| /* |
| * (C) Copyright 2016 Xilinx, Inc. |
| * |
| * Xilinx Zynq NAND Flash Controller Driver |
| * This driver is based on plat_nand.c and mxc_nand.c drivers |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <common.h> |
| #include <malloc.h> |
| #include <asm/io.h> |
| #include <linux/errno.h> |
| #include <nand.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/mtd/nand_ecc.h> |
| #include <asm/arch/hardware.h> |
| |
| /* The NAND flash driver defines */ |
| #define ZYNQ_NAND_CMD_PHASE 1 |
| #define ZYNQ_NAND_DATA_PHASE 2 |
| #define ZYNQ_NAND_ECC_SIZE 512 |
| #define ZYNQ_NAND_SET_OPMODE_8BIT (0 << 0) |
| #define ZYNQ_NAND_SET_OPMODE_16BIT (1 << 0) |
| #define ZYNQ_NAND_ECC_STATUS (1 << 6) |
| #define ZYNQ_MEMC_CLRCR_INT_CLR1 (1 << 4) |
| #define ZYNQ_MEMC_SR_RAW_INT_ST1 (1 << 6) |
| #define ZYNQ_MEMC_SR_INT_ST1 (1 << 4) |
| #define ZYNQ_MEMC_NAND_ECC_MODE_MASK 0xC |
| |
| /* Flash memory controller operating parameters */ |
| #define ZYNQ_NAND_CLR_CONFIG ((0x1 << 1) | /* Disable interrupt */ \ |
| (0x1 << 4) | /* Clear interrupt */ \ |
| (0x1 << 6)) /* Disable ECC interrupt */ |
| |
| #ifndef CONFIG_NAND_ZYNQ_USE_BOOTLOADER1_TIMINGS |
| |
| /* Assuming 50MHz clock (20ns cycle time) and 3V operation */ |
| #define ZYNQ_NAND_SET_CYCLES ((0x2 << 20) | /* t_rr from nand_cycles */ \ |
| (0x2 << 17) | /* t_ar from nand_cycles */ \ |
| (0x1 << 14) | /* t_clr from nand_cycles */ \ |
| (0x3 << 11) | /* t_wp from nand_cycles */ \ |
| (0x2 << 8) | /* t_rea from nand_cycles */ \ |
| (0x5 << 4) | /* t_wc from nand_cycles */ \ |
| (0x5 << 0)) /* t_rc from nand_cycles */ |
| #endif |
| |
| |
| #define ZYNQ_NAND_DIRECT_CMD ((0x4 << 23) | /* Chip 0 from interface 1 */ \ |
| (0x2 << 21)) /* UpdateRegs operation */ |
| |
| #define ZYNQ_NAND_ECC_CONFIG ((0x1 << 2) | /* ECC available on APB */ \ |
| (0x1 << 4) | /* ECC read at end of page */ \ |
| (0x0 << 5)) /* No Jumping */ |
| |
| #define ZYNQ_NAND_ECC_CMD1 ((0x80) | /* Write command */ \ |
| (0x00 << 8) | /* Read command */ \ |
| (0x30 << 16) | /* Read End command */ \ |
| (0x1 << 24)) /* Read End command calid */ |
| |
| #define ZYNQ_NAND_ECC_CMD2 ((0x85) | /* Write col change cmd */ \ |
| (0x05 << 8) | /* Read col change cmd */ \ |
| (0xE0 << 16) | /* Read col change end cmd */ \ |
| (0x1 << 24)) /* Read col change |
| end cmd valid */ |
| /* AXI Address definitions */ |
| #define START_CMD_SHIFT 3 |
| #define END_CMD_SHIFT 11 |
| #define END_CMD_VALID_SHIFT 20 |
| #define ADDR_CYCLES_SHIFT 21 |
| #define CLEAR_CS_SHIFT 21 |
| #define ECC_LAST_SHIFT 10 |
| #define COMMAND_PHASE (0 << 19) |
| #define DATA_PHASE (1 << 19) |
| #define ONDIE_ECC_FEATURE_ADDR 0x90 |
| #define ONDIE_ECC_FEATURE_ENABLE 0x08 |
| |
| #define ZYNQ_NAND_ECC_LAST (1 << ECC_LAST_SHIFT) /* Set ECC_Last */ |
| #define ZYNQ_NAND_CLEAR_CS (1 << CLEAR_CS_SHIFT) /* Clear chip select */ |
| |
| /* ECC block registers bit position and bit mask */ |
| #define ZYNQ_NAND_ECC_BUSY (1 << 6) /* ECC block is busy */ |
| #define ZYNQ_NAND_ECC_MASK 0x00FFFFFF /* ECC value mask */ |
| |
| |
| /* SMC register set */ |
| struct zynq_nand_smc_regs { |
| u32 csr; /* 0x00 */ |
| u32 reserved0[2]; |
| u32 cfr; /* 0x0C */ |
| u32 dcr; /* 0x10 */ |
| u32 scr; /* 0x14 */ |
| u32 sor; /* 0x18 */ |
| u32 reserved1[249]; |
| u32 esr; /* 0x400 */ |
| u32 emcr; /* 0x404 */ |
| u32 emcmd1r; /* 0x408 */ |
| u32 emcmd2r; /* 0x40C */ |
| u32 reserved2[2]; |
| u32 eval0r; /* 0x418 */ |
| }; |
| #define zynq_nand_smc_base ((struct zynq_nand_smc_regs __iomem *)\ |
| ZYNQ_SMC_BASEADDR) |
| |
| /* |
| * struct zynq_nand_info - Defines the NAND flash driver instance |
| * @parts: Pointer to the mtd_partition structure |
| * @nand_base: Virtual address of the NAND flash device |
| * @end_cmd_pending: End command is pending |
| * @end_cmd: End command |
| */ |
| struct zynq_nand_info { |
| void __iomem *nand_base; |
| u8 end_cmd_pending; |
| u8 end_cmd; |
| }; |
| |
| /* |
| * struct zynq_nand_command_format - Defines NAND flash command format |
| * @start_cmd: First cycle command (Start command) |
| * @end_cmd: Second cycle command (Last command) |
| * @addr_cycles: Number of address cycles required to send the address |
| * @end_cmd_valid: The second cycle command is valid for cmd or data phase |
| */ |
| struct zynq_nand_command_format { |
| u8 start_cmd; |
| u8 end_cmd; |
| u8 addr_cycles; |
| u8 end_cmd_valid; |
| }; |
| |
| /* The NAND flash operations command format */ |
| static const struct zynq_nand_command_format zynq_nand_commands[] = { |
| {NAND_CMD_READ0, NAND_CMD_READSTART, 5, ZYNQ_NAND_CMD_PHASE}, |
| {NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART, 2, ZYNQ_NAND_CMD_PHASE}, |
| {NAND_CMD_READID, NAND_CMD_NONE, 1, 0}, |
| {NAND_CMD_STATUS, NAND_CMD_NONE, 0, 0}, |
| {NAND_CMD_SEQIN, NAND_CMD_PAGEPROG, 5, ZYNQ_NAND_DATA_PHASE}, |
| {NAND_CMD_RNDIN, NAND_CMD_NONE, 2, 0}, |
| {NAND_CMD_ERASE1, NAND_CMD_ERASE2, 3, ZYNQ_NAND_CMD_PHASE}, |
| {NAND_CMD_RESET, NAND_CMD_NONE, 0, 0}, |
| {NAND_CMD_PARAM, NAND_CMD_NONE, 1, 0}, |
| {NAND_CMD_GET_FEATURES, NAND_CMD_NONE, 1, 0}, |
| {NAND_CMD_SET_FEATURES, NAND_CMD_NONE, 1, 0}, |
| {NAND_CMD_NONE, NAND_CMD_NONE, 0, 0}, |
| /* Add all the flash commands supported by the flash device */ |
| }; |
| |
| /* Define default oob placement schemes for large and small page devices */ |
| static struct nand_ecclayout nand_oob_16 = { |
| .eccbytes = 3, |
| .eccpos = {0, 1, 2}, |
| .oobfree = { |
| { .offset = 8, .length = 8 } |
| } |
| }; |
| |
| static struct nand_ecclayout nand_oob_64 = { |
| .eccbytes = 12, |
| .eccpos = { |
| 52, 53, 54, 55, 56, 57, |
| 58, 59, 60, 61, 62, 63}, |
| .oobfree = { |
| { .offset = 2, .length = 50 } |
| } |
| }; |
| |
| static struct nand_ecclayout ondie_nand_oob_64 = { |
| .eccbytes = 32, |
| |
| .eccpos = { |
| 8, 9, 10, 11, 12, 13, 14, 15, |
| 24, 25, 26, 27, 28, 29, 30, 31, |
| 40, 41, 42, 43, 44, 45, 46, 47, |
| 56, 57, 58, 59, 60, 61, 62, 63 |
| }, |
| |
| .oobfree = { |
| { .offset = 4, .length = 4 }, |
| { .offset = 20, .length = 4 }, |
| { .offset = 36, .length = 4 }, |
| { .offset = 52, .length = 4 } |
| } |
| }; |
| |
| /* bbt decriptors for chips with on-die ECC and |
| chips with 64-byte OOB */ |
| static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; |
| static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; |
| |
| static struct nand_bbt_descr bbt_main_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | |
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, |
| .offs = 4, |
| .len = 4, |
| .veroffs = 20, |
| .maxblocks = 4, |
| .pattern = bbt_pattern |
| }; |
| |
| static struct nand_bbt_descr bbt_mirror_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | |
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, |
| .offs = 4, |
| .len = 4, |
| .veroffs = 20, |
| .maxblocks = 4, |
| .pattern = mirror_pattern |
| }; |
| |
| /* |
| * zynq_nand_waitfor_ecc_completion - Wait for ECC completion |
| * |
| * returns: status for command completion, -1 for Timeout |
| */ |
| static int zynq_nand_waitfor_ecc_completion(void) |
| { |
| unsigned long timeout; |
| u32 status; |
| |
| /* Wait max 10us */ |
| timeout = 10; |
| status = readl(&zynq_nand_smc_base->esr); |
| while (status & ZYNQ_NAND_ECC_BUSY) { |
| status = readl(&zynq_nand_smc_base->esr); |
| if (timeout == 0) |
| return -1; |
| timeout--; |
| udelay(1); |
| } |
| |
| return status; |
| } |
| |
| /* |
| * zynq_nand_init_nand_flash - Initialize NAND controller |
| * @option: Device property flags |
| * |
| * This function initializes the NAND flash interface on the NAND controller. |
| * |
| * returns: 0 on success or error value on failure |
| */ |
| static int zynq_nand_init_nand_flash(int option) |
| { |
| u32 status; |
| |
| /* disable interrupts */ |
| writel(ZYNQ_NAND_CLR_CONFIG, &zynq_nand_smc_base->cfr); |
| #ifndef CONFIG_NAND_ZYNQ_USE_BOOTLOADER1_TIMINGS |
| /* Initialize the NAND interface by setting cycles and operation mode */ |
| writel(ZYNQ_NAND_SET_CYCLES, &zynq_nand_smc_base->scr); |
| #endif |
| if (option & NAND_BUSWIDTH_16) |
| writel(ZYNQ_NAND_SET_OPMODE_16BIT, &zynq_nand_smc_base->sor); |
| else |
| writel(ZYNQ_NAND_SET_OPMODE_8BIT, &zynq_nand_smc_base->sor); |
| |
| writel(ZYNQ_NAND_DIRECT_CMD, &zynq_nand_smc_base->dcr); |
| |
| /* Wait till the ECC operation is complete */ |
| status = zynq_nand_waitfor_ecc_completion(); |
| if (status < 0) { |
| printf("%s: Timeout\n", __func__); |
| return status; |
| } |
| |
| /* Set the command1 and command2 register */ |
| writel(ZYNQ_NAND_ECC_CMD1, &zynq_nand_smc_base->emcmd1r); |
| writel(ZYNQ_NAND_ECC_CMD2, &zynq_nand_smc_base->emcmd2r); |
| |
| return 0; |
| } |
| |
| /* |
| * zynq_nand_calculate_hwecc - Calculate Hardware ECC |
| * @mtd: Pointer to the mtd_info structure |
| * @data: Pointer to the page data |
| * @ecc_code: Pointer to the ECC buffer where ECC data needs to be stored |
| * |
| * This function retrieves the Hardware ECC data from the controller and returns |
| * ECC data back to the MTD subsystem. |
| * |
| * returns: 0 on success or error value on failure |
| */ |
| static int zynq_nand_calculate_hwecc(struct mtd_info *mtd, const u8 *data, |
| u8 *ecc_code) |
| { |
| u32 ecc_value = 0; |
| u8 ecc_reg, ecc_byte; |
| u32 ecc_status; |
| |
| /* Wait till the ECC operation is complete */ |
| ecc_status = zynq_nand_waitfor_ecc_completion(); |
| if (ecc_status < 0) { |
| printf("%s: Timeout\n", __func__); |
| return ecc_status; |
| } |
| |
| for (ecc_reg = 0; ecc_reg < 4; ecc_reg++) { |
| /* Read ECC value for each block */ |
| ecc_value = readl(&zynq_nand_smc_base->eval0r + ecc_reg); |
| |
| /* Get the ecc status from ecc read value */ |
| ecc_status = (ecc_value >> 24) & 0xFF; |
| |
| /* ECC value valid */ |
| if (ecc_status & ZYNQ_NAND_ECC_STATUS) { |
| for (ecc_byte = 0; ecc_byte < 3; ecc_byte++) { |
| /* Copy ECC bytes to MTD buffer */ |
| *ecc_code = ecc_value & 0xFF; |
| ecc_value = ecc_value >> 8; |
| ecc_code++; |
| } |
| } else { |
| debug("%s: ecc status failed\n", __func__); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * onehot - onehot function |
| * @value: value to check for onehot |
| * |
| * This function checks whether a value is onehot or not. |
| * onehot is if and only if one bit is set. |
| * |
| * FIXME: Try to move this in common.h |
| */ |
| static bool onehot(unsigned short value) |
| { |
| bool onehot; |
| |
| onehot = value && !(value & (value - 1)); |
| return onehot; |
| } |
| |
| /* |
| * zynq_nand_correct_data - ECC correction function |
| * @mtd: Pointer to the mtd_info structure |
| * @buf: Pointer to the page data |
| * @read_ecc: Pointer to the ECC value read from spare data area |
| * @calc_ecc: Pointer to the calculated ECC value |
| * |
| * This function corrects the ECC single bit errors & detects 2-bit errors. |
| * |
| * returns: 0 if no ECC errors found |
| * 1 if single bit error found and corrected. |
| * -1 if multiple ECC errors found. |
| */ |
| static int zynq_nand_correct_data(struct mtd_info *mtd, unsigned char *buf, |
| unsigned char *read_ecc, unsigned char *calc_ecc) |
| { |
| unsigned char bit_addr; |
| unsigned int byte_addr; |
| unsigned short ecc_odd, ecc_even; |
| unsigned short read_ecc_lower, read_ecc_upper; |
| unsigned short calc_ecc_lower, calc_ecc_upper; |
| |
| read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & 0xfff; |
| read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & 0xfff; |
| |
| calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & 0xfff; |
| calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & 0xfff; |
| |
| ecc_odd = read_ecc_lower ^ calc_ecc_lower; |
| ecc_even = read_ecc_upper ^ calc_ecc_upper; |
| |
| if ((ecc_odd == 0) && (ecc_even == 0)) |
| return 0; /* no error */ |
| |
| if (ecc_odd == (~ecc_even & 0xfff)) { |
| /* bits [11:3] of error code is byte offset */ |
| byte_addr = (ecc_odd >> 3) & 0x1ff; |
| /* bits [2:0] of error code is bit offset */ |
| bit_addr = ecc_odd & 0x7; |
| /* Toggling error bit */ |
| buf[byte_addr] ^= (1 << bit_addr); |
| return 1; |
| } |
| |
| if (onehot(ecc_odd | ecc_even)) |
| return 1; /* one error in parity */ |
| |
| return -1; /* Uncorrectable error */ |
| } |
| |
| /* |
| * zynq_nand_read_oob - [REPLACABLE] the most common OOB data read function |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @page: page number to read |
| * @sndcmd: flag whether to issue read command or not |
| */ |
| static int zynq_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| int page) |
| { |
| unsigned long data_phase_addr = 0; |
| int data_width = 4; |
| u8 *p; |
| |
| chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); |
| |
| p = chip->oob_poi; |
| chip->read_buf(mtd, p, (mtd->oobsize - data_width)); |
| p += mtd->oobsize - data_width; |
| |
| data_phase_addr = (unsigned long)chip->IO_ADDR_R; |
| data_phase_addr |= ZYNQ_NAND_CLEAR_CS; |
| chip->IO_ADDR_R = (void __iomem *)data_phase_addr; |
| chip->read_buf(mtd, p, data_width); |
| |
| return 0; |
| } |
| |
| /* |
| * zynq_nand_write_oob - [REPLACABLE] the most common OOB data write function |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @page: page number to write |
| */ |
| static int zynq_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| int page) |
| { |
| int status = 0, data_width = 4; |
| const u8 *buf = chip->oob_poi; |
| unsigned long data_phase_addr = 0; |
| |
| chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); |
| |
| chip->write_buf(mtd, buf, (mtd->oobsize - data_width)); |
| buf += mtd->oobsize - data_width; |
| |
| data_phase_addr = (unsigned long)chip->IO_ADDR_W; |
| data_phase_addr |= ZYNQ_NAND_CLEAR_CS; |
| data_phase_addr |= (1 << END_CMD_VALID_SHIFT); |
| chip->IO_ADDR_W = (void __iomem *)data_phase_addr; |
| chip->write_buf(mtd, buf, data_width); |
| |
| /* Send command to program the OOB data */ |
| chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); |
| status = chip->waitfunc(mtd, chip); |
| |
| return status & NAND_STATUS_FAIL ? -EIO : 0; |
| } |
| |
| /* |
| * zynq_nand_read_page_raw - [Intern] read raw page data without ecc |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * @oob_required: must write chip->oob_poi to OOB |
| * @page: page number to read |
| */ |
| static int zynq_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, |
| u8 *buf, int oob_required, int page) |
| { |
| unsigned long data_width = 4; |
| unsigned long data_phase_addr = 0; |
| u8 *p; |
| |
| chip->read_buf(mtd, buf, mtd->writesize); |
| |
| p = chip->oob_poi; |
| chip->read_buf(mtd, p, (mtd->oobsize - data_width)); |
| p += (mtd->oobsize - data_width); |
| |
| data_phase_addr = (unsigned long)chip->IO_ADDR_R; |
| data_phase_addr |= ZYNQ_NAND_CLEAR_CS; |
| chip->IO_ADDR_R = (void __iomem *)data_phase_addr; |
| |
| chip->read_buf(mtd, p, data_width); |
| return 0; |
| } |
| |
| static int zynq_nand_read_page_raw_nooob(struct mtd_info *mtd, |
| struct nand_chip *chip, u8 *buf, int oob_required, int page) |
| { |
| chip->read_buf(mtd, buf, mtd->writesize); |
| return 0; |
| } |
| |
| static int zynq_nand_read_subpage_raw(struct mtd_info *mtd, |
| struct nand_chip *chip, u32 data_offs, |
| u32 readlen, u8 *buf, int page) |
| { |
| if (data_offs != 0) { |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_offs, -1); |
| buf += data_offs; |
| } |
| chip->read_buf(mtd, buf, readlen); |
| |
| return 0; |
| } |
| |
| /* |
| * zynq_nand_write_page_raw - [Intern] raw page write function |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: data buffer |
| * @oob_required: must write chip->oob_poi to OOB |
| */ |
| static int zynq_nand_write_page_raw(struct mtd_info *mtd, |
| struct nand_chip *chip, const u8 *buf, int oob_required, int page) |
| { |
| unsigned long data_width = 4; |
| unsigned long data_phase_addr = 0; |
| u8 *p; |
| |
| chip->write_buf(mtd, buf, mtd->writesize); |
| |
| p = chip->oob_poi; |
| chip->write_buf(mtd, p, (mtd->oobsize - data_width)); |
| p += (mtd->oobsize - data_width); |
| |
| data_phase_addr = (unsigned long)chip->IO_ADDR_W; |
| data_phase_addr |= ZYNQ_NAND_CLEAR_CS; |
| data_phase_addr |= (1 << END_CMD_VALID_SHIFT); |
| chip->IO_ADDR_W = (void __iomem *)data_phase_addr; |
| |
| chip->write_buf(mtd, p, data_width); |
| |
| return 0; |
| } |
| |
| /* |
| * nand_write_page_hwecc - Hardware ECC based page write function |
| * @mtd: Pointer to the mtd info structure |
| * @chip: Pointer to the NAND chip info structure |
| * @buf: Pointer to the data buffer |
| * @oob_required: must write chip->oob_poi to OOB |
| * |
| * This functions writes data and hardware generated ECC values in to the page. |
| */ |
| static int zynq_nand_write_page_hwecc(struct mtd_info *mtd, |
| struct nand_chip *chip, const u8 *buf, int oob_required, int page) |
| { |
| int i, eccsteps, eccsize = chip->ecc.size; |
| u8 *ecc_calc = chip->buffers->ecccalc; |
| const u8 *p = buf; |
| u32 *eccpos = chip->ecc.layout->eccpos; |
| unsigned long data_phase_addr = 0; |
| unsigned long data_width = 4; |
| u8 *oob_ptr; |
| |
| for (eccsteps = chip->ecc.steps; (eccsteps - 1); eccsteps--) { |
| chip->write_buf(mtd, p, eccsize); |
| p += eccsize; |
| } |
| chip->write_buf(mtd, p, (eccsize - data_width)); |
| p += eccsize - data_width; |
| |
| /* Set ECC Last bit to 1 */ |
| data_phase_addr = (unsigned long) chip->IO_ADDR_W; |
| data_phase_addr |= ZYNQ_NAND_ECC_LAST; |
| chip->IO_ADDR_W = (void __iomem *)data_phase_addr; |
| chip->write_buf(mtd, p, data_width); |
| |
| /* Wait for ECC to be calculated and read the error values */ |
| p = buf; |
| chip->ecc.calculate(mtd, p, &ecc_calc[0]); |
| |
| for (i = 0; i < chip->ecc.total; i++) |
| chip->oob_poi[eccpos[i]] = ~(ecc_calc[i]); |
| |
| /* Clear ECC last bit */ |
| data_phase_addr = (unsigned long)chip->IO_ADDR_W; |
| data_phase_addr &= ~ZYNQ_NAND_ECC_LAST; |
| chip->IO_ADDR_W = (void __iomem *)data_phase_addr; |
| |
| /* Write the spare area with ECC bytes */ |
| oob_ptr = chip->oob_poi; |
| chip->write_buf(mtd, oob_ptr, (mtd->oobsize - data_width)); |
| |
| data_phase_addr = (unsigned long)chip->IO_ADDR_W; |
| data_phase_addr |= ZYNQ_NAND_CLEAR_CS; |
| data_phase_addr |= (1 << END_CMD_VALID_SHIFT); |
| chip->IO_ADDR_W = (void __iomem *)data_phase_addr; |
| oob_ptr += (mtd->oobsize - data_width); |
| chip->write_buf(mtd, oob_ptr, data_width); |
| |
| return 0; |
| } |
| |
| /* |
| * zynq_nand_write_page_swecc - [REPLACABLE] software ecc based page |
| * write function |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: data buffer |
| * @oob_required: must write chip->oob_poi to OOB |
| */ |
| static int zynq_nand_write_page_swecc(struct mtd_info *mtd, |
| struct nand_chip *chip, const u8 *buf, int oob_required, int page) |
| { |
| int i, eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| int eccsteps = chip->ecc.steps; |
| u8 *ecc_calc = chip->buffers->ecccalc; |
| const u8 *p = buf; |
| u32 *eccpos = chip->ecc.layout->eccpos; |
| |
| /* Software ecc calculation */ |
| for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) |
| chip->ecc.calculate(mtd, p, &ecc_calc[i]); |
| |
| for (i = 0; i < chip->ecc.total; i++) |
| chip->oob_poi[eccpos[i]] = ecc_calc[i]; |
| |
| return chip->ecc.write_page_raw(mtd, chip, buf, 1, page); |
| } |
| |
| /* |
| * nand_read_page_hwecc - Hardware ECC based page read function |
| * @mtd: Pointer to the mtd info structure |
| * @chip: Pointer to the NAND chip info structure |
| * @buf: Pointer to the buffer to store read data |
| * @oob_required: must write chip->oob_poi to OOB |
| * @page: page number to read |
| * |
| * This functions reads data and checks the data integrity by comparing hardware |
| * generated ECC values and read ECC values from spare area. |
| * |
| * returns: 0 always and updates ECC operation status in to MTD structure |
| */ |
| static int zynq_nand_read_page_hwecc(struct mtd_info *mtd, |
| struct nand_chip *chip, u8 *buf, int oob_required, int page) |
| { |
| int i, stat, eccsteps, eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| u8 *p = buf; |
| u8 *ecc_calc = chip->buffers->ecccalc; |
| u8 *ecc_code = chip->buffers->ecccode; |
| u32 *eccpos = chip->ecc.layout->eccpos; |
| unsigned long data_phase_addr = 0; |
| unsigned long data_width = 4; |
| u8 *oob_ptr; |
| |
| for (eccsteps = chip->ecc.steps; (eccsteps - 1); eccsteps--) { |
| chip->read_buf(mtd, p, eccsize); |
| p += eccsize; |
| } |
| chip->read_buf(mtd, p, (eccsize - data_width)); |
| p += eccsize - data_width; |
| |
| /* Set ECC Last bit to 1 */ |
| data_phase_addr = (unsigned long)chip->IO_ADDR_R; |
| data_phase_addr |= ZYNQ_NAND_ECC_LAST; |
| chip->IO_ADDR_R = (void __iomem *)data_phase_addr; |
| chip->read_buf(mtd, p, data_width); |
| |
| /* Read the calculated ECC value */ |
| p = buf; |
| chip->ecc.calculate(mtd, p, &ecc_calc[0]); |
| |
| /* Clear ECC last bit */ |
| data_phase_addr = (unsigned long)chip->IO_ADDR_R; |
| data_phase_addr &= ~ZYNQ_NAND_ECC_LAST; |
| chip->IO_ADDR_R = (void __iomem *)data_phase_addr; |
| |
| /* Read the stored ECC value */ |
| oob_ptr = chip->oob_poi; |
| chip->read_buf(mtd, oob_ptr, (mtd->oobsize - data_width)); |
| |
| /* de-assert chip select */ |
| data_phase_addr = (unsigned long)chip->IO_ADDR_R; |
| data_phase_addr |= ZYNQ_NAND_CLEAR_CS; |
| chip->IO_ADDR_R = (void __iomem *)data_phase_addr; |
| |
| oob_ptr += (mtd->oobsize - data_width); |
| chip->read_buf(mtd, oob_ptr, data_width); |
| |
| for (i = 0; i < chip->ecc.total; i++) |
| ecc_code[i] = ~(chip->oob_poi[eccpos[i]]); |
| |
| eccsteps = chip->ecc.steps; |
| p = buf; |
| |
| /* Check ECC error for all blocks and correct if it is correctable */ |
| for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); |
| if (stat < 0) |
| mtd->ecc_stats.failed++; |
| else |
| mtd->ecc_stats.corrected += stat; |
| } |
| return 0; |
| } |
| |
| /* |
| * zynq_nand_read_page_swecc - [REPLACABLE] software ecc based page |
| * read function |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * @page: page number to read |
| */ |
| static int zynq_nand_read_page_swecc(struct mtd_info *mtd, |
| struct nand_chip *chip, u8 *buf, int oob_required, int page) |
| { |
| int i, eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| int eccsteps = chip->ecc.steps; |
| u8 *p = buf; |
| u8 *ecc_calc = chip->buffers->ecccalc; |
| u8 *ecc_code = chip->buffers->ecccode; |
| u32 *eccpos = chip->ecc.layout->eccpos; |
| |
| chip->ecc.read_page_raw(mtd, chip, buf, 1, page); |
| |
| for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) |
| chip->ecc.calculate(mtd, p, &ecc_calc[i]); |
| |
| for (i = 0; i < chip->ecc.total; i++) |
| ecc_code[i] = chip->oob_poi[eccpos[i]]; |
| |
| eccsteps = chip->ecc.steps; |
| p = buf; |
| |
| for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| int stat; |
| |
| stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); |
| if (stat < 0) |
| mtd->ecc_stats.failed++; |
| else |
| mtd->ecc_stats.corrected += stat; |
| } |
| return 0; |
| } |
| |
| /* |
| * zynq_nand_select_chip - Select the flash device |
| * @mtd: Pointer to the mtd_info structure |
| * @chip: Chip number to be selected |
| * |
| * This function is empty as the NAND controller handles chip select line |
| * internally based on the chip address passed in command and data phase. |
| */ |
| static void zynq_nand_select_chip(struct mtd_info *mtd, int chip) |
| { |
| /* Not support multiple chips yet */ |
| } |
| |
| /* |
| * zynq_nand_cmd_function - Send command to NAND device |
| * @mtd: Pointer to the mtd_info structure |
| * @command: The command to be sent to the flash device |
| * @column: The column address for this command, -1 if none |
| * @page_addr: The page address for this command, -1 if none |
| */ |
| static void zynq_nand_cmd_function(struct mtd_info *mtd, unsigned int command, |
| int column, int page_addr) |
| { |
| struct nand_chip *chip = mtd->priv; |
| const struct zynq_nand_command_format *curr_cmd = NULL; |
| struct zynq_nand_info *xnand = (struct zynq_nand_info *)chip->priv; |
| void *cmd_addr; |
| unsigned long cmd_data = 0; |
| unsigned long cmd_phase_addr = 0; |
| unsigned long data_phase_addr = 0; |
| u8 end_cmd = 0; |
| u8 end_cmd_valid = 0; |
| u32 index; |
| |
| if (xnand->end_cmd_pending) { |
| /* Check for end command if this command request is same as the |
| * pending command then return |
| */ |
| if (xnand->end_cmd == command) { |
| xnand->end_cmd = 0; |
| xnand->end_cmd_pending = 0; |
| return; |
| } |
| } |
| |
| /* Emulate NAND_CMD_READOOB for large page device */ |
| if ((mtd->writesize > ZYNQ_NAND_ECC_SIZE) && |
| (command == NAND_CMD_READOOB)) { |
| column += mtd->writesize; |
| command = NAND_CMD_READ0; |
| } |
| |
| /* Get the command format */ |
| for (index = 0; index < ARRAY_SIZE(zynq_nand_commands); index++) |
| if (command == zynq_nand_commands[index].start_cmd) |
| break; |
| |
| if (index == ARRAY_SIZE(zynq_nand_commands)) { |
| printf("%s: Unsupported start cmd %02x\n", __func__, command); |
| return; |
| } |
| curr_cmd = &zynq_nand_commands[index]; |
| |
| /* Clear interrupt */ |
| writel(ZYNQ_MEMC_CLRCR_INT_CLR1, &zynq_nand_smc_base->cfr); |
| |
| /* Get the command phase address */ |
| if (curr_cmd->end_cmd_valid == ZYNQ_NAND_CMD_PHASE) |
| end_cmd_valid = 1; |
| |
| if (curr_cmd->end_cmd == NAND_CMD_NONE) |
| end_cmd = 0x0; |
| else |
| end_cmd = curr_cmd->end_cmd; |
| |
| cmd_phase_addr = (unsigned long)xnand->nand_base | |
| (curr_cmd->addr_cycles << ADDR_CYCLES_SHIFT) | |
| (end_cmd_valid << END_CMD_VALID_SHIFT) | |
| (COMMAND_PHASE) | |
| (end_cmd << END_CMD_SHIFT) | |
| (curr_cmd->start_cmd << START_CMD_SHIFT); |
| |
| cmd_addr = (void __iomem *)cmd_phase_addr; |
| |
| /* Get the data phase address */ |
| end_cmd_valid = 0; |
| |
| data_phase_addr = (unsigned long)xnand->nand_base | |
| (0x0 << CLEAR_CS_SHIFT) | |
| (end_cmd_valid << END_CMD_VALID_SHIFT) | |
| (DATA_PHASE) | |
| (end_cmd << END_CMD_SHIFT) | |
| (0x0 << ECC_LAST_SHIFT); |
| |
| chip->IO_ADDR_R = (void __iomem *)data_phase_addr; |
| chip->IO_ADDR_W = chip->IO_ADDR_R; |
| |
| /* Command phase AXI Read & Write */ |
| if (column != -1 && page_addr != -1) { |
| /* Adjust columns for 16 bit bus width */ |
| if (chip->options & NAND_BUSWIDTH_16) |
| column >>= 1; |
| cmd_data = column; |
| if (mtd->writesize > ZYNQ_NAND_ECC_SIZE) { |
| cmd_data |= page_addr << 16; |
| /* Another address cycle for devices > 128MiB */ |
| if (chip->chipsize > (128 << 20)) { |
| writel(cmd_data, cmd_addr); |
| cmd_data = (page_addr >> 16); |
| } |
| } else { |
| cmd_data |= page_addr << 8; |
| } |
| } else if (page_addr != -1) { /* Erase */ |
| cmd_data = page_addr; |
| } else if (column != -1) { /* Change read/write column, read id etc */ |
| /* Adjust columns for 16 bit bus width */ |
| if ((chip->options & NAND_BUSWIDTH_16) && |
| ((command == NAND_CMD_READ0) || |
| (command == NAND_CMD_SEQIN) || |
| (command == NAND_CMD_RNDOUT) || |
| (command == NAND_CMD_RNDIN))) |
| column >>= 1; |
| cmd_data = column; |
| } |
| |
| writel(cmd_data, cmd_addr); |
| |
| if (curr_cmd->end_cmd_valid) { |
| xnand->end_cmd = curr_cmd->end_cmd; |
| xnand->end_cmd_pending = 1; |
| } |
| |
| ndelay(100); |
| |
| if ((command == NAND_CMD_READ0) || |
| (command == NAND_CMD_RESET) || |
| (command == NAND_CMD_PARAM) || |
| (command == NAND_CMD_GET_FEATURES)) |
| /* wait until command is processed */ |
| nand_wait_ready(mtd); |
| } |
| |
| /* |
| * zynq_nand_read_buf - read chip data into buffer |
| * @mtd: MTD device structure |
| * @buf: buffer to store date |
| * @len: number of bytes to read |
| */ |
| static void zynq_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len) |
| { |
| struct nand_chip *chip = mtd->priv; |
| |
| /* Make sure that buf is 32 bit aligned */ |
| if (((unsigned long)buf & 0x3) != 0) { |
| if (((unsigned long)buf & 0x1) != 0) { |
| if (len) { |
| *buf = readb(chip->IO_ADDR_R); |
| buf += 1; |
| len--; |
| } |
| } |
| |
| if (((unsigned long)buf & 0x3) != 0) { |
| if (len >= 2) { |
| *(u16 *)buf = readw(chip->IO_ADDR_R); |
| buf += 2; |
| len -= 2; |
| } |
| } |
| } |
| |
| /* copy aligned data */ |
| while (len >= 4) { |
| *(u32 *)buf = readl(chip->IO_ADDR_R); |
| buf += 4; |
| len -= 4; |
| } |
| |
| /* mop up any remaining bytes */ |
| if (len) { |
| if (len >= 2) { |
| *(u16 *)buf = readw(chip->IO_ADDR_R); |
| buf += 2; |
| len -= 2; |
| } |
| if (len) |
| *buf = readb(chip->IO_ADDR_R); |
| } |
| } |
| |
| /* |
| * zynq_nand_write_buf - write buffer to chip |
| * @mtd: MTD device structure |
| * @buf: data buffer |
| * @len: number of bytes to write |
| */ |
| static void zynq_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len) |
| { |
| struct nand_chip *chip = mtd->priv; |
| const u32 *nand = chip->IO_ADDR_W; |
| |
| /* Make sure that buf is 32 bit aligned */ |
| if (((unsigned long)buf & 0x3) != 0) { |
| if (((unsigned long)buf & 0x1) != 0) { |
| if (len) { |
| writeb(*buf, nand); |
| buf += 1; |
| len--; |
| } |
| } |
| |
| if (((unsigned long)buf & 0x3) != 0) { |
| if (len >= 2) { |
| writew(*(u16 *)buf, nand); |
| buf += 2; |
| len -= 2; |
| } |
| } |
| } |
| |
| /* copy aligned data */ |
| while (len >= 4) { |
| writel(*(u32 *)buf, nand); |
| buf += 4; |
| len -= 4; |
| } |
| |
| /* mop up any remaining bytes */ |
| if (len) { |
| if (len >= 2) { |
| writew(*(u16 *)buf, nand); |
| buf += 2; |
| len -= 2; |
| } |
| |
| if (len) |
| writeb(*buf, nand); |
| } |
| } |
| |
| /* |
| * zynq_nand_device_ready - Check device ready/busy line |
| * @mtd: Pointer to the mtd_info structure |
| * |
| * returns: 0 on busy or 1 on ready state |
| */ |
| static int zynq_nand_device_ready(struct mtd_info *mtd) |
| { |
| u32 csr_val; |
| |
| csr_val = readl(&zynq_nand_smc_base->csr); |
| /* Check the raw_int_status1 bit */ |
| if (csr_val & ZYNQ_MEMC_SR_RAW_INT_ST1) { |
| /* Clear the interrupt condition */ |
| writel(ZYNQ_MEMC_SR_INT_ST1, &zynq_nand_smc_base->cfr); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| int zynq_nand_init(struct nand_chip *nand_chip, int devnum) |
| { |
| struct zynq_nand_info *xnand; |
| struct mtd_info *mtd; |
| unsigned long ecc_page_size; |
| u8 maf_id, dev_id, i; |
| u8 get_feature[4]; |
| u8 set_feature[4] = {ONDIE_ECC_FEATURE_ENABLE, 0x00, 0x00, 0x00}; |
| unsigned long ecc_cfg; |
| int ondie_ecc_enabled = 0; |
| int err = -1; |
| |
| xnand = calloc(1, sizeof(struct zynq_nand_info)); |
| if (!xnand) { |
| printf("%s: failed to allocate\n", __func__); |
| goto fail; |
| } |
| |
| xnand->nand_base = (void __iomem *)ZYNQ_NAND_BASEADDR; |
| mtd = get_nand_dev_by_index(0); |
| |
| nand_chip->priv = xnand; |
| mtd->priv = nand_chip; |
| |
| /* Set address of NAND IO lines */ |
| nand_chip->IO_ADDR_R = xnand->nand_base; |
| nand_chip->IO_ADDR_W = xnand->nand_base; |
| |
| /* Set the driver entry points for MTD */ |
| nand_chip->cmdfunc = zynq_nand_cmd_function; |
| nand_chip->dev_ready = zynq_nand_device_ready; |
| nand_chip->select_chip = zynq_nand_select_chip; |
| |
| /* If we don't set this delay driver sets 20us by default */ |
| nand_chip->chip_delay = 30; |
| |
| /* Buffer read/write routines */ |
| nand_chip->read_buf = zynq_nand_read_buf; |
| nand_chip->write_buf = zynq_nand_write_buf; |
| |
| nand_chip->bbt_options = NAND_BBT_USE_FLASH; |
| |
| /* Initialize the NAND flash interface on NAND controller */ |
| if (zynq_nand_init_nand_flash(nand_chip->options) < 0) { |
| printf("%s: nand flash init failed\n", __func__); |
| goto fail; |
| } |
| |
| /* first scan to find the device and get the page size */ |
| if (nand_scan_ident(mtd, 1, NULL)) { |
| printf("%s: nand_scan_ident failed\n", __func__); |
| goto fail; |
| } |
| /* Send the command for reading device ID */ |
| nand_chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); |
| nand_chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); |
| |
| /* Read manufacturer and device IDs */ |
| maf_id = nand_chip->read_byte(mtd); |
| dev_id = nand_chip->read_byte(mtd); |
| |
| if ((maf_id == 0x2c) && ((dev_id == 0xf1) || |
| (dev_id == 0xa1) || (dev_id == 0xb1) || |
| (dev_id == 0xaa) || (dev_id == 0xba) || |
| (dev_id == 0xda) || (dev_id == 0xca) || |
| (dev_id == 0xac) || (dev_id == 0xbc) || |
| (dev_id == 0xdc) || (dev_id == 0xcc) || |
| (dev_id == 0xa3) || (dev_id == 0xb3) || |
| (dev_id == 0xd3) || (dev_id == 0xc3))) { |
| nand_chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, |
| ONDIE_ECC_FEATURE_ADDR, -1); |
| for (i = 0; i < 4; i++) |
| writeb(set_feature[i], nand_chip->IO_ADDR_W); |
| |
| /* Wait for 1us after writing data with SET_FEATURES command */ |
| ndelay(1000); |
| |
| nand_chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, |
| ONDIE_ECC_FEATURE_ADDR, -1); |
| nand_chip->read_buf(mtd, get_feature, 4); |
| |
| if (get_feature[0] & ONDIE_ECC_FEATURE_ENABLE) { |
| debug("%s: OnDie ECC flash\n", __func__); |
| ondie_ecc_enabled = 1; |
| } else { |
| printf("%s: Unable to detect OnDie ECC\n", __func__); |
| } |
| } |
| |
| if (ondie_ecc_enabled) { |
| /* Bypass the controller ECC block */ |
| ecc_cfg = readl(&zynq_nand_smc_base->emcr); |
| ecc_cfg &= ~ZYNQ_MEMC_NAND_ECC_MODE_MASK; |
| writel(ecc_cfg, &zynq_nand_smc_base->emcr); |
| |
| /* The software ECC routines won't work |
| * with the SMC controller |
| */ |
| nand_chip->ecc.mode = NAND_ECC_HW; |
| nand_chip->ecc.strength = 1; |
| nand_chip->ecc.read_page = zynq_nand_read_page_raw_nooob; |
| nand_chip->ecc.read_subpage = zynq_nand_read_subpage_raw; |
| nand_chip->ecc.write_page = zynq_nand_write_page_raw; |
| nand_chip->ecc.read_page_raw = zynq_nand_read_page_raw; |
| nand_chip->ecc.write_page_raw = zynq_nand_write_page_raw; |
| nand_chip->ecc.read_oob = zynq_nand_read_oob; |
| nand_chip->ecc.write_oob = zynq_nand_write_oob; |
| nand_chip->ecc.size = mtd->writesize; |
| nand_chip->ecc.bytes = 0; |
| |
| /* NAND with on-die ECC supports subpage reads */ |
| nand_chip->options |= NAND_SUBPAGE_READ; |
| |
| /* On-Die ECC spare bytes offset 8 is used for ECC codes */ |
| if (ondie_ecc_enabled) { |
| nand_chip->ecc.layout = &ondie_nand_oob_64; |
| /* Use the BBT pattern descriptors */ |
| nand_chip->bbt_td = &bbt_main_descr; |
| nand_chip->bbt_md = &bbt_mirror_descr; |
| } |
| } else { |
| /* Hardware ECC generates 3 bytes ECC code for each 512 bytes */ |
| nand_chip->ecc.mode = NAND_ECC_HW; |
| nand_chip->ecc.strength = 1; |
| nand_chip->ecc.size = ZYNQ_NAND_ECC_SIZE; |
| nand_chip->ecc.bytes = 3; |
| nand_chip->ecc.calculate = zynq_nand_calculate_hwecc; |
| nand_chip->ecc.correct = zynq_nand_correct_data; |
| nand_chip->ecc.hwctl = NULL; |
| nand_chip->ecc.read_page = zynq_nand_read_page_hwecc; |
| nand_chip->ecc.write_page = zynq_nand_write_page_hwecc; |
| nand_chip->ecc.read_page_raw = zynq_nand_read_page_raw; |
| nand_chip->ecc.write_page_raw = zynq_nand_write_page_raw; |
| nand_chip->ecc.read_oob = zynq_nand_read_oob; |
| nand_chip->ecc.write_oob = zynq_nand_write_oob; |
| |
| switch (mtd->writesize) { |
| case 512: |
| ecc_page_size = 0x1; |
| /* Set the ECC memory config register */ |
| writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size), |
| &zynq_nand_smc_base->emcr); |
| break; |
| case 1024: |
| ecc_page_size = 0x2; |
| /* Set the ECC memory config register */ |
| writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size), |
| &zynq_nand_smc_base->emcr); |
| break; |
| case 2048: |
| ecc_page_size = 0x3; |
| /* Set the ECC memory config register */ |
| writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size), |
| &zynq_nand_smc_base->emcr); |
| break; |
| default: |
| nand_chip->ecc.mode = NAND_ECC_SOFT; |
| nand_chip->ecc.calculate = nand_calculate_ecc; |
| nand_chip->ecc.correct = nand_correct_data; |
| nand_chip->ecc.read_page = zynq_nand_read_page_swecc; |
| nand_chip->ecc.write_page = zynq_nand_write_page_swecc; |
| nand_chip->ecc.size = 256; |
| break; |
| } |
| |
| if (mtd->oobsize == 16) |
| nand_chip->ecc.layout = &nand_oob_16; |
| else if (mtd->oobsize == 64) |
| nand_chip->ecc.layout = &nand_oob_64; |
| else |
| printf("%s: No oob layout found\n", __func__); |
| } |
| |
| /* Second phase scan */ |
| if (nand_scan_tail(mtd)) { |
| printf("%s: nand_scan_tail failed\n", __func__); |
| goto fail; |
| } |
| if (nand_register(devnum, mtd)) |
| goto fail; |
| return 0; |
| fail: |
| free(xnand); |
| return err; |
| } |
| |
| #ifdef CONFIG_SYS_NAND_SELF_INIT |
| static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE]; |
| |
| void __weak board_nand_init(void) |
| { |
| struct nand_chip *nand = &nand_chip[0]; |
| |
| if (zynq_nand_init(nand, 0)) |
| puts("ZYNQ NAND init failed\n"); |
| } |
| #endif |