| /* SPDX-License-Identifier: GPL-2.0+ */ |
| /* |
| * Copyright (C) 2013-2014, 2020 Synopsys, Inc. All rights reserved. |
| */ |
| |
| #ifndef __ASM_ARC_IO_H |
| #define __ASM_ARC_IO_H |
| |
| #include <linux/types.h> |
| #include <asm/byteorder.h> |
| |
| #ifdef __ARCHS__ |
| |
| /* |
| * ARCv2 based HS38 cores are in-order issue, but still weakly ordered |
| * due to micro-arch buffering/queuing of load/store, cache hit vs. miss ... |
| * |
| * Explicit barrier provided by DMB instruction |
| * - Operand supports fine grained load/store/load+store semantics |
| * - Ensures that selected memory operation issued before it will complete |
| * before any subsequent memory operation of same type |
| * - DMB guarantees SMP as well as local barrier semantics |
| * (asm-generic/barrier.h ensures sane smp_*mb if not defined here, i.e. |
| * UP: barrier(), SMP: smp_*mb == *mb) |
| * - DSYNC provides DMB+completion_of_cache_bpu_maintenance_ops hence not needed |
| * in the general case. Plus it only provides full barrier. |
| */ |
| |
| #define mb() asm volatile("dmb 3\n" : : : "memory") |
| #define rmb() asm volatile("dmb 1\n" : : : "memory") |
| #define wmb() asm volatile("dmb 2\n" : : : "memory") |
| |
| #else |
| |
| /* |
| * ARCompact based cores (ARC700) only have SYNC instruction which is super |
| * heavy weight as it flushes the pipeline as well. |
| * There are no real SMP implementations of such cores. |
| */ |
| |
| #define mb() asm volatile("sync\n" : : : "memory") |
| #endif |
| |
| #ifdef __ARCHS__ |
| #define __iormb() rmb() |
| #define __iowmb() wmb() |
| #else |
| #define __iormb() asm volatile("" : : : "memory") |
| #define __iowmb() asm volatile("" : : : "memory") |
| #endif |
| |
| static inline void sync(void) |
| { |
| /* Not yet implemented */ |
| } |
| |
| #define __arch_getb(a) (*(unsigned char *)(a)) |
| #define __arch_getw(a) (*(unsigned short *)(a)) |
| #define __arch_getl(a) (*(unsigned int *)(a)) |
| #define __arch_getq(a) (*(unsigned long long *)(a)) |
| |
| #define __arch_putb(v, a) (*(unsigned char *)(a) = (v)) |
| #define __arch_putw(v, a) (*(unsigned short *)(a) = (v)) |
| #define __arch_putl(v, a) (*(unsigned int *)(a) = (v)) |
| #define __arch_putq(v, a) (*(unsigned long long *)(a) = (v)) |
| |
| #define __raw_writeb(v, a) __arch_putb(v, a) |
| #define __raw_writew(v, a) __arch_putw(v, a) |
| #define __raw_writel(v, a) __arch_putl(v, a) |
| #define __raw_writeq(v, a) __arch_putq(v, a) |
| |
| #define __raw_readb(a) __arch_getb(a) |
| #define __raw_readw(a) __arch_getw(a) |
| #define __raw_readl(a) __arch_getl(a) |
| #define __raw_readq(a) __arch_getq(a) |
| |
| static inline void __raw_writesb(unsigned long addr, const void *data, |
| int bytelen) |
| { |
| u8 *buf = (uint8_t *)data; |
| |
| while (bytelen--) |
| __arch_putb(*buf++, addr); |
| } |
| |
| static inline void __raw_writesw(unsigned long addr, const void *data, |
| int wordlen) |
| { |
| u16 *buf = (uint16_t *)data; |
| |
| while (wordlen--) |
| __arch_putw(*buf++, addr); |
| } |
| |
| static inline void __raw_writesl(unsigned long addr, const void *data, |
| int longlen) |
| { |
| u32 *buf = (uint32_t *)data; |
| |
| while (longlen--) |
| __arch_putl(*buf++, addr); |
| } |
| |
| static inline void __raw_readsb(unsigned long addr, void *data, int bytelen) |
| { |
| u8 *buf = (uint8_t *)data; |
| |
| while (bytelen--) |
| *buf++ = __arch_getb(addr); |
| } |
| |
| static inline void __raw_readsw(unsigned long addr, void *data, int wordlen) |
| { |
| u16 *buf = (uint16_t *)data; |
| |
| while (wordlen--) |
| *buf++ = __arch_getw(addr); |
| } |
| |
| static inline void __raw_readsl(unsigned long addr, void *data, int longlen) |
| { |
| u32 *buf = (uint32_t *)data; |
| |
| while (longlen--) |
| *buf++ = __arch_getl(addr); |
| } |
| |
| /* |
| * Relaxed I/O memory access primitives. These follow the Device memory |
| * ordering rules but do not guarantee any ordering relative to Normal memory |
| * accesses. |
| */ |
| #define readb_relaxed(c) ({ u8 __r = __raw_readb(c); __r; }) |
| #define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \ |
| __raw_readw(c)); __r; }) |
| #define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \ |
| __raw_readl(c)); __r; }) |
| #define readq_relaxed(c) ({ u64 __r = le64_to_cpu((__force __le64) \ |
| __raw_readq(c)); __r; }) |
| |
| #define writeb_relaxed(v, c) ((void)__raw_writeb((v), (c))) |
| #define writew_relaxed(v, c) ((void)__raw_writew((__force u16) \ |
| cpu_to_le16(v), (c))) |
| #define writel_relaxed(v, c) ((void)__raw_writel((__force u32) \ |
| cpu_to_le32(v), (c))) |
| #define writeq_relaxed(v, c) ((void)__raw_writeq((__force u64) \ |
| cpu_to_le64(v), (c))) |
| |
| /* |
| * MMIO can also get buffered/optimized in micro-arch, so barriers needed |
| * Based on ARM model for the typical use case |
| * |
| * <ST [DMA buffer]> |
| * <writel MMIO "go" reg> |
| * or: |
| * <readl MMIO "status" reg> |
| * <LD [DMA buffer]> |
| * |
| * http://lkml.kernel.org/r/20150622133656.GG1583@arm.com |
| */ |
| #define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; }) |
| #define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; }) |
| #define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; }) |
| #define readq(c) ({ u64 __v = readq_relaxed(c); __iormb(); __v; }) |
| |
| #define writeb(v, c) ({ __iowmb(); writeb_relaxed(v, c); }) |
| #define writew(v, c) ({ __iowmb(); writew_relaxed(v, c); }) |
| #define writel(v, c) ({ __iowmb(); writel_relaxed(v, c); }) |
| #define writeq(v, c) ({ __iowmb(); writeq_relaxed(v, c); }) |
| |
| #define out_arch(type, endian, a, v) __raw_write##type(cpu_to_##endian(v), a) |
| #define in_arch(type, endian, a) endian##_to_cpu(__raw_read##type(a)) |
| |
| #define out_le32(a, v) out_arch(l, le32, a, v) |
| #define out_le16(a, v) out_arch(w, le16, a, v) |
| |
| #define in_le32(a) in_arch(l, le32, a) |
| #define in_le16(a) in_arch(w, le16, a) |
| |
| #define out_be32(a, v) out_arch(l, be32, a, v) |
| #define out_be16(a, v) out_arch(w, be16, a, v) |
| |
| #define in_be32(a) in_arch(l, be32, a) |
| #define in_be16(a) in_arch(w, be16, a) |
| |
| #define out_8(a, v) __raw_writeb(v, a) |
| #define in_8(a) __raw_readb(a) |
| |
| /* |
| * Clear and set bits in one shot. These macros can be used to clear and |
| * set multiple bits in a register using a single call. These macros can |
| * also be used to set a multiple-bit bit pattern using a mask, by |
| * specifying the mask in the 'clear' parameter and the new bit pattern |
| * in the 'set' parameter. |
| */ |
| |
| #define clrbits(type, addr, clear) \ |
| out_##type((addr), in_##type(addr) & ~(clear)) |
| |
| #define setbits(type, addr, set) \ |
| out_##type((addr), in_##type(addr) | (set)) |
| |
| #define clrsetbits(type, addr, clear, set) \ |
| out_##type((addr), (in_##type(addr) & ~(clear)) | (set)) |
| |
| #define clrbits_be32(addr, clear) clrbits(be32, addr, clear) |
| #define setbits_be32(addr, set) setbits(be32, addr, set) |
| #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set) |
| |
| #define clrbits_le32(addr, clear) clrbits(le32, addr, clear) |
| #define setbits_le32(addr, set) setbits(le32, addr, set) |
| #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set) |
| |
| #define clrbits_be16(addr, clear) clrbits(be16, addr, clear) |
| #define setbits_be16(addr, set) setbits(be16, addr, set) |
| #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set) |
| |
| #define clrbits_le16(addr, clear) clrbits(le16, addr, clear) |
| #define setbits_le16(addr, set) setbits(le16, addr, set) |
| #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set) |
| |
| #define clrbits_8(addr, clear) clrbits(8, addr, clear) |
| #define setbits_8(addr, set) setbits(8, addr, set) |
| #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set) |
| |
| #include <asm-generic/io.h> |
| |
| #endif /* __ASM_ARC_IO_H */ |