blob: 3c73dc0ffe2570ecc355432a283b82b43c241dba [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2016-2018, 2020, The Linux Foundation. All rights reserved.
* Copyright (c) 2023, Linaro Ltd.
*/
#include <linux/err.h>
#include <linux/types.h>
#include <dm.h>
#include <dm/ofnode.h>
#include <dm/devres.h>
#include <dm/device_compat.h>
#include <linux/delay.h>
#include <dm/lists.h>
#include <errno.h>
#include <asm/io.h>
#include <asm/bitops.h>
#include <linux/bitmap.h>
#include <log.h>
#include <dt-bindings/soc/qcom,rpmh-rsc.h>
#include "rpmh-internal.h"
#include <soc/qcom/rpmh.h>
#include <soc/qcom/cmd-db.h>
#define RSC_DRV_ID 0
#define MAJOR_VER_MASK 0xFF
#define MAJOR_VER_SHIFT 16
#define MINOR_VER_MASK 0xFF
#define MINOR_VER_SHIFT 8
enum {
RSC_DRV_TCS_OFFSET,
RSC_DRV_CMD_OFFSET,
DRV_SOLVER_CONFIG,
DRV_PRNT_CHLD_CONFIG,
RSC_DRV_IRQ_ENABLE,
RSC_DRV_IRQ_STATUS,
RSC_DRV_IRQ_CLEAR,
RSC_DRV_CMD_WAIT_FOR_CMPL,
RSC_DRV_CONTROL,
RSC_DRV_STATUS,
RSC_DRV_CMD_ENABLE,
RSC_DRV_CMD_MSGID,
RSC_DRV_CMD_ADDR,
RSC_DRV_CMD_DATA,
RSC_DRV_CMD_STATUS,
RSC_DRV_CMD_RESP_DATA,
};
/* DRV HW Solver Configuration Information Register */
#define DRV_HW_SOLVER_MASK 1
#define DRV_HW_SOLVER_SHIFT 24
/* DRV TCS Configuration Information Register */
#define DRV_NUM_TCS_MASK 0x3F
#define DRV_NUM_TCS_SHIFT 6
#define DRV_NCPT_MASK 0x1F
#define DRV_NCPT_SHIFT 27
/* Offsets for CONTROL TCS Registers */
#define RSC_DRV_CTL_TCS_DATA_HI 0x38
#define RSC_DRV_CTL_TCS_DATA_HI_MASK 0xFFFFFF
#define RSC_DRV_CTL_TCS_DATA_HI_VALID BIT(31)
#define RSC_DRV_CTL_TCS_DATA_LO 0x40
#define RSC_DRV_CTL_TCS_DATA_LO_MASK 0xFFFFFFFF
#define RSC_DRV_CTL_TCS_DATA_SIZE 32
#define TCS_AMC_MODE_ENABLE BIT(16)
#define TCS_AMC_MODE_TRIGGER BIT(24)
/* TCS CMD register bit mask */
#define CMD_MSGID_LEN 8
#define CMD_MSGID_RESP_REQ BIT(8)
#define CMD_MSGID_WRITE BIT(16)
#define CMD_STATUS_ISSUED BIT(8)
#define CMD_STATUS_COMPL BIT(16)
/*
* Here's a high level overview of how all the registers in RPMH work
* together:
*
* - The main rpmh-rsc address is the base of a register space that can
* be used to find overall configuration of the hardware
* (DRV_PRNT_CHLD_CONFIG). Also found within the rpmh-rsc register
* space are all the TCS blocks. The offset of the TCS blocks is
* specified in the device tree by "qcom,tcs-offset" and used to
* compute tcs_base.
* - TCS blocks come one after another. Type, count, and order are
* specified by the device tree as "qcom,tcs-config".
* - Each TCS block has some registers, then space for up to 16 commands.
* Note that though address space is reserved for 16 commands, fewer
* might be present. See ncpt (num cmds per TCS).
*
* Here's a picture:
*
* +---------------------------------------------------+
* |RSC |
* | ctrl |
* | |
* | Drvs: |
* | +-----------------------------------------------+ |
* | |DRV0 | |
* | | ctrl/config | |
* | | IRQ | |
* | | | |
* | | TCSes: | |
* | | +------------------------------------------+ | |
* | | |TCS0 | | | | | | | | | | | | | | |
* | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | |
* | | | | | | | | | | | | | | | | | |
* | | +------------------------------------------+ | |
* | | +------------------------------------------+ | |
* | | |TCS1 | | | | | | | | | | | | | | |
* | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | |
* | | | | | | | | | | | | | | | | | |
* | | +------------------------------------------+ | |
* | | +------------------------------------------+ | |
* | | |TCS2 | | | | | | | | | | | | | | |
* | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | |
* | | | | | | | | | | | | | | | | | |
* | | +------------------------------------------+ | |
* | | ...... | |
* | +-----------------------------------------------+ |
* | +-----------------------------------------------+ |
* | |DRV1 | |
* | | (same as DRV0) | |
* | +-----------------------------------------------+ |
* | ...... |
* +---------------------------------------------------+
*/
static u32 rpmh_rsc_reg_offset_ver_2_7[] = {
[RSC_DRV_TCS_OFFSET] = 672,
[RSC_DRV_CMD_OFFSET] = 20,
[DRV_SOLVER_CONFIG] = 0x04,
[DRV_PRNT_CHLD_CONFIG] = 0x0C,
[RSC_DRV_IRQ_ENABLE] = 0x00,
[RSC_DRV_IRQ_STATUS] = 0x04,
[RSC_DRV_IRQ_CLEAR] = 0x08,
[RSC_DRV_CMD_WAIT_FOR_CMPL] = 0x10,
[RSC_DRV_CONTROL] = 0x14,
[RSC_DRV_STATUS] = 0x18,
[RSC_DRV_CMD_ENABLE] = 0x1C,
[RSC_DRV_CMD_MSGID] = 0x30,
[RSC_DRV_CMD_ADDR] = 0x34,
[RSC_DRV_CMD_DATA] = 0x38,
[RSC_DRV_CMD_STATUS] = 0x3C,
[RSC_DRV_CMD_RESP_DATA] = 0x40,
};
static inline void __iomem *
tcs_reg_addr(const struct rsc_drv *drv, int reg, int tcs_id)
{
return drv->tcs_base + drv->regs[RSC_DRV_TCS_OFFSET] * tcs_id + reg;
}
static inline void __iomem *
tcs_cmd_addr(const struct rsc_drv *drv, int reg, int tcs_id, int cmd_id)
{
return tcs_reg_addr(drv, reg, tcs_id) + drv->regs[RSC_DRV_CMD_OFFSET] * cmd_id;
}
static u32 read_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id)
{
return readl_relaxed(tcs_reg_addr(drv, reg, tcs_id));
}
static void write_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
int cmd_id, u32 data)
{
void __iomem *addr = tcs_cmd_addr(drv, reg, tcs_id, cmd_id);
debug("%s: tcs(m): %d cmd(n): %d addr: %#x data: %#x\n", drv->name,
tcs_id, cmd_id, reg, data);
writel_relaxed(data, addr);
}
static void write_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id,
u32 data)
{
void __iomem *addr = tcs_reg_addr(drv, reg, tcs_id);
debug("%s: tcs(m): %d addr: %#x data: %#x\n", drv->name,
tcs_id, reg, data);
writel_relaxed(data, addr);
}
static void write_tcs_reg_sync(const struct rsc_drv *drv, int reg, int tcs_id,
u32 data)
{
int i;
void __iomem *addr = tcs_reg_addr(drv, reg, tcs_id);
debug("%s: tcs(m): %d addr: %#x data: %#x\n", drv->name,
tcs_id, reg, data);
writel(data, addr);
/*
* Wait until we read back the same value. Use a counter rather than
* ktime for timeout since this may be called after timekeeping stops.
*/
for (i = 0; i < USEC_PER_SEC; i++) {
if (readl(addr) == data)
return;
udelay(1);
}
pr_err("%s: error writing %#x to %d:%#x\n", drv->name,
data, tcs_id, reg);
}
/**
* tcs_invalidate() - Invalidate all TCSes of the given type (sleep or wake).
* @drv: The RSC controller.
* @type: SLEEP_TCS or WAKE_TCS
*
* This will clear the "slots" variable of the given tcs_group and also
* tell the hardware to forget about all entries.
*
* The caller must ensure that no other RPMH actions are happening when this
* function is called, since otherwise the device may immediately become
* used again even before this function exits.
*/
static void tcs_invalidate(struct rsc_drv *drv, int type)
{
int m;
struct tcs_group *tcs = &drv->tcs[type];
/* Caller ensures nobody else is running so no lock */
if (bitmap_empty(tcs->slots, MAX_TCS_SLOTS))
return;
for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++)
write_tcs_reg_sync(drv, drv->regs[RSC_DRV_CMD_ENABLE], m, 0);
bitmap_zero(tcs->slots, MAX_TCS_SLOTS);
}
/**
* rpmh_rsc_invalidate() - Invalidate sleep and wake TCSes.
* @drv: The RSC controller.
*
* The caller must ensure that no other RPMH actions are happening when this
* function is called, since otherwise the device may immediately become
* used again even before this function exits.
*/
void rpmh_rsc_invalidate(struct rsc_drv *drv)
{
tcs_invalidate(drv, SLEEP_TCS);
tcs_invalidate(drv, WAKE_TCS);
}
/**
* rpmh_rsc_wait_for_resp() - Spin until we get a response from the rpmh
* @drv: The controller.
* @tcs_id: The global ID of this TCS.
*
* This is for ACTIVE_ONLY transfers (which are the only ones we support in
* u-boot). As we don't support interrupts, we just spin on the IRQ_STATUS
* register until the bit is set to confirm that the TCS TX is done.
*/
int rpmh_rsc_wait_for_resp(struct rsc_drv *drv, int tcs_id)
{
u32 reg;
int i;
reg = drv->regs[RSC_DRV_IRQ_STATUS];
debug("%s: waiting for response on tcs %d\n", __func__, tcs_id);
for (i = 0; i < 5 * USEC_PER_SEC; i++) {
if (readl(tcs_reg_addr(drv, reg, tcs_id)) & BIT(tcs_id))
break;
udelay(1);
}
if (i == 5 * USEC_PER_SEC) {
printf("%s: timeout waiting for response\n", drv->name);
return -ETIMEDOUT;
}
writel_relaxed(BIT(tcs_id), drv->tcs_base + drv->regs[RSC_DRV_IRQ_CLEAR]);
return 0;
}
/**
* __tcs_buffer_write() - Write to TCS hardware from a request; don't trigger.
* @drv: The controller.
* @tcs_id: The global ID of this TCS.
* @cmd_id: The index within the TCS to start writing.
* @msg: The message we want to send, which will contain several addr/data
* pairs to program (but few enough that they all fit in one TCS).
*
* This is used for all types of transfers (active, sleep, and wake).
*/
static void __tcs_buffer_write(struct rsc_drv *drv, int tcs_id, int cmd_id,
const struct tcs_request *msg)
{
u32 msgid;
u32 cmd_msgid = CMD_MSGID_LEN | CMD_MSGID_WRITE;
u32 cmd_enable = 0;
struct tcs_cmd *cmd;
int i, j;
/* u-boot: get a response to ensure everything is golden before continuing */
cmd_msgid |= CMD_MSGID_RESP_REQ;
for (i = 0, j = cmd_id; i < msg->num_cmds; i++, j++) {
cmd = &msg->cmds[i];
cmd_enable |= BIT(j);
msgid = cmd_msgid;
/*
* Additionally, if the cmd->wait is set, make the command
* response reqd even if the overall request was fire-n-forget.
*/
msgid |= cmd->wait ? CMD_MSGID_RESP_REQ : 0;
write_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_MSGID], tcs_id, j, msgid);
write_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_ADDR], tcs_id, j, cmd->addr);
write_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_DATA], tcs_id, j, cmd->data);
debug("%s: tcs(m): %d [%s] cmd(n): %d msgid: %#x addr: %#x data: %#x complete: %d\n",
drv->name, tcs_id, msg->state == RPMH_ACTIVE_ONLY_STATE ? "active" : "?", j, msgid,
cmd->addr, cmd->data, cmd->wait);
}
cmd_enable |= read_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], tcs_id);
write_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], tcs_id, cmd_enable);
}
/**
* __tcs_set_trigger() - Start xfer on a TCS or unset trigger on a borrowed TCS
* @drv: The controller.
* @tcs_id: The global ID of this TCS.
* @trigger: If true then untrigger/retrigger. If false then just untrigger.
*
* In the normal case we only ever call with "trigger=true" to start a
* transfer. That will un-trigger/disable the TCS from the last transfer
* then trigger/enable for this transfer.
*
* If we borrowed a wake TCS for an active-only transfer we'll also call
* this function with "trigger=false" to just do the un-trigger/disable
* before using the TCS for wake purposes again.
*
* Note that the AP is only in charge of triggering active-only transfers.
* The AP never triggers sleep/wake values using this function.
*/
static void __tcs_set_trigger(struct rsc_drv *drv, int tcs_id, bool trigger)
{
u32 enable;
u32 reg = drv->regs[RSC_DRV_CONTROL];
/*
* HW req: Clear the DRV_CONTROL and enable TCS again
* While clearing ensure that the AMC mode trigger is cleared
* and then the mode enable is cleared.
*/
enable = read_tcs_reg(drv, reg, tcs_id);
enable &= ~TCS_AMC_MODE_TRIGGER;
write_tcs_reg_sync(drv, reg, tcs_id, enable);
enable &= ~TCS_AMC_MODE_ENABLE;
write_tcs_reg_sync(drv, reg, tcs_id, enable);
if (trigger) {
/* Enable the AMC mode on the TCS and then trigger the TCS */
enable = TCS_AMC_MODE_ENABLE;
write_tcs_reg_sync(drv, reg, tcs_id, enable);
enable |= TCS_AMC_MODE_TRIGGER;
write_tcs_reg(drv, reg, tcs_id, enable);
}
}
/**
* get_tcs_for_msg() - Get the tcs_group used to send the given message.
* @drv: The RSC controller.
* @msg: The message we want to send.
*
* This is normally pretty straightforward except if we are trying to send
* an ACTIVE_ONLY message but don't have any active_only TCSes.
*
* Return: A pointer to a tcs_group or an ERR_PTR.
*/
static struct tcs_group *get_tcs_for_msg(struct rsc_drv *drv,
const struct tcs_request *msg)
{
if (msg->state != RPMH_ACTIVE_ONLY_STATE) {
printf("WARN: only ACTIVE_ONLY state supported\n");
return ERR_PTR(-EINVAL);
}
return &drv->tcs[ACTIVE_TCS];
}
/**
* rpmh_rsc_send_data() - Write / trigger active-only message.
* @drv: The controller.
* @msg: The data to be sent.
*
* NOTES:
* - This is only used for "ACTIVE_ONLY" since the limitations of this
* function don't make sense for sleep/wake cases.
* - To do the transfer, we will grab a whole TCS for ourselves--we don't
* try to share. If there are none available we'll wait indefinitely
* for a free one.
* - This function will not wait for the commands to be finished, only for
* data to be programmed into the RPMh. See rpmh_tx_done() which will
* be called when the transfer is fully complete.
* - This function must be called with interrupts enabled. If the hardware
* is busy doing someone else's transfer we need that transfer to fully
* finish so that we can have the hardware, and to fully finish it needs
* the interrupt handler to run. If the interrupts is set to run on the
* active CPU this can never happen if interrupts are disabled.
*
* Return: 0 on success, -EINVAL on error.
*/
int rpmh_rsc_send_data(struct rsc_drv *drv, const struct tcs_request *msg)
{
struct tcs_group *tcs;
int tcs_id;
unsigned long flags;
tcs = get_tcs_for_msg(drv, msg);
if (IS_ERR(tcs))
return PTR_ERR(tcs);
spin_lock_irqsave(&drv->lock, flags);
/* u-boot is single-threaded, always use the first TCS as we'll never conflict */
tcs_id = tcs->offset;
tcs->req[tcs_id - tcs->offset] = msg;
generic_set_bit(tcs_id, drv->tcs_in_use);
if (msg->state == RPMH_ACTIVE_ONLY_STATE && tcs->type != ACTIVE_TCS) {
/*
* Clear previously programmed WAKE commands in selected
* repurposed TCS to avoid triggering them. tcs->slots will be
* cleaned from rpmh_flush() by invoking rpmh_rsc_invalidate()
*/
write_tcs_reg_sync(drv, drv->regs[RSC_DRV_CMD_ENABLE], tcs_id, 0);
}
spin_unlock_irqrestore(&drv->lock, flags);
/*
* These two can be done after the lock is released because:
* - We marked "tcs_in_use" under lock.
* - Once "tcs_in_use" has been marked nobody else could be writing
* to these registers until the interrupt goes off.
* - The interrupt can't go off until we trigger w/ the last line
* of __tcs_set_trigger() below.
*/
__tcs_buffer_write(drv, tcs_id, 0, msg);
__tcs_set_trigger(drv, tcs_id, true);
rpmh_rsc_wait_for_resp(drv, tcs_id);
return 0;
}
static int rpmh_probe_tcs_config(struct udevice *dev, struct rsc_drv *drv)
{
struct tcs_type_config {
u32 type;
u32 n;
} tcs_cfg[TCS_TYPE_NR] = { { 0 } };
ofnode dn = dev_ofnode(dev);
u32 config, max_tcs, ncpt, offset;
int i, ret, n, st = 0;
struct tcs_group *tcs;
ret = ofnode_read_u32(dn, "qcom,tcs-offset", &offset);
if (ret)
return ret;
drv->tcs_base = drv->base + offset;
config = readl_relaxed(drv->base + drv->regs[DRV_PRNT_CHLD_CONFIG]);
max_tcs = config;
max_tcs &= DRV_NUM_TCS_MASK << (DRV_NUM_TCS_SHIFT * drv->id);
max_tcs = max_tcs >> (DRV_NUM_TCS_SHIFT * drv->id);
ncpt = config & (DRV_NCPT_MASK << DRV_NCPT_SHIFT);
ncpt = ncpt >> DRV_NCPT_SHIFT;
n = ofnode_read_u32_array(dn, "qcom,tcs-config", (u32 *)tcs_cfg, 2 * TCS_TYPE_NR);
if (n < 0) {
printf("RPMh: %s: error reading qcom,tcs-config %d\n", dev->name, n);
return n;
}
for (i = 0; i < TCS_TYPE_NR; i++) {
if (tcs_cfg[i].n > MAX_TCS_PER_TYPE)
return -EINVAL;
}
for (i = 0; i < TCS_TYPE_NR; i++) {
tcs = &drv->tcs[tcs_cfg[i].type];
if (tcs->drv)
return -EINVAL;
tcs->drv = drv;
tcs->type = tcs_cfg[i].type;
tcs->num_tcs = tcs_cfg[i].n;
tcs->ncpt = ncpt;
if (!tcs->num_tcs || tcs->type == CONTROL_TCS)
continue;
if (st + tcs->num_tcs > max_tcs ||
st + tcs->num_tcs >= BITS_PER_BYTE * sizeof(tcs->mask))
return -EINVAL;
tcs->mask = ((1 << tcs->num_tcs) - 1) << st;
tcs->offset = st;
st += tcs->num_tcs;
}
drv->num_tcs = st;
return 0;
}
static int rpmh_rsc_probe(struct udevice *dev)
{
ofnode dn = dev_ofnode(dev);
ofnode rmem, node;
struct rsc_drv *drv;
char drv_id[10] = {0};
int ret;
u32 rsc_id;
/*
* Even though RPMh doesn't directly use cmd-db, all of its children
* do. We init cmd-db here or bail out if we can't. All child devices
* can therefore safely assume that cmd-db is available.
*/
rmem = ofnode_path("/reserved-memory");
ofnode_for_each_subnode(node, rmem) {
if (ofnode_device_is_compatible(node, "qcom,cmd-db"))
goto found;
}
printf("Couldn't find qcom,cmd-db node!\n");
return -ENODEV;
found:
ret = cmd_db_init(node);
if (ret < 0) {
printf("Couldn't init cmd-db!\n");
return ret;
}
drv = dev_get_priv(dev);
ret = ofnode_read_u32(dn, "qcom,drv-id", &drv->id);
if (ret)
return ret;
drv->name = ofnode_get_property(dn, "label", NULL);
if (!drv->name)
drv->name = dev->name;
snprintf(drv_id, ARRAY_SIZE(drv_id), "drv-%d", drv->id);
drv->base = (void __iomem*)dev_read_addr_name(dev, drv_id);
if (IS_ERR(drv->base))
return PTR_ERR(drv->base);
rsc_id = readl_relaxed(drv->base + RSC_DRV_ID);
drv->ver.major = rsc_id & (MAJOR_VER_MASK << MAJOR_VER_SHIFT);
drv->ver.major >>= MAJOR_VER_SHIFT;
drv->ver.minor = rsc_id & (MINOR_VER_MASK << MINOR_VER_SHIFT);
drv->ver.minor >>= MINOR_VER_SHIFT;
if (drv->ver.major == 3) {
printf("RPMh v3 not supported\n");
return -EOPNOTSUPP;
} else {
drv->regs = rpmh_rsc_reg_offset_ver_2_7;
}
ret = rpmh_probe_tcs_config(dev, drv);
if (ret)
return ret;
spin_lock_init(&drv->lock);
init_waitqueue_head(&drv->tcs_wait);
bitmap_zero(drv->tcs_in_use, MAX_TCS_NR);
/* Enable the active TCS to send requests immediately */
writel_relaxed(drv->tcs[ACTIVE_TCS].mask,
drv->tcs_base + drv->regs[RSC_DRV_IRQ_ENABLE]);
spin_lock_init(&drv->client.cache_lock);
INIT_LIST_HEAD(&drv->client.cache);
INIT_LIST_HEAD(&drv->client.batch_cache);
dev_set_drvdata(dev, drv);
drv->dev = dev;
log_debug("RPMh: %s: v%d.%d\n", dev->name, drv->ver.major, drv->ver.minor);
return ret;
}
static const struct udevice_id qcom_rpmh_ids[] = {
{ .compatible = "qcom,rpmh-rsc" },
{ }
};
U_BOOT_DRIVER(qcom_rpmh_rsc) = {
.name = "qcom_rpmh_rsc",
.id = UCLASS_MISC,
.priv_auto = sizeof(struct rsc_drv),
.probe = rpmh_rsc_probe,
.bind = dm_scan_fdt_dev,
.of_match = qcom_rpmh_ids,
/* rpmh is under CLUSTER_PD which we don't support */
.flags = DM_FLAG_DEFAULT_PD_CTRL_OFF,
};