atomic Pre-Op if possible |
| * in order to prevent the Management Engine from |
| * issuing a transaction between WREN and DATA. |
| */ |
| if (!lock) |
| ich_writew(ctlr, trans->opcode, ctlr->preop); |
| return 0; |
| } |
| |
| ret = ich_status_poll(ctlr, SPIS_SCIP, 0); |
| if (ret < 0) |
| return ret; |
| |
| if (plat->ich_version == ICHV_7) |
| ich_writew(ctlr, SPIS_CDS | SPIS_FCERR, ctlr->status); |
| else |
| ich_writeb(ctlr, SPIS_CDS | SPIS_FCERR, ctlr->status); |
| |
| /* Try to guess spi transaction type */ |
| if (op->data.dir == SPI_MEM_DATA_OUT) { |
| if (op->addr.nbytes) |
| trans->type = SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS; |
| else |
| trans->type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS; |
| } else { |
| if (op->addr.nbytes) |
| trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS; |
| else |
| trans->type = SPI_OPCODE_TYPE_READ_NO_ADDRESS; |
| } |
| /* Special erase case handling */ |
| if (op->addr.nbytes && !op->data.buswidth) |
| trans->type = SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS; |
| |
| opcode_index = spi_setup_opcode(ctlr, trans, lock); |
| if (opcode_index < 0) |
| return -EINVAL; |
| |
| if (op->addr.nbytes) { |
| trans->offset = op->addr.val; |
| with_address = 1; |
| } |
| |
| if (ctlr->speed && ctlr->max_speed >= 33000000) { |
| int byte; |
| |
| byte = ich_readb(ctlr, ctlr->speed); |
| if (ctlr->cur_speed >= 33000000) |
| byte |= SSFC_SCF_33MHZ; |
| else |
| byte &= ~SSFC_SCF_33MHZ; |
| ich_writeb(ctlr, byte, ctlr->speed); |
| } |
| |
| /* Preset control fields */ |
| control = SPIC_SCGO | ((opcode_index & 0x07) << 4); |
| |
| /* Issue atomic preop cycle if needed */ |
| if (ich_readw(ctlr, ctlr->preop)) |
| control |= SPIC_ACS; |
| |
| if (!trans->bytesout && !trans->bytesin) { |
| /* SPI addresses are 24 bit only */ |
| if (with_address) { |
| ich_writel(ctlr, trans->offset & 0x00FFFFFF, |
| ctlr->addr); |
| } |
| /* |
| * This is a 'no data' command (like Write Enable), its |
| * bitesout size was 1, decremented to zero while executing |
| * spi_setup_opcode() above. Tell the chip to send the |
| * command. |
| */ |
| ich_writew(ctlr, control, ctlr->control); |
| |
| /* wait for the result */ |
| status = ich_status_poll(ctlr, SPIS_CDS | SPIS_FCERR, 1); |
| if (status < 0) |
| return status; |
| |
| if (status & SPIS_FCERR) { |
| debug("ICH SPI: Command transaction error\n"); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| while (trans->bytesout || trans->bytesin) { |
| uint32_t data_length; |
| |
| /* SPI addresses are 24 bit only */ |
| ich_writel(ctlr, trans->offset & 0x00FFFFFF, ctlr->addr); |
| |
| if (trans->bytesout) |
| data_length = min(trans->bytesout, ctlr->databytes); |
| else |
| data_length = min(trans->bytesin, ctlr->databytes); |
| |
| /* Program data into FDATA0 to N */ |
| if (trans->bytesout) { |
| write_reg(ctlr, trans->out, ctlr->data, data_length); |
| trans->bytesout -= data_length; |
| } |
| |
| /* Add proper control fields' values */ |
| control &= ~((ctlr->databytes - 1) << 8); |
| control |= SPIC_DS; |
| control |= (data_length - 1) << 8; |
| |
| /* write it */ |
| ich_writew(ctlr, control, ctlr->control); |
| |
| /* Wait for Cycle Done Status or Flash Cycle Error */ |
| status = ich_status_poll(ctlr, SPIS_CDS | SPIS_FCERR, 1); |
| if (status < 0) |
| return status; |
| |
| if (status & SPIS_FCERR) { |
| debug("ICH SPI: Data transaction error %x\n", status); |
| return -EIO; |
| } |
| |
| if (trans->bytesin) { |
| read_reg(ctlr, ctlr->data, trans->in, data_length); |
| trans->bytesin -= data_length; |
| } |
| } |
| |
| /* Clear atomic preop now that xfer is done */ |
| if (!lock) |
| ich_writew(ctlr, 0, ctlr->preop); |
| |
| return 0; |
| } |
| |
| /* |
| * Ensure read/write xfer len is not greater than SPIBAR_FDATA_FIFO_SIZE and |
| * that the operation does not cross page boundary. |
| */ |
| static uint get_xfer_len(u32 offset, int len, int page_size) |
| { |
| uint xfer_len = min(len, SPIBAR_FDATA_FIFO_SIZE); |
| uint bytes_left = ALIGN(offset, page_size) - offset; |
| |
| if (bytes_left) |
| xfer_len = min(xfer_len, bytes_left); |
| |
| return xfer_len; |
| } |
| |
| /* Fill FDATAn FIFO in preparation for a write transaction */ |
| static void fill_xfer_fifo(struct fast_spi_regs *regs, const void *data, |
| uint len) |
| { |
| memcpy(regs->fdata, data, len); |
| } |
| |
| /* Drain FDATAn FIFO after a read transaction populates data */ |
| static void drain_xfer_fifo(struct fast_spi_regs *regs, void *dest, uint len) |
| { |
| memcpy(dest, regs->fdata, len); |
| } |
| |
| /* Fire up a transfer using the hardware sequencer */ |
| static void start_hwseq_xfer(struct fast_spi_regs *regs, uint hsfsts_cycle, |
| uint offset, uint len) |
| { |
| /* Make sure all W1C status bits get cleared */ |
| u32 hsfsts; |
| |
| hsfsts = readl(®s->hsfsts_ctl); |
| hsfsts &= ~(HSFSTS_FCYCLE_MASK | HSFSTS_FDBC_MASK); |
| hsfsts |= HSFSTS_AEL | HSFSTS_FCERR | HSFSTS_FDONE; |
| |
| /* Set up transaction parameters */ |
| hsfsts |= hsfsts_cycle << HSFSTS_FCYCLE_SHIFT; |
| hsfsts |= ((len - 1) << HSFSTS_FDBC_SHIFT) & HSFSTS_FDBC_MASK; |
| hsfsts |= HSFSTS_FGO; |
| |
| writel(offset, ®s->faddr); |
| writel(hsfsts, ®s->hsfsts_ctl); |
| } |
| |
| static int wait_for_hwseq_xfer(struct fast_spi_regs *regs, uint offset) |
| { |
| ulong start; |
| u32 hsfsts; |
| |
| start = get_timer(0); |
| do { |
| hsfsts = readl(®s->hsfsts_ctl); |
| if (hsfsts & HSFSTS_FCERR) { |
| debug("SPI transaction error at offset %x HSFSTS = %08x\n", |
| offset, hsfsts); |
| return -EIO; |
| } |
| if (hsfsts & HSFSTS_AEL) |
| return -EPERM; |
| |
| if (hsfsts & HSFSTS_FDONE) |
| return 0; |
| } while (get_timer(start) < SPIBAR_HWSEQ_XFER_TIMEOUT_MS); |
| |
| debug("SPI transaction timeout at offset %x HSFSTS = %08x, timer %d\n", |
| offset, hsfsts, (uint)get_timer(start)); |
| |
| return -ETIMEDOUT; |
| } |
| |
| /** |
| * exec_sync_hwseq_xfer() - Execute flash transfer by hardware sequencing |
| * |
| * This waits until complete or timeout |
| * |
| * @regs: SPI registers |
| * @hsfsts_cycle: Cycle type (enum hsfsts_cycle_t) |
| * @offset: Offset to access |
| * @len: Number of bytes to transfer (can be 0) |
| * @return 0 if OK, -EIO on flash-cycle error (FCERR), -EPERM on access error |
| * (AEL), -ETIMEDOUT on timeout |
| */ |
| static int exec_sync_hwseq_xfer(struct fast_spi_regs *regs, uint hsfsts_cycle, |
| uint offset, uint len) |
| { |
| start_hwseq_xfer(regs, hsfsts_cycle, offset, len); |
| |
| return wait_for_hwseq_xfer(regs, offset); |
| } |
| |
| static int ich_spi_exec_op_hwseq(struct spi_slave *slave, |
| const struct spi_mem_op *op) |
| { |
| struct spi_flash *flash = dev_get_uclass_priv(slave->dev); |
| struct udevice *bus = dev_get_parent(slave->dev); |
| struct ich_spi_priv *priv = dev_get_priv(bus); |
| struct fast_spi_regs *regs = priv->base; |
| uint page_size; |
| uint offset; |
| int cycle; |
| uint len; |
| bool out; |
| int ret; |
| u8 *buf; |
| |
| offset = op->addr.val; |
| len = op->data.nbytes; |
| |
| switch (op->cmd.opcode) { |
| case SPINOR_OP_RDID: |
| cycle = HSFSTS_CYCLE_RDID; |
| break; |
| case SPINOR_OP_READ_FAST: |
| cycle = HSFSTS_CYCLE_READ; |
| break; |
| case SPINOR_OP_PP: |
| cycle = HSFSTS_CYCLE_WRITE; |
| break; |
| case SPINOR_OP_WREN: |
| /* Nothing needs to be done */ |
| return 0; |
| case SPINOR_OP_WRSR: |
| cycle = HSFSTS_CYCLE_WR_STATUS; |
| break; |
| case SPINOR_OP_RDSR: |
| cycle = HSFSTS_CYCLE_RD_STATUS; |
| break; |
| case SPINOR_OP_WRDI: |
| return 0; /* ignore */ |
| case SPINOR_OP_BE_4K: |
| cycle = HSFSTS_CYCLE_4K_ERASE; |
| while (len) { |
| uint xfer_len = 0x1000; |
| |
| ret = exec_sync_hwseq_xfer(regs, cycle, offset, 0); |
| if (ret) |
| return ret; |
| offset += xfer_len; |
| len -= xfer_len; |
| } |
| return 0; |
| default: |
| debug("Unknown cycle %x\n", op->cmd.opcode); |
| return -EINVAL; |
| }; |
| |
| out = op->data.dir == SPI_MEM_DATA_OUT; |
| buf = out ? (u8 *)op->data.buf.out : op->data.buf.in; |
| page_size = flash->page_size ? : 256; |
| |
| while (len) { |
| uint xfer_len = get_xfer_len(offset, len, page_size); |
| |
| if (out) |
| fill_xfer_fifo(regs, buf, xfer_len); |
| |
| ret = exec_sync_hwseq_xfer(regs, cycle, offset, xfer_len); |
| if (ret) |
| return ret; |
| |
| if (!out) |
| drain_xfer_fifo(regs, buf, xfer_len); |
| |
| offset += xfer_len; |
| buf += xfer_len; |
| len -= xfer_len; |
| } |
| |
| return 0; |
| } |
| |
| static int ich_spi_exec_op(struct spi_slave *slave, const struct spi_mem_op *op) |
| { |
| struct udevice *bus = dev_get_parent(slave->dev); |
| struct ich_spi_platdata *plat = dev_get_platdata(bus); |
| int ret; |
| |
| bootstage_start(BOOTSTAGE_ID_ACCUM_SPI, "fast_spi"); |
| if (plat->hwseq) |
| ret = ich_spi_exec_op_hwseq(slave, op); |
| else |
| ret = ich_spi_exec_op_swseq(slave, op); |
| bootstage_accum(BOOTSTAGE_ID_ACCUM_SPI); |
| |
| return ret; |
| } |
| |
| static int ich_spi_adjust_size(struct spi_slave *slave, struct spi_mem_op *op) |
| { |
| unsigned int page_offset; |
| int addr = op->addr.val; |
| unsigned int byte_count = op->data.nbytes; |
| |
| if (hweight32(ICH_BOUNDARY) == 1) { |
| page_offset = addr & (ICH_BOUNDARY - 1); |
| } else { |
| u64 aux = addr; |
| |
| page_offset = do_div(aux, ICH_BOUNDARY); |
| } |
| |
| if (op->data.dir == SPI_MEM_DATA_IN) { |
| if (slave->max_read_size) { |
| op->data.nbytes = min(ICH_BOUNDARY - page_offset, |
| slave->max_read_size); |
| } |
| } else if (slave->max_write_size) { |
| op->data.nbytes = min(ICH_BOUNDARY - page_offset, |
| slave->max_write_size); |
| } |
| |
| op->data.nbytes = min(op->data.nbytes, byte_count); |
| |
| return 0; |
| } |
| |
| static int ich_protect_lockdown(struct udevice *dev) |
| { |
| struct ich_spi_platdata *plat = dev_get_platdata(dev); |
| struct ich_spi_priv *priv = dev_get_priv(dev); |
| int ret = -ENOSYS; |
| |
| /* Disable the BIOS write protect so write commands are allowed */ |
| if (priv->pch) |
| ret = pch_set_spi_protect(priv->pch, false); |
| if (ret == -ENOSYS) { |
| u8 bios_cntl; |
| |
| bios_cntl = ich_readb(priv, priv->bcr); |
| bios_cntl &= ~BIT(5); /* clear Enable InSMM_STS (EISS) */ |
| bios_cntl |= 1; /* Write Protect Disable (WPD) */ |
| ich_writeb(priv, bios_cntl, priv->bcr); |
| } else if (ret) { |
| debug("%s: Failed to disable write-protect: err=%d\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| /* Lock down SPI controller settings if required */ |
| if (plat->lockdown) { |
| ich_spi_config_opcode(dev); |
| spi_lock_down(plat, priv->base); |
| } |
| |
| return 0; |
| } |
| |
| static int ich_init_controller(struct udevice *dev, |
| struct ich_spi_platdata *plat, |
| struct ich_spi_priv *ctlr) |
| { |
| ctlr->base = (void *)plat->mmio_base; |
| if (plat->ich_version == ICHV_7) { |
| struct ich7_spi_regs *ich7_spi = ctlr->base; |
| |
| ctlr->opmenu = offsetof(struct ich7_spi_regs, opmenu); |
| ctlr->menubytes = sizeof(ich7_spi->opmenu); |
| ctlr->optype = offsetof(struct ich7_spi_regs, optype); |
| ctlr->addr = offsetof(struct ich7_spi_regs, spia); |
| ctlr->data = offsetof(struct ich7_spi_regs, spid); |
| ctlr->databytes = sizeof(ich7_spi->spid); |
| ctlr->status = offsetof(struct ich7_spi_regs, spis); |
| ctlr->control = offsetof(struct ich7_spi_regs, spic); |
| ctlr->bbar = offsetof(struct ich7_spi_regs, bbar); |
| ctlr->preop = offsetof(struct ich7_spi_regs, preop); |
| } else if (plat->ich_version == ICHV_9) { |
| struct ich9_spi_regs *ich9_spi = ctlr->base; |
| |
| ctlr->opmenu = offsetof(struct ich9_spi_regs, opmenu); |
| ctlr->menubytes = sizeof(ich9_spi->opmenu); |
| ctlr->optype = offsetof(struct ich9_spi_regs, optype); |
| ctlr->addr = offsetof(struct ich9_spi_regs, faddr); |
| ctlr->data = offsetof(struct ich9_spi_regs, fdata); |
| ctlr->databytes = sizeof(ich9_spi->fdata); |
| ctlr->status = offsetof(struct ich9_spi_regs, ssfs); |
| ctlr->control = offsetof(struct ich9_spi_regs, ssfc); |
| ctlr->speed = ctlr->control + 2; |
| ctlr->bbar = offsetof(struct ich9_spi_regs, bbar); |
| ctlr->preop = offsetof(struct ich9_spi_regs, preop); |
| ctlr->bcr = offsetof(struct ich9_spi_regs, bcr); |
| ctlr->pr = &ich9_spi->pr[0]; |
| } else { |
| debug("ICH SPI: Unrecognised ICH version %d\n", |
| plat->ich_version); |
| return -EINVAL; |
| } |
| |
| /* Work out the maximum speed we can support */ |
| ctlr->max_speed = 20000000; |
| if (plat->ich_version == ICHV_9 && ich9_can_do_33mhz(dev)) |
| ctlr->max_speed = 33000000; |
| debug("ICH SPI: Version ID %d detected at %lx, speed %ld\n", |
| plat->ich_version, plat->mmio_base, ctlr->max_speed); |
| |
| ich_set_bbar(ctlr, 0); |
| |
| return 0; |
| } |
| |
| static int ich_spi_probe(struct udevice *dev) |
| { |
| struct ich_spi_platdata *plat = dev_get_platdata(dev); |
| struct ich_spi_priv *priv = dev_get_priv(dev); |
| int ret; |
| |
| ret = ich_init_controller(dev, plat, priv); |
| if (ret) |
| return ret; |
| |
| ret = ich_protect_lockdown(dev); |
| if (ret) |
| return ret; |
| |
| priv->cur_speed = priv->max_speed; |
| |
| return 0; |
| } |
| |
| static int ich_spi_remove(struct udevice *bus) |
| { |
| /* |
| * Configure SPI controller so that the Linux MTD driver can fully |
| * access the SPI NOR chip |
| */ |
| ich_spi_config_opcode(bus); |
| |
| return 0; |
| } |
| |
| static int ich_spi_set_speed(struct udevice *bus, uint speed) |
| { |
| struct ich_spi_priv *priv = dev_get_priv(bus); |
| |
| priv->cur_speed = speed; |
| |
| return 0; |
| } |
| |
| static int ich_spi_set_mode(struct udevice *bus, uint mode) |
| { |
| debug("%s: mode=%d\n", __func__, mode); |
| |
| return 0; |
| } |
| |
| static int ich_spi_child_pre_probe(struct udevice *dev) |
| { |
| struct udevice *bus = dev_get_parent(dev); |
| struct ich_spi_platdata *plat = dev_get_platdata(bus); |
| struct ich_spi_priv *priv = dev_get_priv(bus); |
| struct spi_slave *slave = dev_get_parent_priv(dev); |
| |
| /* |
| * Yes this controller can only write a small number of bytes at |
| * once! The limit is typically 64 bytes. For hardware sequencing a |
| * a loop is used to get around this. |
| */ |
| if (!plat->hwseq) |
| slave->max_write_size = priv->databytes; |
| /* |
| * ICH 7 SPI controller only supports array read command |
| * and byte program command for SST flash |
| */ |
| if (plat->ich_version == ICHV_7) |
| slave->mode = SPI_RX_SLOW | SPI_TX_BYTE; |
| |
| return 0; |
| } |
| |
| static int ich_spi_ofdata_to_platdata(struct udevice *dev) |
| { |
| struct ich_spi_platdata *plat = dev_get_platdata(dev); |
| |
| #if !CONFIG_IS_ENABLED(OF_PLATDATA) |
| struct ich_spi_priv *priv = dev_get_priv(dev); |
| |
| /* Find a PCH if there is one */ |
| uclass_first_device(UCLASS_PCH, &priv->pch); |
| if (!priv->pch) |
| priv->pch = dev_get_parent(dev); |
| |
| plat->ich_version = dev_get_driver_data(dev); |
| plat->lockdown = dev_read_bool(dev, "intel,spi-lock-down"); |
| pch_get_spi_base(priv->pch, &plat->mmio_base); |
| /* |
| * Use an int so that the property is present in of-platdata even |
| * when false. |
| */ |
| plat->hwseq = dev_read_u32_default(dev, "intel,hardware-seq", 0); |
| #else |
| plat->ich_version = ICHV_APL; |
| plat->mmio_base = plat->dtplat.early_regs[0]; |
| plat->bdf = pci_ofplat_get_devfn(plat->dtplat.reg[0]); |
| plat->hwseq = plat->dtplat.intel_hardware_seq; |
| #endif |
| debug("%s: mmio_base=%lx\n", __func__, plat->mmio_base); |
| |
| return 0; |
| } |
| |
| static const struct spi_controller_mem_ops ich_controller_mem_ops = { |
| .adjust_op_size = ich_spi_adjust_size, |
| .supports_op = NULL, |
| .exec_op = ich_spi_exec_op, |
| }; |
| |
| static const struct dm_spi_ops ich_spi_ops = { |
| /* xfer is not supported */ |
| .set_speed = ich_spi_set_speed, |
| .set_mode = ich_spi_set_mode, |
| .mem_ops = &ich_controller_mem_ops, |
| /* |
| * cs_info is not needed, since we require all chip selects to be |
| * in the device tree explicitly |
| */ |
| }; |
| |
| static const struct udevice_id ich_spi_ids[] = { |
| { .compatible = "intel,ich7-spi", ICHV_7 }, |
| { .compatible = "intel,ich9-spi", ICHV_9 }, |
| { } |
| }; |
| |
| U_BOOT_DRIVER(intel_fast_spi) = { |
| .name = "intel_fast_spi", |
| .id = UCLASS_SPI, |
| .of_match = ich_spi_ids, |
| .ops = &ich_spi_ops, |
| .ofdata_to_platdata = ich_spi_ofdata_to_platdata, |
| .platdata_auto_alloc_size = sizeof(struct ich_spi_platdata), |
| .priv_auto_alloc_size = sizeof(struct ich_spi_priv), |
| .child_pre_probe = ich_spi_child_pre_probe, |
| .probe = ich_spi_probe, |
| .remove = ich_spi_remove, |
| .flags = DM_FLAG_OS_PREPARE, |
| }; |