blob: c56285738a265d157b57fd5f0527c1fceaf08573 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/* Copyright (C) 2011
* Corscience GmbH & Co. KG - Simon Schwarz <schwarz@corscience.de>
* - Added prep subcommand support
* - Reorganized source - modeled after powerpc version
*
* (C) Copyright 2002
* Sysgo Real-Time Solutions, GmbH <www.elinos.com>
* Marius Groeger <mgroeger@sysgo.de>
*
* Copyright (C) 2001 Erik Mouw (J.A.K.Mouw@its.tudelft.nl)
*/
#include <common.h>
#include <bootstage.h>
#include <command.h>
#include <cpu_func.h>
#include <dm.h>
#include <log.h>
#include <asm/global_data.h>
#include <dm/root.h>
#include <env.h>
#include <image.h>
#include <u-boot/zlib.h>
#include <asm/byteorder.h>
#include <linux/libfdt.h>
#include <mapmem.h>
#include <fdt_support.h>
#include <asm/bootm.h>
#include <asm/secure.h>
#include <linux/compiler.h>
#include <bootm.h>
#include <vxworks.h>
#include <asm/cache.h>
#ifdef CONFIG_ARMV7_NONSEC
#include <asm/armv7.h>
#endif
#include <asm/setup.h>
DECLARE_GLOBAL_DATA_PTR;
static struct tag *params;
__weak void board_quiesce_devices(void)
{
}
/**
* announce_and_cleanup() - Print message and prepare for kernel boot
*
* @fake: non-zero to do everything except actually boot
*/
static void announce_and_cleanup(int fake)
{
bootstage_mark_name(BOOTSTAGE_ID_BOOTM_HANDOFF, "start_kernel");
#ifdef CONFIG_BOOTSTAGE_FDT
bootstage_fdt_add_report();
#endif
#ifdef CONFIG_BOOTSTAGE_REPORT
bootstage_report();
#endif
#ifdef CONFIG_USB_DEVICE
udc_disconnect();
#endif
board_quiesce_devices();
printf("\nStarting kernel ...%s\n\n", fake ?
"(fake run for tracing)" : "");
/*
* Call remove function of all devices with a removal flag set.
* This may be useful for last-stage operations, like cancelling
* of DMA operation or releasing device internal buffers.
*/
dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL | DM_REMOVE_NON_VITAL);
/* Remove all active vital devices next */
dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
cleanup_before_linux();
}
static void setup_start_tag (struct bd_info *bd)
{
params = (struct tag *)bd->bi_boot_params;
params->hdr.tag = ATAG_CORE;
params->hdr.size = tag_size (tag_core);
params->u.core.flags = 0;
params->u.core.pagesize = 0;
params->u.core.rootdev = 0;
params = tag_next (params);
}
static void setup_memory_tags(struct bd_info *bd)
{
int i;
for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
params->hdr.tag = ATAG_MEM;
params->hdr.size = tag_size (tag_mem32);
params->u.mem.start = bd->bi_dram[i].start;
params->u.mem.size = bd->bi_dram[i].size;
params = tag_next (params);
}
}
static void setup_commandline_tag(struct bd_info *bd, char *commandline)
{
char *p;
if (!commandline)
return;
/* eat leading white space */
for (p = commandline; *p == ' '; p++);
/* skip non-existent command lines so the kernel will still
* use its default command line.
*/
if (*p == '\0')
return;
params->hdr.tag = ATAG_CMDLINE;
params->hdr.size =
(sizeof (struct tag_header) + strlen (p) + 1 + 4) >> 2;
strcpy (params->u.cmdline.cmdline, p);
params = tag_next (params);
}
static void setup_initrd_tag(struct bd_info *bd, ulong initrd_start,
ulong initrd_end)
{
/* an ATAG_INITRD node tells the kernel where the compressed
* ramdisk can be found. ATAG_RDIMG is a better name, actually.
*/
params->hdr.tag = ATAG_INITRD2;
params->hdr.size = tag_size (tag_initrd);
params->u.initrd.start = initrd_start;
params->u.initrd.size = initrd_end - initrd_start;
params = tag_next (params);
}
static void setup_serial_tag(struct tag **tmp)
{
struct tag *params = *tmp;
struct tag_serialnr serialnr;
get_board_serial(&serialnr);
params->hdr.tag = ATAG_SERIAL;
params->hdr.size = tag_size (tag_serialnr);
params->u.serialnr.low = serialnr.low;
params->u.serialnr.high= serialnr.high;
params = tag_next (params);
*tmp = params;
}
static void setup_revision_tag(struct tag **in_params)
{
u32 rev = 0;
rev = get_board_rev();
params->hdr.tag = ATAG_REVISION;
params->hdr.size = tag_size (tag_revision);
params->u.revision.rev = rev;
params = tag_next (params);
}
static void setup_end_tag(struct bd_info *bd)
{
params->hdr.tag = ATAG_NONE;
params->hdr.size = 0;
}
__weak void setup_board_tags(struct tag **in_params) {}
#ifdef CONFIG_ARM64
static void do_nonsec_virt_switch(void)
{
smp_kick_all_cpus();
dcache_disable(); /* flush cache before swtiching to EL2 */
}
#endif
__weak void board_prep_linux(struct bootm_headers *images) { }
/* Subcommand: PREP */
static void boot_prep_linux(struct bootm_headers *images)
{
char *commandline = env_get("bootargs");
if (CONFIG_IS_ENABLED(OF_LIBFDT) && IS_ENABLED(CONFIG_LMB) && images->ft_len) {
debug("using: FDT\n");
if (image_setup_linux(images)) {
panic("FDT creation failed!");
}
} else if (BOOTM_ENABLE_TAGS) {
debug("using: ATAGS\n");
setup_start_tag(gd->bd);
if (BOOTM_ENABLE_SERIAL_TAG)
setup_serial_tag(&params);
if (BOOTM_ENABLE_CMDLINE_TAG)
setup_commandline_tag(gd->bd, commandline);
if (BOOTM_ENABLE_REVISION_TAG)
setup_revision_tag(&params);
if (BOOTM_ENABLE_MEMORY_TAGS)
setup_memory_tags(gd->bd);
if (BOOTM_ENABLE_INITRD_TAG) {
/*
* In boot_ramdisk_high(), it may relocate ramdisk to
* a specified location. And set images->initrd_start &
* images->initrd_end to relocated ramdisk's start/end
* addresses. So use them instead of images->rd_start &
* images->rd_end when possible.
*/
if (images->initrd_start && images->initrd_end) {
setup_initrd_tag(gd->bd, images->initrd_start,
images->initrd_end);
} else if (images->rd_start && images->rd_end) {
setup_initrd_tag(gd->bd, images->rd_start,
images->rd_end);
}
}
setup_board_tags(&params);
setup_end_tag(gd->bd);
} else {
panic("FDT and ATAGS support not compiled in\n");
}
board_prep_linux(images);
}
__weak bool armv7_boot_nonsec_default(void)
{
#ifdef CONFIG_ARMV7_BOOT_SEC_DEFAULT
return false;
#else
return true;
#endif
}
#ifdef CONFIG_ARMV7_NONSEC
bool armv7_boot_nonsec(void)
{
char *s = env_get("bootm_boot_mode");
bool nonsec = armv7_boot_nonsec_default();
if (s && !strcmp(s, "sec"))
nonsec = false;
if (s && !strcmp(s, "nonsec"))
nonsec = true;
return nonsec;
}
#endif
#ifdef CONFIG_ARM64
__weak void update_os_arch_secondary_cores(uint8_t os_arch)
{
}
#ifdef CONFIG_ARMV8_SWITCH_TO_EL1
static void switch_to_el1(void)
{
if ((IH_ARCH_DEFAULT == IH_ARCH_ARM64) &&
(images.os.arch == IH_ARCH_ARM))
armv8_switch_to_el1(0, (u64)gd->bd->bi_arch_number,
(u64)images.ft_addr, 0,
(u64)images.ep,
ES_TO_AARCH32);
else
armv8_switch_to_el1((u64)images.ft_addr, 0, 0, 0,
images.ep,
ES_TO_AARCH64);
}
#endif
#endif
/* Subcommand: GO */
static void boot_jump_linux(struct bootm_headers *images, int flag)
{
#ifdef CONFIG_ARM64
void (*kernel_entry)(void *fdt_addr, void *res0, void *res1,
void *res2);
int fake = (flag & BOOTM_STATE_OS_FAKE_GO);
kernel_entry = (void (*)(void *fdt_addr, void *res0, void *res1,
void *res2))images->ep;
debug("## Transferring control to Linux (at address %lx)...\n",
(ulong) kernel_entry);
bootstage_mark(BOOTSTAGE_ID_RUN_OS);
announce_and_cleanup(fake);
if (!fake) {
#ifdef CONFIG_ARMV8_PSCI
armv8_setup_psci();
#endif
do_nonsec_virt_switch();
update_os_arch_secondary_cores(images->os.arch);
#ifdef CONFIG_ARMV8_SWITCH_TO_EL1
armv8_switch_to_el2((u64)images->ft_addr, 0, 0, 0,
(u64)switch_to_el1, ES_TO_AARCH64);
#else
if ((IH_ARCH_DEFAULT == IH_ARCH_ARM64) &&
(images->os.arch == IH_ARCH_ARM))
armv8_switch_to_el2(0, (u64)gd->bd->bi_arch_number,
(u64)images->ft_addr, 0,
(u64)images->ep,
ES_TO_AARCH32);
else
armv8_switch_to_el2((u64)images->ft_addr, 0, 0, 0,
images->ep,
ES_TO_AARCH64);
#endif
}
#else
unsigned long machid = gd->bd->bi_arch_number;
char *s;
void (*kernel_entry)(int zero, int arch, uint params);
unsigned long r2;
int fake = (flag & BOOTM_STATE_OS_FAKE_GO);
kernel_entry = (void (*)(int, int, uint))images->ep;
#ifdef CONFIG_CPU_V7M
ulong addr = (ulong)kernel_entry | 1;
kernel_entry = (void *)addr;
#endif
s = env_get("machid");
if (s) {
if (strict_strtoul(s, 16, &machid) < 0) {
debug("strict_strtoul failed!\n");
return;
}
printf("Using machid 0x%lx from environment\n", machid);
}
debug("## Transferring control to Linux (at address %08lx)" \
"...\n", (ulong) kernel_entry);
bootstage_mark(BOOTSTAGE_ID_RUN_OS);
announce_and_cleanup(fake);
if (CONFIG_IS_ENABLED(OF_LIBFDT) && images->ft_len)
r2 = (unsigned long)images->ft_addr;
else
r2 = gd->bd->bi_boot_params;
if (!fake) {
#ifdef CONFIG_ARMV7_NONSEC
if (armv7_boot_nonsec()) {
armv7_init_nonsec();
secure_ram_addr(_do_nonsec_entry)(kernel_entry,
0, machid, r2);
} else
#endif
kernel_entry(0, machid, r2);
}
#endif
}
/* Main Entry point for arm bootm implementation
*
* Modeled after the powerpc implementation
* DIFFERENCE: Instead of calling prep and go at the end
* they are called if subcommand is equal 0.
*/
int do_bootm_linux(int flag, int argc, char *const argv[],
struct bootm_headers *images)
{
/* No need for those on ARM */
if (flag & BOOTM_STATE_OS_BD_T || flag & BOOTM_STATE_OS_CMDLINE)
return -1;
if (flag & BOOTM_STATE_OS_PREP) {
boot_prep_linux(images);
return 0;
}
if (flag & (BOOTM_STATE_OS_GO | BOOTM_STATE_OS_FAKE_GO)) {
boot_jump_linux(images, flag);
return 0;
}
boot_prep_linux(images);
boot_jump_linux(images, flag);
return 0;
}
#if defined(CONFIG_BOOTM_VXWORKS)
void boot_prep_vxworks(struct bootm_headers *images)
{
#if defined(CONFIG_OF_LIBFDT)
int off;
if (images->ft_addr) {
off = fdt_path_offset(images->ft_addr, "/memory");
if (off > 0) {
if (arch_fixup_fdt(images->ft_addr))
puts("## WARNING: fixup memory failed!\n");
}
}
#endif
cleanup_before_linux();
}
void boot_jump_vxworks(struct bootm_headers *images)
{
#if defined(CONFIG_ARM64) && defined(CONFIG_ARMV8_PSCI)
armv8_setup_psci();
smp_kick_all_cpus();
#endif
/* ARM VxWorks requires device tree physical address to be passed */
((void (*)(void *))images->ep)(images->ft_addr);
}
#endif