blob: 4055ef49b6ee9441ec4e365d2bbbd5641c247516 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2016, Fuzhou Rockchip Electronics Co., Ltd
* Copyright (C) 2019, STMicroelectronics - All Rights Reserved
* Author(s): Philippe Cornu <philippe.cornu@st.com> for STMicroelectronics.
* Yannick Fertre <yannick.fertre@st.com> for STMicroelectronics.
*
* This generic Synopsys DesignWare MIPI DSI host driver is inspired from
* the Linux Kernel driver drivers/gpu/drm/bridge/synopsys/dw-mipi-dsi.c.
*/
#include <common.h>
#include <clk.h>
#include <dsi_host.h>
#include <dm.h>
#include <errno.h>
#include <panel.h>
#include <video.h>
#include <asm/io.h>
#include <asm/arch/gpio.h>
#include <dm/device-internal.h>
#include <dm/device_compat.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
#include <video_bridge.h>
#define HWVER_131 0x31333100 /* IP version 1.31 */
#define DSI_VERSION 0x00
#define VERSION GENMASK(31, 8)
#define DSI_PWR_UP 0x04
#define RESET 0
#define POWERUP BIT(0)
#define DSI_CLKMGR_CFG 0x08
#define TO_CLK_DIVISION(div) (((div) & 0xff) << 8)
#define TX_ESC_CLK_DIVISION(div) ((div) & 0xff)
#define DSI_DPI_VCID 0x0c
#define DPI_VCID(vcid) ((vcid) & 0x3)
#define DSI_DPI_COLOR_CODING 0x10
#define LOOSELY18_EN BIT(8)
#define DPI_COLOR_CODING_16BIT_1 0x0
#define DPI_COLOR_CODING_16BIT_2 0x1
#define DPI_COLOR_CODING_16BIT_3 0x2
#define DPI_COLOR_CODING_18BIT_1 0x3
#define DPI_COLOR_CODING_18BIT_2 0x4
#define DPI_COLOR_CODING_24BIT 0x5
#define DSI_DPI_CFG_POL 0x14
#define COLORM_ACTIVE_LOW BIT(4)
#define SHUTD_ACTIVE_LOW BIT(3)
#define HSYNC_ACTIVE_LOW BIT(2)
#define VSYNC_ACTIVE_LOW BIT(1)
#define DATAEN_ACTIVE_LOW BIT(0)
#define DSI_DPI_LP_CMD_TIM 0x18
#define OUTVACT_LPCMD_TIME(p) (((p) & 0xff) << 16)
#define INVACT_LPCMD_TIME(p) ((p) & 0xff)
#define DSI_DBI_VCID 0x1c
#define DSI_DBI_CFG 0x20
#define DSI_DBI_PARTITIONING_EN 0x24
#define DSI_DBI_CMDSIZE 0x28
#define DSI_PCKHDL_CFG 0x2c
#define CRC_RX_EN BIT(4)
#define ECC_RX_EN BIT(3)
#define BTA_EN BIT(2)
#define EOTP_RX_EN BIT(1)
#define EOTP_TX_EN BIT(0)
#define DSI_GEN_VCID 0x30
#define DSI_MODE_CFG 0x34
#define ENABLE_VIDEO_MODE 0
#define ENABLE_CMD_MODE BIT(0)
#define DSI_VID_MODE_CFG 0x38
#define ENABLE_LOW_POWER (0x3f << 8)
#define ENABLE_LOW_POWER_MASK (0x3f << 8)
#define VID_MODE_TYPE_NON_BURST_SYNC_PULSES 0x0
#define VID_MODE_TYPE_NON_BURST_SYNC_EVENTS 0x1
#define VID_MODE_TYPE_BURST 0x2
#define VID_MODE_TYPE_MASK 0x3
#define DSI_VID_PKT_SIZE 0x3c
#define VID_PKT_SIZE(p) ((p) & 0x3fff)
#define DSI_VID_NUM_CHUNKS 0x40
#define VID_NUM_CHUNKS(c) ((c) & 0x1fff)
#define DSI_VID_NULL_SIZE 0x44
#define VID_NULL_SIZE(b) ((b) & 0x1fff)
#define DSI_VID_HSA_TIME 0x48
#define DSI_VID_HBP_TIME 0x4c
#define DSI_VID_HLINE_TIME 0x50
#define DSI_VID_VSA_LINES 0x54
#define DSI_VID_VBP_LINES 0x58
#define DSI_VID_VFP_LINES 0x5c
#define DSI_VID_VACTIVE_LINES 0x60
#define DSI_EDPI_CMD_SIZE 0x64
#define DSI_CMD_MODE_CFG 0x68
#define MAX_RD_PKT_SIZE_LP BIT(24)
#define DCS_LW_TX_LP BIT(19)
#define DCS_SR_0P_TX_LP BIT(18)
#define DCS_SW_1P_TX_LP BIT(17)
#define DCS_SW_0P_TX_LP BIT(16)
#define GEN_LW_TX_LP BIT(14)
#define GEN_SR_2P_TX_LP BIT(13)
#define GEN_SR_1P_TX_LP BIT(12)
#define GEN_SR_0P_TX_LP BIT(11)
#define GEN_SW_2P_TX_LP BIT(10)
#define GEN_SW_1P_TX_LP BIT(9)
#define GEN_SW_0P_TX_LP BIT(8)
#define ACK_RQST_EN BIT(1)
#define TEAR_FX_EN BIT(0)
#define CMD_MODE_ALL_LP (MAX_RD_PKT_SIZE_LP | \
DCS_LW_TX_LP | \
DCS_SR_0P_TX_LP | \
DCS_SW_1P_TX_LP | \
DCS_SW_0P_TX_LP | \
GEN_LW_TX_LP | \
GEN_SR_2P_TX_LP | \
GEN_SR_1P_TX_LP | \
GEN_SR_0P_TX_LP | \
GEN_SW_2P_TX_LP | \
GEN_SW_1P_TX_LP | \
GEN_SW_0P_TX_LP)
#define DSI_GEN_HDR 0x6c
#define DSI_GEN_PLD_DATA 0x70
#define DSI_CMD_PKT_STATUS 0x74
#define GEN_RD_CMD_BUSY BIT(6)
#define GEN_PLD_R_FULL BIT(5)
#define GEN_PLD_R_EMPTY BIT(4)
#define GEN_PLD_W_FULL BIT(3)
#define GEN_PLD_W_EMPTY BIT(2)
#define GEN_CMD_FULL BIT(1)
#define GEN_CMD_EMPTY BIT(0)
#define DSI_TO_CNT_CFG 0x78
#define HSTX_TO_CNT(p) (((p) & 0xffff) << 16)
#define LPRX_TO_CNT(p) ((p) & 0xffff)
#define DSI_HS_RD_TO_CNT 0x7c
#define DSI_LP_RD_TO_CNT 0x80
#define DSI_HS_WR_TO_CNT 0x84
#define DSI_LP_WR_TO_CNT 0x88
#define DSI_BTA_TO_CNT 0x8c
#define DSI_LPCLK_CTRL 0x94
#define AUTO_CLKLANE_CTRL BIT(1)
#define PHY_TXREQUESTCLKHS BIT(0)
#define DSI_PHY_TMR_LPCLK_CFG 0x98
#define PHY_CLKHS2LP_TIME(lbcc) (((lbcc) & 0x3ff) << 16)
#define PHY_CLKLP2HS_TIME(lbcc) ((lbcc) & 0x3ff)
#define DSI_PHY_TMR_CFG 0x9c
#define PHY_HS2LP_TIME(lbcc) (((lbcc) & 0xff) << 24)
#define PHY_LP2HS_TIME(lbcc) (((lbcc) & 0xff) << 16)
#define MAX_RD_TIME(lbcc) ((lbcc) & 0x7fff)
#define PHY_HS2LP_TIME_V131(lbcc) (((lbcc) & 0x3ff) << 16)
#define PHY_LP2HS_TIME_V131(lbcc) ((lbcc) & 0x3ff)
#define DSI_PHY_RSTZ 0xa0
#define PHY_DISFORCEPLL 0
#define PHY_ENFORCEPLL BIT(3)
#define PHY_DISABLECLK 0
#define PHY_ENABLECLK BIT(2)
#define PHY_RSTZ 0
#define PHY_UNRSTZ BIT(1)
#define PHY_SHUTDOWNZ 0
#define PHY_UNSHUTDOWNZ BIT(0)
#define DSI_PHY_IF_CFG 0xa4
#define PHY_STOP_WAIT_TIME(cycle) (((cycle) & 0xff) << 8)
#define N_LANES(n) (((n) - 1) & 0x3)
#define DSI_PHY_ULPS_CTRL 0xa8
#define DSI_PHY_TX_TRIGGERS 0xac
#define DSI_PHY_STATUS 0xb0
#define PHY_STOP_STATE_CLK_LANE BIT(2)
#define PHY_LOCK BIT(0)
#define DSI_PHY_TST_CTRL0 0xb4
#define PHY_TESTCLK BIT(1)
#define PHY_UNTESTCLK 0
#define PHY_TESTCLR BIT(0)
#define PHY_UNTESTCLR 0
#define DSI_PHY_TST_CTRL1 0xb8
#define PHY_TESTEN BIT(16)
#define PHY_UNTESTEN 0
#define PHY_TESTDOUT(n) (((n) & 0xff) << 8)
#define PHY_TESTDIN(n) ((n) & 0xff)
#define DSI_INT_ST0 0xbc
#define DSI_INT_ST1 0xc0
#define DSI_INT_MSK0 0xc4
#define DSI_INT_MSK1 0xc8
#define DSI_PHY_TMR_RD_CFG 0xf4
#define MAX_RD_TIME_V131(lbcc) ((lbcc) & 0x7fff)
#define PHY_STATUS_TIMEOUT_US 10000
#define CMD_PKT_STATUS_TIMEOUT_US 20000
#define MSEC_PER_SEC 1000
struct dw_mipi_dsi {
struct mipi_dsi_host dsi_host;
struct mipi_dsi_device *device;
void __iomem *base;
unsigned int lane_mbps; /* per lane */
u32 channel;
unsigned int max_data_lanes;
const struct mipi_dsi_phy_ops *phy_ops;
};
static int dsi_mode_vrefresh(struct display_timing *timings)
{
int refresh = 0;
unsigned int calc_val;
u32 htotal = timings->hactive.typ + timings->hfront_porch.typ +
timings->hback_porch.typ + timings->hsync_len.typ;
u32 vtotal = timings->vactive.typ + timings->vfront_porch.typ +
timings->vback_porch.typ + timings->vsync_len.typ;
if (htotal > 0 && vtotal > 0) {
calc_val = timings->pixelclock.typ;
calc_val /= htotal;
refresh = (calc_val + vtotal / 2) / vtotal;
}
return refresh;
}
/*
* The controller should generate 2 frames before
* preparing the peripheral.
*/
static void dw_mipi_dsi_wait_for_two_frames(struct display_timing *timings)
{
int refresh, two_frames;
refresh = dsi_mode_vrefresh(timings);
two_frames = DIV_ROUND_UP(MSEC_PER_SEC, refresh) * 2;
mdelay(two_frames);
}
static inline struct dw_mipi_dsi *host_to_dsi(struct mipi_dsi_host *host)
{
return container_of(host, struct dw_mipi_dsi, dsi_host);
}
static inline void dsi_write(struct dw_mipi_dsi *dsi, u32 reg, u32 val)
{
writel(val, dsi->base + reg);
}
static inline u32 dsi_read(struct dw_mipi_dsi *dsi, u32 reg)
{
return readl(dsi->base + reg);
}
static int dw_mipi_dsi_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
struct dw_mipi_dsi *dsi = host_to_dsi(host);
if (device->lanes > dsi->max_data_lanes) {
dev_err(device->dev,
"the number of data lanes(%u) is too many\n",
device->lanes);
return -EINVAL;
}
dsi->channel = device->channel;
return 0;
}
static void dw_mipi_message_config(struct dw_mipi_dsi *dsi,
const struct mipi_dsi_msg *msg)
{
bool lpm = msg->flags & MIPI_DSI_MSG_USE_LPM;
u32 val = 0;
if (msg->flags & MIPI_DSI_MSG_REQ_ACK)
val |= ACK_RQST_EN;
if (lpm)
val |= CMD_MODE_ALL_LP;
dsi_write(dsi, DSI_LPCLK_CTRL, lpm ? 0 : PHY_TXREQUESTCLKHS);
dsi_write(dsi, DSI_CMD_MODE_CFG, val);
}
static int dw_mipi_dsi_gen_pkt_hdr_write(struct dw_mipi_dsi *dsi, u32 hdr_val)
{
int ret;
u32 val, mask;
ret = readl_poll_timeout(dsi->base + DSI_CMD_PKT_STATUS,
val, !(val & GEN_CMD_FULL),
CMD_PKT_STATUS_TIMEOUT_US);
if (ret) {
dev_err(dsi->dsi_host.dev,
"failed to get available command FIFO\n");
return ret;
}
dsi_write(dsi, DSI_GEN_HDR, hdr_val);
mask = GEN_CMD_EMPTY | GEN_PLD_W_EMPTY;
ret = readl_poll_timeout(dsi->base + DSI_CMD_PKT_STATUS,
val, (val & mask) == mask,
CMD_PKT_STATUS_TIMEOUT_US);
if (ret) {
dev_err(dsi->dsi_host.dev, "failed to write command FIFO\n");
return ret;
}
return 0;
}
static int dw_mipi_dsi_write(struct dw_mipi_dsi *dsi,
const struct mipi_dsi_packet *packet)
{
const u8 *tx_buf = packet->payload;
int len = packet->payload_length, pld_data_bytes = sizeof(u32), ret;
__le32 word;
u32 val;
while (len) {
if (len < pld_data_bytes) {
word = 0;
memcpy(&word, tx_buf, len);
dsi_write(dsi, DSI_GEN_PLD_DATA, le32_to_cpu(word));
len = 0;
} else {
memcpy(&word, tx_buf, pld_data_bytes);
dsi_write(dsi, DSI_GEN_PLD_DATA, le32_to_cpu(word));
tx_buf += pld_data_bytes;
len -= pld_data_bytes;
}
ret = readl_poll_timeout(dsi->base + DSI_CMD_PKT_STATUS,
val, !(val & GEN_PLD_W_FULL),
CMD_PKT_STATUS_TIMEOUT_US);
if (ret) {
dev_err(dsi->dsi_host.dev,
"failed to get available write payload FIFO\n");
return ret;
}
}
word = 0;
memcpy(&word, packet->header, sizeof(packet->header));
return dw_mipi_dsi_gen_pkt_hdr_write(dsi, le32_to_cpu(word));
}
static int dw_mipi_dsi_read(struct dw_mipi_dsi *dsi,
const struct mipi_dsi_msg *msg)
{
int i, j, ret, len = msg->rx_len;
u8 *buf = msg->rx_buf;
u32 val;
/* Wait end of the read operation */
ret = readl_poll_timeout(dsi->base + DSI_CMD_PKT_STATUS,
val, !(val & GEN_RD_CMD_BUSY),
CMD_PKT_STATUS_TIMEOUT_US);
if (ret) {
dev_err(dsi->dsi_host.dev, "Timeout during read operation\n");
return ret;
}
for (i = 0; i < len; i += 4) {
/* Read fifo must not be empty before all bytes are read */
ret = readl_poll_timeout(dsi->base + DSI_CMD_PKT_STATUS,
val, !(val & GEN_PLD_R_EMPTY),
CMD_PKT_STATUS_TIMEOUT_US);
if (ret) {
dev_err(dsi->dsi_host.dev,
"Read payload FIFO is empty\n");
return ret;
}
val = dsi_read(dsi, DSI_GEN_PLD_DATA);
for (j = 0; j < 4 && j + i < len; j++)
buf[i + j] = val >> (8 * j);
}
return ret;
}
static ssize_t dw_mipi_dsi_host_transfer(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct dw_mipi_dsi *dsi = host_to_dsi(host);
struct mipi_dsi_packet packet;
int ret, nb_bytes;
ret = mipi_dsi_create_packet(&packet, msg);
if (ret) {
dev_err(host->dev, "failed to create packet: %d\n", ret);
return ret;
}
dw_mipi_message_config(dsi, msg);
ret = dw_mipi_dsi_write(dsi, &packet);
if (ret)
return ret;
if (msg->rx_buf && msg->rx_len) {
ret = dw_mipi_dsi_read(dsi, msg);
if (ret)
return ret;
nb_bytes = msg->rx_len;
} else {
nb_bytes = packet.size;
}
return nb_bytes;
}
static const struct mipi_dsi_host_ops dw_mipi_dsi_host_ops = {
.attach = dw_mipi_dsi_host_attach,
.transfer = dw_mipi_dsi_host_transfer,
};
static void dw_mipi_dsi_video_mode_config(struct dw_mipi_dsi *dsi)
{
struct mipi_dsi_device *device = dsi->device;
u32 val;
/*
* TODO dw drv improvements
* enabling low power is panel-dependent, we should use the
* panel configuration here...
*/
val = ENABLE_LOW_POWER;
if (device->mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
val |= VID_MODE_TYPE_BURST;
else if (device->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
val |= VID_MODE_TYPE_NON_BURST_SYNC_PULSES;
else
val |= VID_MODE_TYPE_NON_BURST_SYNC_EVENTS;
dsi_write(dsi, DSI_VID_MODE_CFG, val);
}
static void dw_mipi_dsi_set_mode(struct dw_mipi_dsi *dsi,
unsigned long mode_flags)
{
const struct mipi_dsi_phy_ops *phy_ops = dsi->phy_ops;
dsi_write(dsi, DSI_PWR_UP, RESET);
if (mode_flags & MIPI_DSI_MODE_VIDEO) {
dsi_write(dsi, DSI_MODE_CFG, ENABLE_VIDEO_MODE);
dw_mipi_dsi_video_mode_config(dsi);
dsi_write(dsi, DSI_LPCLK_CTRL, PHY_TXREQUESTCLKHS);
} else {
dsi_write(dsi, DSI_MODE_CFG, ENABLE_CMD_MODE);
}
if (phy_ops->post_set_mode)
phy_ops->post_set_mode(dsi->device, mode_flags);
dsi_write(dsi, DSI_PWR_UP, POWERUP);
}
static void dw_mipi_dsi_init_pll(struct dw_mipi_dsi *dsi)
{
const struct mipi_dsi_phy_ops *phy_ops = dsi->phy_ops;
unsigned int esc_rate;
u32 esc_clk_division;
/*
* The maximum permitted escape clock is 20MHz and it is derived from
* lanebyteclk, which is running at "lane_mbps / 8".
*/
if (phy_ops->get_esc_clk_rate)
phy_ops->get_esc_clk_rate(dsi->device, &esc_rate);
else
esc_rate = 20; /* Default to 20MHz */
/*
* We want:
*
* (lane_mbps >> 3) / esc_clk_division < X
* which is:
* (lane_mbps >> 3) / X > esc_clk_division
*/
esc_clk_division = (dsi->lane_mbps >> 3) / esc_rate + 1;
dsi_write(dsi, DSI_PWR_UP, RESET);
/*
* TODO dw drv improvements
* timeout clock division should be computed with the
* high speed transmission counter timeout and byte lane...
*/
dsi_write(dsi, DSI_CLKMGR_CFG, TO_CLK_DIVISION(10) |
TX_ESC_CLK_DIVISION(esc_clk_division));
}
static void dw_mipi_dsi_dpi_config(struct dw_mipi_dsi *dsi,
struct display_timing *timings)
{
struct mipi_dsi_device *device = dsi->device;
u32 val = 0, color = 0;
switch (device->format) {
case MIPI_DSI_FMT_RGB888:
color = DPI_COLOR_CODING_24BIT;
break;
case MIPI_DSI_FMT_RGB666:
color = DPI_COLOR_CODING_18BIT_2 | LOOSELY18_EN;
break;
case MIPI_DSI_FMT_RGB666_PACKED:
color = DPI_COLOR_CODING_18BIT_1;
break;
case MIPI_DSI_FMT_RGB565:
color = DPI_COLOR_CODING_16BIT_1;
break;
}
if (device->mode_flags & DISPLAY_FLAGS_VSYNC_HIGH)
val |= VSYNC_ACTIVE_LOW;
if (device->mode_flags & DISPLAY_FLAGS_HSYNC_HIGH)
val |= HSYNC_ACTIVE_LOW;
dsi_write(dsi, DSI_DPI_VCID, DPI_VCID(dsi->channel));
dsi_write(dsi, DSI_DPI_COLOR_CODING, color);
dsi_write(dsi, DSI_DPI_CFG_POL, val);
/*
* TODO dw drv improvements
* largest packet sizes during hfp or during vsa/vpb/vfp
* should be computed according to byte lane, lane number and only
* if sending lp cmds in high speed is enable (PHY_TXREQUESTCLKHS)
*/
dsi_write(dsi, DSI_DPI_LP_CMD_TIM, OUTVACT_LPCMD_TIME(4)
| INVACT_LPCMD_TIME(4));
}
static void dw_mipi_dsi_packet_handler_config(struct dw_mipi_dsi *dsi)
{
dsi_write(dsi, DSI_PCKHDL_CFG, CRC_RX_EN | ECC_RX_EN | BTA_EN);
}
static void dw_mipi_dsi_video_packet_config(struct dw_mipi_dsi *dsi,
struct display_timing *timings)
{
/*
* TODO dw drv improvements
* only burst mode is supported here. For non-burst video modes,
* we should compute DSI_VID_PKT_SIZE, DSI_VCCR.NUMC &
* DSI_VNPCR.NPSIZE... especially because this driver supports
* non-burst video modes, see dw_mipi_dsi_video_mode_config()...
*/
dsi_write(dsi, DSI_VID_PKT_SIZE, VID_PKT_SIZE(timings->hactive.typ));
}
static void dw_mipi_dsi_command_mode_config(struct dw_mipi_dsi *dsi)
{
const struct mipi_dsi_phy_ops *phy_ops = dsi->phy_ops;
/*
* TODO dw drv improvements
* compute high speed transmission counter timeout according
* to the timeout clock division (TO_CLK_DIVISION) and byte lane...
*/
dsi_write(dsi, DSI_TO_CNT_CFG, HSTX_TO_CNT(1000) | LPRX_TO_CNT(1000));
/*
* TODO dw drv improvements
* the Bus-Turn-Around Timeout Counter should be computed
* according to byte lane...
*/
dsi_write(dsi, DSI_BTA_TO_CNT, 0xd00);
dsi_write(dsi, DSI_MODE_CFG, ENABLE_CMD_MODE);
if (phy_ops->post_set_mode)
phy_ops->post_set_mode(dsi->device, 0);
}
/* Get lane byte clock cycles. */
static u32 dw_mipi_dsi_get_hcomponent_lbcc(struct dw_mipi_dsi *dsi,
struct display_timing *timings,
u32 hcomponent)
{
u32 frac, lbcc;
lbcc = hcomponent * dsi->lane_mbps * MSEC_PER_SEC / 8;
frac = lbcc % (timings->pixelclock.typ / 1000);
lbcc = lbcc / (timings->pixelclock.typ / 1000);
if (frac)
lbcc++;
return lbcc;
}
static void dw_mipi_dsi_line_timer_config(struct dw_mipi_dsi *dsi,
struct display_timing *timings)
{
u32 htotal, hsa, hbp, lbcc;
htotal = timings->hactive.typ + timings->hfront_porch.typ +
timings->hback_porch.typ + timings->hsync_len.typ;
hsa = timings->hback_porch.typ;
hbp = timings->hsync_len.typ;
/*
* TODO dw drv improvements
* computations below may be improved...
*/
lbcc = dw_mipi_dsi_get_hcomponent_lbcc(dsi, timings, htotal);
dsi_write(dsi, DSI_VID_HLINE_TIME, lbcc);
lbcc = dw_mipi_dsi_get_hcomponent_lbcc(dsi, timings, hsa);
dsi_write(dsi, DSI_VID_HSA_TIME, lbcc);
lbcc = dw_mipi_dsi_get_hcomponent_lbcc(dsi, timings, hbp);
dsi_write(dsi, DSI_VID_HBP_TIME, lbcc);
}
static void dw_mipi_dsi_vertical_timing_config(struct dw_mipi_dsi *dsi,
struct display_timing *timings)
{
u32 vactive, vsa, vfp, vbp;
vactive = timings->vactive.typ;
vsa = timings->vback_porch.typ;
vfp = timings->vfront_porch.typ;
vbp = timings->vsync_len.typ;
dsi_write(dsi, DSI_VID_VACTIVE_LINES, vactive);
dsi_write(dsi, DSI_VID_VSA_LINES, vsa);
dsi_write(dsi, DSI_VID_VFP_LINES, vfp);
dsi_write(dsi, DSI_VID_VBP_LINES, vbp);
}
static void dw_mipi_dsi_dphy_timing_config(struct dw_mipi_dsi *dsi)
{
const struct mipi_dsi_phy_ops *phy_ops = dsi->phy_ops;
struct mipi_dsi_phy_timing timing = {0x40, 0x40, 0x40, 0x40};
u32 hw_version;
if (phy_ops->get_timing)
phy_ops->get_timing(dsi->device, dsi->lane_mbps, &timing);
/*
* TODO dw drv improvements
* data & clock lane timers should be computed according to panel
* blankings and to the automatic clock lane control mode...
* note: DSI_PHY_TMR_CFG.MAX_RD_TIME should be in line with
* DSI_CMD_MODE_CFG.MAX_RD_PKT_SIZE_LP (see CMD_MODE_ALL_LP)
*/
hw_version = dsi_read(dsi, DSI_VERSION) & VERSION;
if (hw_version >= HWVER_131) {
dsi_write(dsi, DSI_PHY_TMR_CFG, PHY_HS2LP_TIME_V131(timing.data_hs2lp) |
PHY_LP2HS_TIME_V131(timing.data_lp2hs));
dsi_write(dsi, DSI_PHY_TMR_RD_CFG, MAX_RD_TIME_V131(10000));
} else {
dsi_write(dsi, DSI_PHY_TMR_CFG, PHY_HS2LP_TIME(timing.data_hs2lp) |
PHY_LP2HS_TIME(timing.data_lp2hs) | MAX_RD_TIME(10000));
}
dsi_write(dsi, DSI_PHY_TMR_LPCLK_CFG, PHY_CLKHS2LP_TIME(timing.clk_hs2lp)
| PHY_CLKLP2HS_TIME(timing.clk_lp2hs));
}
static void dw_mipi_dsi_dphy_interface_config(struct dw_mipi_dsi *dsi)
{
struct mipi_dsi_device *device = dsi->device;
/*
* TODO dw drv improvements
* stop wait time should be the maximum between host dsi
* and panel stop wait times
*/
dsi_write(dsi, DSI_PHY_IF_CFG, PHY_STOP_WAIT_TIME(0x20) |
N_LANES(device->lanes));
}
static void dw_mipi_dsi_dphy_init(struct dw_mipi_dsi *dsi)
{
/* Clear PHY state */
dsi_write(dsi, DSI_PHY_RSTZ, PHY_DISFORCEPLL | PHY_DISABLECLK
| PHY_RSTZ | PHY_SHUTDOWNZ);
dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_UNTESTCLR);
dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_TESTCLR);
dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_UNTESTCLR);
}
static void dw_mipi_dsi_dphy_enable(struct dw_mipi_dsi *dsi)
{
u32 val;
int ret;
dsi_write(dsi, DSI_PHY_RSTZ, PHY_ENFORCEPLL | PHY_ENABLECLK |
PHY_UNRSTZ | PHY_UNSHUTDOWNZ);
ret = readl_poll_timeout(dsi->base + DSI_PHY_STATUS, val,
val & PHY_LOCK, PHY_STATUS_TIMEOUT_US);
if (ret)
dev_warn(dsi->dsi_host.dev,
"failed to wait phy lock state\n");
ret = readl_poll_timeout(dsi->base + DSI_PHY_STATUS,
val, val & PHY_STOP_STATE_CLK_LANE,
PHY_STATUS_TIMEOUT_US);
if (ret)
dev_warn(dsi->dsi_host.dev,
"failed to wait phy clk lane stop state\n");
}
static void dw_mipi_dsi_clear_err(struct dw_mipi_dsi *dsi)
{
dsi_read(dsi, DSI_INT_ST0);
dsi_read(dsi, DSI_INT_ST1);
dsi_write(dsi, DSI_INT_MSK0, 0);
dsi_write(dsi, DSI_INT_MSK1, 0);
}
static void dw_mipi_dsi_bridge_set(struct dw_mipi_dsi *dsi,
struct display_timing *timings)
{
const struct mipi_dsi_phy_ops *phy_ops = dsi->phy_ops;
struct mipi_dsi_device *device = dsi->device;
int ret;
ret = phy_ops->get_lane_mbps(dsi->device, timings, device->lanes,
device->format, &dsi->lane_mbps);
if (ret)
dev_warn(dsi->dsi_host.dev, "Phy get_lane_mbps() failed\n");
dw_mipi_dsi_init_pll(dsi);
dw_mipi_dsi_dpi_config(dsi, timings);
dw_mipi_dsi_packet_handler_config(dsi);
dw_mipi_dsi_video_mode_config(dsi);
dw_mipi_dsi_video_packet_config(dsi, timings);
dw_mipi_dsi_command_mode_config(dsi);
dw_mipi_dsi_line_timer_config(dsi, timings);
dw_mipi_dsi_vertical_timing_config(dsi, timings);
dw_mipi_dsi_dphy_init(dsi);
dw_mipi_dsi_dphy_timing_config(dsi);
dw_mipi_dsi_dphy_interface_config(dsi);
dw_mipi_dsi_clear_err(dsi);
ret = phy_ops->init(dsi->device);
if (ret)
dev_warn(dsi->dsi_host.dev, "Phy init() failed\n");
dw_mipi_dsi_dphy_enable(dsi);
dw_mipi_dsi_wait_for_two_frames(timings);
/* Switch to cmd mode for panel-bridge pre_enable & panel prepare */
dw_mipi_dsi_set_mode(dsi, 0);
}
static int dw_mipi_dsi_init(struct udevice *dev,
struct mipi_dsi_device *device,
struct display_timing *timings,
unsigned int max_data_lanes,
const struct mipi_dsi_phy_ops *phy_ops)
{
struct dw_mipi_dsi *dsi = dev_get_priv(dev);
struct clk clk;
int ret;
if (!phy_ops->init || !phy_ops->get_lane_mbps) {
dev_err(device->dev, "Phy not properly configured\n");
return -ENODEV;
}
dsi->phy_ops = phy_ops;
dsi->max_data_lanes = max_data_lanes;
dsi->device = device;
dsi->dsi_host.ops = &dw_mipi_dsi_host_ops;
device->host = &dsi->dsi_host;
dsi->base = (void *)dev_read_addr(device->dev);
if ((fdt_addr_t)dsi->base == FDT_ADDR_T_NONE) {
dev_err(device->dev, "dsi dt register address error\n");
return -EINVAL;
}
ret = clk_get_by_name(device->dev, "px_clk", &clk);
if (ret) {
dev_err(device->dev, "peripheral clock get error %d\n", ret);
return ret;
}
/* get the pixel clock set by the clock framework */
timings->pixelclock.typ = clk_get_rate(&clk);
dw_mipi_dsi_bridge_set(dsi, timings);
return 0;
}
static int dw_mipi_dsi_enable(struct udevice *dev)
{
struct dw_mipi_dsi *dsi = dev_get_priv(dev);
/* Switch to video mode for panel-bridge enable & panel enable */
dw_mipi_dsi_set_mode(dsi, MIPI_DSI_MODE_VIDEO);
return 0;
}
struct dsi_host_ops dw_mipi_dsi_ops = {
.init = dw_mipi_dsi_init,
.enable = dw_mipi_dsi_enable,
};
static int dw_mipi_dsi_probe(struct udevice *dev)
{
return 0;
}
U_BOOT_DRIVER(dw_mipi_dsi) = {
.name = "dw_mipi_dsi",
.id = UCLASS_DSI_HOST,
.probe = dw_mipi_dsi_probe,
.ops = &dw_mipi_dsi_ops,
.priv_auto_alloc_size = sizeof(struct dw_mipi_dsi),
};
MODULE_AUTHOR("Chris Zhong <zyw@rock-chips.com>");
MODULE_AUTHOR("Philippe Cornu <philippe.cornu@st.com>");
MODULE_AUTHOR("Yannick Fertré <yannick.fertre@st.com>");
MODULE_DESCRIPTION("DW MIPI DSI host controller driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:dw-mipi-dsi");