| /* |
| * Copyright 2008-2014 Freescale Semiconductor, Inc. |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| * |
| * Based on CAAM driver in drivers/crypto/caam in Linux |
| */ |
| |
| #include <common.h> |
| #include <malloc.h> |
| #include "fsl_sec.h" |
| #include "jr.h" |
| #include "jobdesc.h" |
| #include "desc_constr.h" |
| #ifdef CONFIG_FSL_CORENET |
| #include <asm/fsl_pamu.h> |
| #endif |
| |
| #define CIRC_CNT(head, tail, size) (((head) - (tail)) & (size - 1)) |
| #define CIRC_SPACE(head, tail, size) CIRC_CNT((tail), (head) + 1, (size)) |
| |
| struct jobring jr; |
| |
| static inline void start_jr0(void) |
| { |
| ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; |
| u32 ctpr_ms = sec_in32(&sec->ctpr_ms); |
| u32 scfgr = sec_in32(&sec->scfgr); |
| |
| if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_INCL) { |
| /* VIRT_EN_INCL = 1 & VIRT_EN_POR = 1 or |
| * VIRT_EN_INCL = 1 & VIRT_EN_POR = 0 & SEC_SCFGR_VIRT_EN = 1 |
| */ |
| if ((ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) || |
| (!(ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) && |
| (scfgr & SEC_SCFGR_VIRT_EN))) |
| sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0); |
| } else { |
| /* VIRT_EN_INCL = 0 && VIRT_EN_POR_VALUE = 1 */ |
| if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) |
| sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0); |
| } |
| } |
| |
| static inline void jr_reset_liodn(void) |
| { |
| ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; |
| sec_out32(&sec->jrliodnr[0].ls, 0); |
| } |
| |
| static inline void jr_disable_irq(void) |
| { |
| struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR; |
| uint32_t jrcfg = sec_in32(®s->jrcfg1); |
| |
| jrcfg = jrcfg | JR_INTMASK; |
| |
| sec_out32(®s->jrcfg1, jrcfg); |
| } |
| |
| static void jr_initregs(void) |
| { |
| struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR; |
| phys_addr_t ip_base = virt_to_phys((void *)jr.input_ring); |
| phys_addr_t op_base = virt_to_phys((void *)jr.output_ring); |
| |
| #ifdef CONFIG_PHYS_64BIT |
| sec_out32(®s->irba_h, ip_base >> 32); |
| #else |
| sec_out32(®s->irba_h, 0x0); |
| #endif |
| sec_out32(®s->irba_l, (uint32_t)ip_base); |
| #ifdef CONFIG_PHYS_64BIT |
| sec_out32(®s->orba_h, op_base >> 32); |
| #else |
| sec_out32(®s->orba_h, 0x0); |
| #endif |
| sec_out32(®s->orba_l, (uint32_t)op_base); |
| sec_out32(®s->ors, JR_SIZE); |
| sec_out32(®s->irs, JR_SIZE); |
| |
| if (!jr.irq) |
| jr_disable_irq(); |
| } |
| |
| static int jr_init(void) |
| { |
| memset(&jr, 0, sizeof(struct jobring)); |
| |
| jr.jq_id = DEFAULT_JR_ID; |
| jr.irq = DEFAULT_IRQ; |
| |
| #ifdef CONFIG_FSL_CORENET |
| jr.liodn = DEFAULT_JR_LIODN; |
| #endif |
| jr.size = JR_SIZE; |
| jr.input_ring = (dma_addr_t *)memalign(ARCH_DMA_MINALIGN, |
| JR_SIZE * sizeof(dma_addr_t)); |
| if (!jr.input_ring) |
| return -1; |
| |
| jr.op_size = roundup(JR_SIZE * sizeof(struct op_ring), |
| ARCH_DMA_MINALIGN); |
| jr.output_ring = |
| (struct op_ring *)memalign(ARCH_DMA_MINALIGN, jr.op_size); |
| if (!jr.output_ring) |
| return -1; |
| |
| memset(jr.input_ring, 0, JR_SIZE * sizeof(dma_addr_t)); |
| memset(jr.output_ring, 0, jr.op_size); |
| |
| start_jr0(); |
| |
| jr_initregs(); |
| |
| return 0; |
| } |
| |
| static int jr_sw_cleanup(void) |
| { |
| jr.head = 0; |
| jr.tail = 0; |
| jr.read_idx = 0; |
| jr.write_idx = 0; |
| memset(jr.info, 0, sizeof(jr.info)); |
| memset(jr.input_ring, 0, jr.size * sizeof(dma_addr_t)); |
| memset(jr.output_ring, 0, jr.size * sizeof(struct op_ring)); |
| |
| return 0; |
| } |
| |
| static int jr_hw_reset(void) |
| { |
| struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR; |
| uint32_t timeout = 100000; |
| uint32_t jrint, jrcr; |
| |
| sec_out32(®s->jrcr, JRCR_RESET); |
| do { |
| jrint = sec_in32(®s->jrint); |
| } while (((jrint & JRINT_ERR_HALT_MASK) == |
| JRINT_ERR_HALT_INPROGRESS) && --timeout); |
| |
| jrint = sec_in32(®s->jrint); |
| if (((jrint & JRINT_ERR_HALT_MASK) != |
| JRINT_ERR_HALT_INPROGRESS) && timeout == 0) |
| return -1; |
| |
| timeout = 100000; |
| sec_out32(®s->jrcr, JRCR_RESET); |
| do { |
| jrcr = sec_in32(®s->jrcr); |
| } while ((jrcr & JRCR_RESET) && --timeout); |
| |
| if (timeout == 0) |
| return -1; |
| |
| return 0; |
| } |
| |
| /* -1 --- error, can't enqueue -- no space available */ |
| static int jr_enqueue(uint32_t *desc_addr, |
| void (*callback)(uint32_t status, void *arg), |
| void *arg) |
| { |
| struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR; |
| int head = jr.head; |
| uint32_t desc_word; |
| int length = desc_len(desc_addr); |
| int i; |
| #ifdef CONFIG_PHYS_64BIT |
| uint32_t *addr_hi, *addr_lo; |
| #endif |
| |
| /* The descriptor must be submitted to SEC block as per endianness |
| * of the SEC Block. |
| * So, if the endianness of Core and SEC block is different, each word |
| * of the descriptor will be byte-swapped. |
| */ |
| for (i = 0; i < length; i++) { |
| desc_word = desc_addr[i]; |
| sec_out32((uint32_t *)&desc_addr[i], desc_word); |
| } |
| |
| phys_addr_t desc_phys_addr = virt_to_phys(desc_addr); |
| |
| if (sec_in32(®s->irsa) == 0 || |
| CIRC_SPACE(jr.head, jr.tail, jr.size) <= 0) |
| return -1; |
| |
| jr.info[head].desc_phys_addr = desc_phys_addr; |
| jr.info[head].callback = (void *)callback; |
| jr.info[head].arg = arg; |
| jr.info[head].op_done = 0; |
| |
| unsigned long start = (unsigned long)&jr.info[head] & |
| ~(ARCH_DMA_MINALIGN - 1); |
| unsigned long end = ALIGN((unsigned long)&jr.info[head] + |
| sizeof(struct jr_info), ARCH_DMA_MINALIGN); |
| flush_dcache_range(start, end); |
| |
| #ifdef CONFIG_PHYS_64BIT |
| /* Write the 64 bit Descriptor address on Input Ring. |
| * The 32 bit hign and low part of the address will |
| * depend on endianness of SEC block. |
| */ |
| #ifdef CONFIG_SYS_FSL_SEC_LE |
| addr_lo = (uint32_t *)(&jr.input_ring[head]); |
| addr_hi = (uint32_t *)(&jr.input_ring[head]) + 1; |
| #elif defined(CONFIG_SYS_FSL_SEC_BE) |
| addr_hi = (uint32_t *)(&jr.input_ring[head]); |
| addr_lo = (uint32_t *)(&jr.input_ring[head]) + 1; |
| #endif /* ifdef CONFIG_SYS_FSL_SEC_LE */ |
| |
| sec_out32(addr_hi, (uint32_t)(desc_phys_addr >> 32)); |
| sec_out32(addr_lo, (uint32_t)(desc_phys_addr)); |
| |
| #else |
| /* Write the 32 bit Descriptor address on Input Ring. */ |
| sec_out32(&jr.input_ring[head], desc_phys_addr); |
| #endif /* ifdef CONFIG_PHYS_64BIT */ |
| |
| start = (unsigned long)&jr.input_ring[head] & ~(ARCH_DMA_MINALIGN - 1); |
| end = ALIGN((unsigned long)&jr.input_ring[head] + |
| sizeof(dma_addr_t), ARCH_DMA_MINALIGN); |
| flush_dcache_range(start, end); |
| |
| jr.head = (head + 1) & (jr.size - 1); |
| |
| /* Invalidate output ring */ |
| start = (unsigned long)jr.output_ring & |
| ~(ARCH_DMA_MINALIGN - 1); |
| end = ALIGN((unsigned long)jr.output_ring + jr.op_size, |
| ARCH_DMA_MINALIGN); |
| invalidate_dcache_range(start, end); |
| |
| sec_out32(®s->irja, 1); |
| |
| return 0; |
| } |
| |
| static int jr_dequeue(void) |
| { |
| struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR; |
| int head = jr.head; |
| int tail = jr.tail; |
| int idx, i, found; |
| void (*callback)(uint32_t status, void *arg); |
| void *arg = NULL; |
| #ifdef CONFIG_PHYS_64BIT |
| uint32_t *addr_hi, *addr_lo; |
| #else |
| uint32_t *addr; |
| #endif |
| |
| while (sec_in32(®s->orsf) && CIRC_CNT(jr.head, jr.tail, jr.size)) { |
| |
| found = 0; |
| |
| phys_addr_t op_desc; |
| #ifdef CONFIG_PHYS_64BIT |
| /* Read the 64 bit Descriptor address from Output Ring. |
| * The 32 bit hign and low part of the address will |
| * depend on endianness of SEC block. |
| */ |
| #ifdef CONFIG_SYS_FSL_SEC_LE |
| addr_lo = (uint32_t *)(&jr.output_ring[jr.tail].desc); |
| addr_hi = (uint32_t *)(&jr.output_ring[jr.tail].desc) + 1; |
| #elif defined(CONFIG_SYS_FSL_SEC_BE) |
| addr_hi = (uint32_t *)(&jr.output_ring[jr.tail].desc); |
| addr_lo = (uint32_t *)(&jr.output_ring[jr.tail].desc) + 1; |
| #endif /* ifdef CONFIG_SYS_FSL_SEC_LE */ |
| |
| op_desc = ((u64)sec_in32(addr_hi) << 32) | |
| ((u64)sec_in32(addr_lo)); |
| |
| #else |
| /* Read the 32 bit Descriptor address from Output Ring. */ |
| addr = (uint32_t *)&jr.output_ring[jr.tail].desc; |
| op_desc = sec_in32(addr); |
| #endif /* ifdef CONFIG_PHYS_64BIT */ |
| |
| uint32_t status = sec_in32(&jr.output_ring[jr.tail].status); |
| |
| for (i = 0; CIRC_CNT(head, tail + i, jr.size) >= 1; i++) { |
| idx = (tail + i) & (jr.size - 1); |
| if (op_desc == jr.info[idx].desc_phys_addr) { |
| found = 1; |
| break; |
| } |
| } |
| |
| /* Error condition if match not found */ |
| if (!found) |
| return -1; |
| |
| jr.info[idx].op_done = 1; |
| callback = (void *)jr.info[idx].callback; |
| arg = jr.info[idx].arg; |
| |
| /* When the job on tail idx gets done, increment |
| * tail till the point where job completed out of oredr has |
| * been taken into account |
| */ |
| if (idx == tail) |
| do { |
| tail = (tail + 1) & (jr.size - 1); |
| } while (jr.info[tail].op_done); |
| |
| jr.tail = tail; |
| jr.read_idx = (jr.read_idx + 1) & (jr.size - 1); |
| |
| sec_out32(®s->orjr, 1); |
| jr.info[idx].op_done = 0; |
| |
| callback(status, arg); |
| } |
| |
| return 0; |
| } |
| |
| static void desc_done(uint32_t status, void *arg) |
| { |
| struct result *x = arg; |
| x->status = status; |
| caam_jr_strstatus(status); |
| x->done = 1; |
| } |
| |
| int run_descriptor_jr(uint32_t *desc) |
| { |
| unsigned long long timeval = get_ticks(); |
| unsigned long long timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT); |
| struct result op; |
| int ret = 0; |
| |
| memset(&op, 0, sizeof(op)); |
| |
| ret = jr_enqueue(desc, desc_done, &op); |
| if (ret) { |
| debug("Error in SEC enq\n"); |
| ret = JQ_ENQ_ERR; |
| goto out; |
| } |
| |
| timeval = get_ticks(); |
| timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT); |
| while (op.done != 1) { |
| ret = jr_dequeue(); |
| if (ret) { |
| debug("Error in SEC deq\n"); |
| ret = JQ_DEQ_ERR; |
| goto out; |
| } |
| |
| if ((get_ticks() - timeval) > timeout) { |
| debug("SEC Dequeue timed out\n"); |
| ret = JQ_DEQ_TO_ERR; |
| goto out; |
| } |
| } |
| |
| if (op.status) { |
| debug("Error %x\n", op.status); |
| ret = op.status; |
| } |
| out: |
| return ret; |
| } |
| |
| int jr_reset(void) |
| { |
| if (jr_hw_reset() < 0) |
| return -1; |
| |
| /* Clean up the jobring structure maintained by software */ |
| jr_sw_cleanup(); |
| |
| return 0; |
| } |
| |
| int sec_reset(void) |
| { |
| ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; |
| uint32_t mcfgr = sec_in32(&sec->mcfgr); |
| uint32_t timeout = 100000; |
| |
| mcfgr |= MCFGR_SWRST; |
| sec_out32(&sec->mcfgr, mcfgr); |
| |
| mcfgr |= MCFGR_DMA_RST; |
| sec_out32(&sec->mcfgr, mcfgr); |
| do { |
| mcfgr = sec_in32(&sec->mcfgr); |
| } while ((mcfgr & MCFGR_DMA_RST) == MCFGR_DMA_RST && --timeout); |
| |
| if (timeout == 0) |
| return -1; |
| |
| timeout = 100000; |
| do { |
| mcfgr = sec_in32(&sec->mcfgr); |
| } while ((mcfgr & MCFGR_SWRST) == MCFGR_SWRST && --timeout); |
| |
| if (timeout == 0) |
| return -1; |
| |
| return 0; |
| } |
| |
| static int instantiate_rng(void) |
| { |
| struct result op; |
| u32 *desc; |
| u32 rdsta_val; |
| int ret = 0; |
| ccsr_sec_t __iomem *sec = |
| (ccsr_sec_t __iomem *)CONFIG_SYS_FSL_SEC_ADDR; |
| struct rng4tst __iomem *rng = |
| (struct rng4tst __iomem *)&sec->rng; |
| |
| memset(&op, 0, sizeof(struct result)); |
| |
| desc = memalign(ARCH_DMA_MINALIGN, sizeof(uint32_t) * 6); |
| if (!desc) { |
| printf("cannot allocate RNG init descriptor memory\n"); |
| return -1; |
| } |
| |
| inline_cnstr_jobdesc_rng_instantiation(desc); |
| int size = roundup(sizeof(uint32_t) * 6, ARCH_DMA_MINALIGN); |
| flush_dcache_range((unsigned long)desc, |
| (unsigned long)desc + size); |
| |
| ret = run_descriptor_jr(desc); |
| |
| if (ret) |
| printf("RNG: Instantiation failed with error %x\n", ret); |
| |
| rdsta_val = sec_in32(&rng->rdsta); |
| if (op.status || !(rdsta_val & RNG_STATE0_HANDLE_INSTANTIATED)) |
| return -1; |
| |
| return ret; |
| } |
| |
| static u8 get_rng_vid(void) |
| { |
| ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; |
| u32 cha_vid = sec_in32(&sec->chavid_ls); |
| |
| return (cha_vid & SEC_CHAVID_RNG_LS_MASK) >> SEC_CHAVID_LS_RNG_SHIFT; |
| } |
| |
| /* |
| * By default, the TRNG runs for 200 clocks per sample; |
| * 1200 clocks per sample generates better entropy. |
| */ |
| static void kick_trng(int ent_delay) |
| { |
| ccsr_sec_t __iomem *sec = |
| (ccsr_sec_t __iomem *)CONFIG_SYS_FSL_SEC_ADDR; |
| struct rng4tst __iomem *rng = |
| (struct rng4tst __iomem *)&sec->rng; |
| u32 val; |
| |
| /* put RNG4 into program mode */ |
| sec_setbits32(&rng->rtmctl, RTMCTL_PRGM); |
| /* rtsdctl bits 0-15 contain "Entropy Delay, which defines the |
| * length (in system clocks) of each Entropy sample taken |
| * */ |
| val = sec_in32(&rng->rtsdctl); |
| val = (val & ~RTSDCTL_ENT_DLY_MASK) | |
| (ent_delay << RTSDCTL_ENT_DLY_SHIFT); |
| sec_out32(&rng->rtsdctl, val); |
| /* min. freq. count, equal to 1/4 of the entropy sample length */ |
| sec_out32(&rng->rtfreqmin, ent_delay >> 2); |
| /* disable maximum frequency count */ |
| sec_out32(&rng->rtfreqmax, RTFRQMAX_DISABLE); |
| /* |
| * select raw sampling in both entropy shifter |
| * and statistical checker |
| */ |
| sec_setbits32(&rng->rtmctl, RTMCTL_SAMP_MODE_RAW_ES_SC); |
| /* put RNG4 into run mode */ |
| sec_clrbits32(&rng->rtmctl, RTMCTL_PRGM); |
| } |
| |
| static int rng_init(void) |
| { |
| int ret, ent_delay = RTSDCTL_ENT_DLY_MIN; |
| ccsr_sec_t __iomem *sec = |
| (ccsr_sec_t __iomem *)CONFIG_SYS_FSL_SEC_ADDR; |
| struct rng4tst __iomem *rng = |
| (struct rng4tst __iomem *)&sec->rng; |
| |
| u32 rdsta = sec_in32(&rng->rdsta); |
| |
| /* Check if RNG state 0 handler is already instantiated */ |
| if (rdsta & RNG_STATE0_HANDLE_INSTANTIATED) |
| return 0; |
| |
| do { |
| /* |
| * If either of the SH's were instantiated by somebody else |
| * then it is assumed that the entropy |
| * parameters are properly set and thus the function |
| * setting these (kick_trng(...)) is skipped. |
| * Also, if a handle was instantiated, do not change |
| * the TRNG parameters. |
| */ |
| kick_trng(ent_delay); |
| ent_delay += 400; |
| /* |
| * if instantiate_rng(...) fails, the loop will rerun |
| * and the kick_trng(...) function will modfiy the |
| * upper and lower limits of the entropy sampling |
| * interval, leading to a sucessful initialization of |
| * the RNG. |
| */ |
| ret = instantiate_rng(); |
| } while ((ret == -1) && (ent_delay < RTSDCTL_ENT_DLY_MAX)); |
| if (ret) { |
| printf("RNG: Failed to instantiate RNG\n"); |
| return ret; |
| } |
| |
| /* Enable RDB bit so that RNG works faster */ |
| sec_setbits32(&sec->scfgr, SEC_SCFGR_RDBENABLE); |
| |
| return ret; |
| } |
| |
| int sec_init(void) |
| { |
| ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; |
| uint32_t mcr = sec_in32(&sec->mcfgr); |
| int ret = 0; |
| |
| #ifdef CONFIG_FSL_CORENET |
| uint32_t liodnr; |
| uint32_t liodn_ns; |
| uint32_t liodn_s; |
| #endif |
| |
| /* |
| * Modifying CAAM Read/Write Attributes |
| * For LS2080A |
| * For AXI Write - Cacheable, Write Back, Write allocate |
| * For AXI Read - Cacheable, Read allocate |
| * Only For LS2080a, to solve CAAM coherency issues |
| */ |
| #ifdef CONFIG_LS2080A |
| mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0xb << MCFGR_AWCACHE_SHIFT); |
| mcr = (mcr & ~MCFGR_ARCACHE_MASK) | (0x6 << MCFGR_ARCACHE_SHIFT); |
| #else |
| mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0x2 << MCFGR_AWCACHE_SHIFT); |
| #endif |
| |
| #ifdef CONFIG_PHYS_64BIT |
| mcr |= (1 << MCFGR_PS_SHIFT); |
| #endif |
| sec_out32(&sec->mcfgr, mcr); |
| |
| #ifdef CONFIG_FSL_CORENET |
| liodnr = sec_in32(&sec->jrliodnr[0].ls); |
| liodn_ns = (liodnr & JRNSLIODN_MASK) >> JRNSLIODN_SHIFT; |
| liodn_s = (liodnr & JRSLIODN_MASK) >> JRSLIODN_SHIFT; |
| #endif |
| |
| ret = jr_init(); |
| if (ret < 0) { |
| printf("SEC initialization failed\n"); |
| return -1; |
| } |
| |
| #ifdef CONFIG_FSL_CORENET |
| ret = sec_config_pamu_table(liodn_ns, liodn_s); |
| if (ret < 0) |
| return -1; |
| |
| pamu_enable(); |
| #endif |
| |
| if (get_rng_vid() >= 4) { |
| if (rng_init() < 0) { |
| printf("RNG instantiation failed\n"); |
| return -1; |
| } |
| printf("SEC: RNG instantiated\n"); |
| } |
| |
| return ret; |
| } |