| /* |
| * Copyright (c) 1994 - 1997, 1999, 2000 Ralf Baechle (ralf@gnu.org) |
| * Copyright (c) 2000 Silicon Graphics, Inc. |
| * |
| * SPDX-License-Identifier: GPL-2.0 |
| */ |
| #ifndef _ASM_BITOPS_H |
| #define _ASM_BITOPS_H |
| |
| #include <linux/types.h> |
| #include <asm/byteorder.h> /* sigh ... */ |
| |
| #ifdef __KERNEL__ |
| |
| #include <asm/sgidefs.h> |
| #include <asm/system.h> |
| |
| #include <asm-generic/bitops/fls.h> |
| #include <asm-generic/bitops/__fls.h> |
| #include <asm-generic/bitops/fls64.h> |
| #include <asm-generic/bitops/__ffs.h> |
| |
| /* |
| * clear_bit() doesn't provide any barrier for the compiler. |
| */ |
| #define smp_mb__before_clear_bit() barrier() |
| #define smp_mb__after_clear_bit() barrier() |
| |
| /* |
| * Only disable interrupt for kernel mode stuff to keep usermode stuff |
| * that dares to use kernel include files alive. |
| */ |
| #define __bi_flags unsigned long flags |
| #define __bi_cli() __cli() |
| #define __bi_save_flags(x) __save_flags(x) |
| #define __bi_save_and_cli(x) __save_and_cli(x) |
| #define __bi_restore_flags(x) __restore_flags(x) |
| #else |
| #define __bi_flags |
| #define __bi_cli() |
| #define __bi_save_flags(x) |
| #define __bi_save_and_cli(x) |
| #define __bi_restore_flags(x) |
| #endif /* __KERNEL__ */ |
| |
| #ifdef CONFIG_CPU_HAS_LLSC |
| |
| #include <asm/mipsregs.h> |
| |
| /* |
| * These functions for MIPS ISA > 1 are interrupt and SMP proof and |
| * interrupt friendly |
| */ |
| |
| /* |
| * set_bit - Atomically set a bit in memory |
| * @nr: the bit to set |
| * @addr: the address to start counting from |
| * |
| * This function is atomic and may not be reordered. See __set_bit() |
| * if you do not require the atomic guarantees. |
| * Note that @nr may be almost arbitrarily large; this function is not |
| * restricted to acting on a single-word quantity. |
| */ |
| static __inline__ void |
| set_bit(int nr, volatile void *addr) |
| { |
| unsigned long *m = ((unsigned long *) addr) + (nr >> 5); |
| unsigned long temp; |
| |
| __asm__ __volatile__( |
| "1:\tll\t%0, %1\t\t# set_bit\n\t" |
| "or\t%0, %2\n\t" |
| "sc\t%0, %1\n\t" |
| "beqz\t%0, 1b" |
| : "=&r" (temp), "=m" (*m) |
| : "ir" (1UL << (nr & 0x1f)), "m" (*m)); |
| } |
| |
| /* |
| * __set_bit - Set a bit in memory |
| * @nr: the bit to set |
| * @addr: the address to start counting from |
| * |
| * Unlike set_bit(), this function is non-atomic and may be reordered. |
| * If it's called on the same region of memory simultaneously, the effect |
| * may be that only one operation succeeds. |
| */ |
| static __inline__ void __set_bit(int nr, volatile void * addr) |
| { |
| unsigned long * m = ((unsigned long *) addr) + (nr >> 5); |
| |
| *m |= 1UL << (nr & 31); |
| } |
| #define PLATFORM__SET_BIT |
| |
| /* |
| * clear_bit - Clears a bit in memory |
| * @nr: Bit to clear |
| * @addr: Address to start counting from |
| * |
| * clear_bit() is atomic and may not be reordered. However, it does |
| * not contain a memory barrier, so if it is used for locking purposes, |
| * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() |
| * in order to ensure changes are visible on other processors. |
| */ |
| static __inline__ void |
| clear_bit(int nr, volatile void *addr) |
| { |
| unsigned long *m = ((unsigned long *) addr) + (nr >> 5); |
| unsigned long temp; |
| |
| __asm__ __volatile__( |
| "1:\tll\t%0, %1\t\t# clear_bit\n\t" |
| "and\t%0, %2\n\t" |
| "sc\t%0, %1\n\t" |
| "beqz\t%0, 1b\n\t" |
| : "=&r" (temp), "=m" (*m) |
| : "ir" (~(1UL << (nr & 0x1f))), "m" (*m)); |
| } |
| |
| /* |
| * change_bit - Toggle a bit in memory |
| * @nr: Bit to clear |
| * @addr: Address to start counting from |
| * |
| * change_bit() is atomic and may not be reordered. |
| * Note that @nr may be almost arbitrarily large; this function is not |
| * restricted to acting on a single-word quantity. |
| */ |
| static __inline__ void |
| change_bit(int nr, volatile void *addr) |
| { |
| unsigned long *m = ((unsigned long *) addr) + (nr >> 5); |
| unsigned long temp; |
| |
| __asm__ __volatile__( |
| "1:\tll\t%0, %1\t\t# change_bit\n\t" |
| "xor\t%0, %2\n\t" |
| "sc\t%0, %1\n\t" |
| "beqz\t%0, 1b" |
| : "=&r" (temp), "=m" (*m) |
| : "ir" (1UL << (nr & 0x1f)), "m" (*m)); |
| } |
| |
| /* |
| * __change_bit - Toggle a bit in memory |
| * @nr: the bit to set |
| * @addr: the address to start counting from |
| * |
| * Unlike change_bit(), this function is non-atomic and may be reordered. |
| * If it's called on the same region of memory simultaneously, the effect |
| * may be that only one operation succeeds. |
| */ |
| static __inline__ void __change_bit(int nr, volatile void * addr) |
| { |
| unsigned long * m = ((unsigned long *) addr) + (nr >> 5); |
| |
| *m ^= 1UL << (nr & 31); |
| } |
| |
| /* |
| * test_and_set_bit - Set a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| static __inline__ int |
| test_and_set_bit(int nr, volatile void *addr) |
| { |
| unsigned long *m = ((unsigned long *) addr) + (nr >> 5); |
| unsigned long temp, res; |
| |
| __asm__ __volatile__( |
| ".set\tnoreorder\t\t# test_and_set_bit\n" |
| "1:\tll\t%0, %1\n\t" |
| "or\t%2, %0, %3\n\t" |
| "sc\t%2, %1\n\t" |
| "beqz\t%2, 1b\n\t" |
| " and\t%2, %0, %3\n\t" |
| ".set\treorder" |
| : "=&r" (temp), "=m" (*m), "=&r" (res) |
| : "r" (1UL << (nr & 0x1f)), "m" (*m) |
| : "memory"); |
| |
| return res != 0; |
| } |
| |
| /* |
| * __test_and_set_bit - Set a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is non-atomic and can be reordered. |
| * If two examples of this operation race, one can appear to succeed |
| * but actually fail. You must protect multiple accesses with a lock. |
| */ |
| static __inline__ int __test_and_set_bit(int nr, volatile void * addr) |
| { |
| int mask, retval; |
| volatile int *a = addr; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| retval = (mask & *a) != 0; |
| *a |= mask; |
| |
| return retval; |
| } |
| |
| /* |
| * test_and_clear_bit - Clear a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| static __inline__ int |
| test_and_clear_bit(int nr, volatile void *addr) |
| { |
| unsigned long *m = ((unsigned long *) addr) + (nr >> 5); |
| unsigned long temp, res; |
| |
| __asm__ __volatile__( |
| ".set\tnoreorder\t\t# test_and_clear_bit\n" |
| "1:\tll\t%0, %1\n\t" |
| "or\t%2, %0, %3\n\t" |
| "xor\t%2, %3\n\t" |
| "sc\t%2, %1\n\t" |
| "beqz\t%2, 1b\n\t" |
| " and\t%2, %0, %3\n\t" |
| ".set\treorder" |
| : "=&r" (temp), "=m" (*m), "=&r" (res) |
| : "r" (1UL << (nr & 0x1f)), "m" (*m) |
| : "memory"); |
| |
| return res != 0; |
| } |
| |
| /* |
| * __test_and_clear_bit - Clear a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is non-atomic and can be reordered. |
| * If two examples of this operation race, one can appear to succeed |
| * but actually fail. You must protect multiple accesses with a lock. |
| */ |
| static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) |
| { |
| int mask, retval; |
| volatile int *a = addr; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| retval = (mask & *a) != 0; |
| *a &= ~mask; |
| |
| return retval; |
| } |
| |
| /* |
| * test_and_change_bit - Change a bit and return its new value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| static __inline__ int |
| test_and_change_bit(int nr, volatile void *addr) |
| { |
| unsigned long *m = ((unsigned long *) addr) + (nr >> 5); |
| unsigned long temp, res; |
| |
| __asm__ __volatile__( |
| ".set\tnoreorder\t\t# test_and_change_bit\n" |
| "1:\tll\t%0, %1\n\t" |
| "xor\t%2, %0, %3\n\t" |
| "sc\t%2, %1\n\t" |
| "beqz\t%2, 1b\n\t" |
| " and\t%2, %0, %3\n\t" |
| ".set\treorder" |
| : "=&r" (temp), "=m" (*m), "=&r" (res) |
| : "r" (1UL << (nr & 0x1f)), "m" (*m) |
| : "memory"); |
| |
| return res != 0; |
| } |
| |
| /* |
| * __test_and_change_bit - Change a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is non-atomic and can be reordered. |
| * If two examples of this operation race, one can appear to succeed |
| * but actually fail. You must protect multiple accesses with a lock. |
| */ |
| static __inline__ int __test_and_change_bit(int nr, volatile void * addr) |
| { |
| int mask, retval; |
| volatile int *a = addr; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| retval = (mask & *a) != 0; |
| *a ^= mask; |
| |
| return retval; |
| } |
| |
| #else /* MIPS I */ |
| |
| /* |
| * set_bit - Atomically set a bit in memory |
| * @nr: the bit to set |
| * @addr: the address to start counting from |
| * |
| * This function is atomic and may not be reordered. See __set_bit() |
| * if you do not require the atomic guarantees. |
| * Note that @nr may be almost arbitrarily large; this function is not |
| * restricted to acting on a single-word quantity. |
| */ |
| static __inline__ void set_bit(int nr, volatile void * addr) |
| { |
| int mask; |
| volatile int *a = addr; |
| __bi_flags; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| __bi_save_and_cli(flags); |
| *a |= mask; |
| __bi_restore_flags(flags); |
| } |
| |
| /* |
| * __set_bit - Set a bit in memory |
| * @nr: the bit to set |
| * @addr: the address to start counting from |
| * |
| * Unlike set_bit(), this function is non-atomic and may be reordered. |
| * If it's called on the same region of memory simultaneously, the effect |
| * may be that only one operation succeeds. |
| */ |
| static __inline__ void __set_bit(int nr, volatile void * addr) |
| { |
| int mask; |
| volatile int *a = addr; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| *a |= mask; |
| } |
| |
| /* |
| * clear_bit - Clears a bit in memory |
| * @nr: Bit to clear |
| * @addr: Address to start counting from |
| * |
| * clear_bit() is atomic and may not be reordered. However, it does |
| * not contain a memory barrier, so if it is used for locking purposes, |
| * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() |
| * in order to ensure changes are visible on other processors. |
| */ |
| static __inline__ void clear_bit(int nr, volatile void * addr) |
| { |
| int mask; |
| volatile int *a = addr; |
| __bi_flags; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| __bi_save_and_cli(flags); |
| *a &= ~mask; |
| __bi_restore_flags(flags); |
| } |
| |
| /* |
| * change_bit - Toggle a bit in memory |
| * @nr: Bit to clear |
| * @addr: Address to start counting from |
| * |
| * change_bit() is atomic and may not be reordered. |
| * Note that @nr may be almost arbitrarily large; this function is not |
| * restricted to acting on a single-word quantity. |
| */ |
| static __inline__ void change_bit(int nr, volatile void * addr) |
| { |
| int mask; |
| volatile int *a = addr; |
| __bi_flags; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| __bi_save_and_cli(flags); |
| *a ^= mask; |
| __bi_restore_flags(flags); |
| } |
| |
| /* |
| * __change_bit - Toggle a bit in memory |
| * @nr: the bit to set |
| * @addr: the address to start counting from |
| * |
| * Unlike change_bit(), this function is non-atomic and may be reordered. |
| * If it's called on the same region of memory simultaneously, the effect |
| * may be that only one operation succeeds. |
| */ |
| static __inline__ void __change_bit(int nr, volatile void * addr) |
| { |
| unsigned long * m = ((unsigned long *) addr) + (nr >> 5); |
| |
| *m ^= 1UL << (nr & 31); |
| } |
| |
| /* |
| * test_and_set_bit - Set a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| static __inline__ int test_and_set_bit(int nr, volatile void * addr) |
| { |
| int mask, retval; |
| volatile int *a = addr; |
| __bi_flags; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| __bi_save_and_cli(flags); |
| retval = (mask & *a) != 0; |
| *a |= mask; |
| __bi_restore_flags(flags); |
| |
| return retval; |
| } |
| |
| /* |
| * __test_and_set_bit - Set a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is non-atomic and can be reordered. |
| * If two examples of this operation race, one can appear to succeed |
| * but actually fail. You must protect multiple accesses with a lock. |
| */ |
| static __inline__ int __test_and_set_bit(int nr, volatile void * addr) |
| { |
| int mask, retval; |
| volatile int *a = addr; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| retval = (mask & *a) != 0; |
| *a |= mask; |
| |
| return retval; |
| } |
| |
| /* |
| * test_and_clear_bit - Clear a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| static __inline__ int test_and_clear_bit(int nr, volatile void * addr) |
| { |
| int mask, retval; |
| volatile int *a = addr; |
| __bi_flags; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| __bi_save_and_cli(flags); |
| retval = (mask & *a) != 0; |
| *a &= ~mask; |
| __bi_restore_flags(flags); |
| |
| return retval; |
| } |
| |
| /* |
| * __test_and_clear_bit - Clear a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is non-atomic and can be reordered. |
| * If two examples of this operation race, one can appear to succeed |
| * but actually fail. You must protect multiple accesses with a lock. |
| */ |
| static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) |
| { |
| int mask, retval; |
| volatile int *a = addr; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| retval = (mask & *a) != 0; |
| *a &= ~mask; |
| |
| return retval; |
| } |
| |
| /* |
| * test_and_change_bit - Change a bit and return its new value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| static __inline__ int test_and_change_bit(int nr, volatile void * addr) |
| { |
| int mask, retval; |
| volatile int *a = addr; |
| __bi_flags; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| __bi_save_and_cli(flags); |
| retval = (mask & *a) != 0; |
| *a ^= mask; |
| __bi_restore_flags(flags); |
| |
| return retval; |
| } |
| |
| /* |
| * __test_and_change_bit - Change a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is non-atomic and can be reordered. |
| * If two examples of this operation race, one can appear to succeed |
| * but actually fail. You must protect multiple accesses with a lock. |
| */ |
| static __inline__ int __test_and_change_bit(int nr, volatile void * addr) |
| { |
| int mask, retval; |
| volatile int *a = addr; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| retval = (mask & *a) != 0; |
| *a ^= mask; |
| |
| return retval; |
| } |
| |
| #undef __bi_flags |
| #undef __bi_cli |
| #undef __bi_save_flags |
| #undef __bi_restore_flags |
| |
| #endif /* MIPS I */ |
| |
| /* |
| * test_bit - Determine whether a bit is set |
| * @nr: bit number to test |
| * @addr: Address to start counting from |
| */ |
| static __inline__ int test_bit(int nr, const volatile void *addr) |
| { |
| return ((1UL << (nr & 31)) & (((const unsigned int *) addr)[nr >> 5])) != 0; |
| } |
| |
| #ifndef __MIPSEB__ |
| |
| /* Little endian versions. */ |
| |
| /* |
| * find_first_zero_bit - find the first zero bit in a memory region |
| * @addr: The address to start the search at |
| * @size: The maximum size to search |
| * |
| * Returns the bit-number of the first zero bit, not the number of the byte |
| * containing a bit. |
| */ |
| static __inline__ int find_first_zero_bit (void *addr, unsigned size) |
| { |
| unsigned long dummy; |
| int res; |
| |
| if (!size) |
| return 0; |
| |
| __asm__ (".set\tnoreorder\n\t" |
| ".set\tnoat\n" |
| "1:\tsubu\t$1,%6,%0\n\t" |
| "blez\t$1,2f\n\t" |
| "lw\t$1,(%5)\n\t" |
| "addiu\t%5,4\n\t" |
| #if (_MIPS_ISA == _MIPS_ISA_MIPS2 ) || (_MIPS_ISA == _MIPS_ISA_MIPS3 ) || \ |
| (_MIPS_ISA == _MIPS_ISA_MIPS4 ) || (_MIPS_ISA == _MIPS_ISA_MIPS5 ) || \ |
| (_MIPS_ISA == _MIPS_ISA_MIPS32) || (_MIPS_ISA == _MIPS_ISA_MIPS64) |
| "beql\t%1,$1,1b\n\t" |
| "addiu\t%0,32\n\t" |
| #else |
| "addiu\t%0,32\n\t" |
| "beq\t%1,$1,1b\n\t" |
| "nop\n\t" |
| "subu\t%0,32\n\t" |
| #endif |
| #ifdef __MIPSEB__ |
| #error "Fix this for big endian" |
| #endif /* __MIPSEB__ */ |
| "li\t%1,1\n" |
| "1:\tand\t%2,$1,%1\n\t" |
| "beqz\t%2,2f\n\t" |
| "sll\t%1,%1,1\n\t" |
| "bnez\t%1,1b\n\t" |
| "add\t%0,%0,1\n\t" |
| ".set\tat\n\t" |
| ".set\treorder\n" |
| "2:" |
| : "=r" (res), "=r" (dummy), "=r" (addr) |
| : "0" ((signed int) 0), "1" ((unsigned int) 0xffffffff), |
| "2" (addr), "r" (size) |
| : "$1"); |
| |
| return res; |
| } |
| |
| /* |
| * find_next_zero_bit - find the first zero bit in a memory region |
| * @addr: The address to base the search on |
| * @offset: The bitnumber to start searching at |
| * @size: The maximum size to search |
| */ |
| static __inline__ int find_next_zero_bit (void * addr, int size, int offset) |
| { |
| unsigned int *p = ((unsigned int *) addr) + (offset >> 5); |
| int set = 0, bit = offset & 31, res; |
| unsigned long dummy; |
| |
| if (bit) { |
| /* |
| * Look for zero in first byte |
| */ |
| #ifdef __MIPSEB__ |
| #error "Fix this for big endian byte order" |
| #endif |
| __asm__(".set\tnoreorder\n\t" |
| ".set\tnoat\n" |
| "1:\tand\t$1,%4,%1\n\t" |
| "beqz\t$1,1f\n\t" |
| "sll\t%1,%1,1\n\t" |
| "bnez\t%1,1b\n\t" |
| "addiu\t%0,1\n\t" |
| ".set\tat\n\t" |
| ".set\treorder\n" |
| "1:" |
| : "=r" (set), "=r" (dummy) |
| : "0" (0), "1" (1 << bit), "r" (*p) |
| : "$1"); |
| if (set < (32 - bit)) |
| return set + offset; |
| set = 32 - bit; |
| p++; |
| } |
| /* |
| * No zero yet, search remaining full bytes for a zero |
| */ |
| res = find_first_zero_bit(p, size - 32 * (p - (unsigned int *) addr)); |
| return offset + set + res; |
| } |
| |
| #endif /* !(__MIPSEB__) */ |
| |
| /* |
| * ffz - find first zero in word. |
| * @word: The word to search |
| * |
| * Undefined if no zero exists, so code should check against ~0UL first. |
| */ |
| static __inline__ unsigned long ffz(unsigned long word) |
| { |
| unsigned int __res; |
| unsigned int mask = 1; |
| |
| __asm__ ( |
| ".set\tnoreorder\n\t" |
| ".set\tnoat\n\t" |
| "move\t%0,$0\n" |
| "1:\tand\t$1,%2,%1\n\t" |
| "beqz\t$1,2f\n\t" |
| "sll\t%1,1\n\t" |
| "bnez\t%1,1b\n\t" |
| "addiu\t%0,1\n\t" |
| ".set\tat\n\t" |
| ".set\treorder\n" |
| "2:\n\t" |
| : "=&r" (__res), "=r" (mask) |
| : "r" (word), "1" (mask) |
| : "$1"); |
| |
| return __res; |
| } |
| |
| #ifdef __KERNEL__ |
| |
| /* |
| * hweightN - returns the hamming weight of a N-bit word |
| * @x: the word to weigh |
| * |
| * The Hamming Weight of a number is the total number of bits set in it. |
| */ |
| |
| #define hweight32(x) generic_hweight32(x) |
| #define hweight16(x) generic_hweight16(x) |
| #define hweight8(x) generic_hweight8(x) |
| |
| #endif /* __KERNEL__ */ |
| |
| #ifdef __MIPSEB__ |
| /* |
| * find_next_zero_bit - find the first zero bit in a memory region |
| * @addr: The address to base the search on |
| * @offset: The bitnumber to start searching at |
| * @size: The maximum size to search |
| */ |
| static __inline__ int find_next_zero_bit(void *addr, int size, int offset) |
| { |
| unsigned long *p = ((unsigned long *) addr) + (offset >> 5); |
| unsigned long result = offset & ~31UL; |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= 31UL; |
| if (offset) { |
| tmp = *(p++); |
| tmp |= ~0UL >> (32-offset); |
| if (size < 32) |
| goto found_first; |
| if (~tmp) |
| goto found_middle; |
| size -= 32; |
| result += 32; |
| } |
| while (size & ~31UL) { |
| if (~(tmp = *(p++))) |
| goto found_middle; |
| result += 32; |
| size -= 32; |
| } |
| if (!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| tmp |= ~0UL << size; |
| found_middle: |
| return result + ffz(tmp); |
| } |
| |
| /* Linus sez that gcc can optimize the following correctly, we'll see if this |
| * holds on the Sparc as it does for the ALPHA. |
| */ |
| |
| #if 0 /* Fool kernel-doc since it doesn't do macros yet */ |
| /* |
| * find_first_zero_bit - find the first zero bit in a memory region |
| * @addr: The address to start the search at |
| * @size: The maximum size to search |
| * |
| * Returns the bit-number of the first zero bit, not the number of the byte |
| * containing a bit. |
| */ |
| static int find_first_zero_bit (void *addr, unsigned size); |
| #endif |
| |
| #define find_first_zero_bit(addr, size) \ |
| find_next_zero_bit((addr), (size), 0) |
| |
| #endif /* (__MIPSEB__) */ |
| |
| /* Now for the ext2 filesystem bit operations and helper routines. */ |
| |
| #ifdef __MIPSEB__ |
| static __inline__ int ext2_set_bit(int nr, void * addr) |
| { |
| int mask, retval, flags; |
| unsigned char *ADDR = (unsigned char *) addr; |
| |
| ADDR += nr >> 3; |
| mask = 1 << (nr & 0x07); |
| save_and_cli(flags); |
| retval = (mask & *ADDR) != 0; |
| *ADDR |= mask; |
| restore_flags(flags); |
| return retval; |
| } |
| |
| static __inline__ int ext2_clear_bit(int nr, void * addr) |
| { |
| int mask, retval, flags; |
| unsigned char *ADDR = (unsigned char *) addr; |
| |
| ADDR += nr >> 3; |
| mask = 1 << (nr & 0x07); |
| save_and_cli(flags); |
| retval = (mask & *ADDR) != 0; |
| *ADDR &= ~mask; |
| restore_flags(flags); |
| return retval; |
| } |
| |
| static __inline__ int ext2_test_bit(int nr, const void * addr) |
| { |
| int mask; |
| const unsigned char *ADDR = (const unsigned char *) addr; |
| |
| ADDR += nr >> 3; |
| mask = 1 << (nr & 0x07); |
| return ((mask & *ADDR) != 0); |
| } |
| |
| #define ext2_find_first_zero_bit(addr, size) \ |
| ext2_find_next_zero_bit((addr), (size), 0) |
| |
| static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) |
| { |
| unsigned long *p = ((unsigned long *) addr) + (offset >> 5); |
| unsigned long result = offset & ~31UL; |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= 31UL; |
| if(offset) { |
| /* We hold the little endian value in tmp, but then the |
| * shift is illegal. So we could keep a big endian value |
| * in tmp, like this: |
| * |
| * tmp = __swab32(*(p++)); |
| * tmp |= ~0UL >> (32-offset); |
| * |
| * but this would decrease preformance, so we change the |
| * shift: |
| */ |
| tmp = *(p++); |
| tmp |= __swab32(~0UL >> (32-offset)); |
| if(size < 32) |
| goto found_first; |
| if(~tmp) |
| goto found_middle; |
| size -= 32; |
| result += 32; |
| } |
| while(size & ~31UL) { |
| if(~(tmp = *(p++))) |
| goto found_middle; |
| result += 32; |
| size -= 32; |
| } |
| if(!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| /* tmp is little endian, so we would have to swab the shift, |
| * see above. But then we have to swab tmp below for ffz, so |
| * we might as well do this here. |
| */ |
| return result + ffz(__swab32(tmp) | (~0UL << size)); |
| found_middle: |
| return result + ffz(__swab32(tmp)); |
| } |
| #else /* !(__MIPSEB__) */ |
| |
| /* Native ext2 byte ordering, just collapse using defines. */ |
| #define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr)) |
| #define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr)) |
| #define ext2_test_bit(nr, addr) test_bit((nr), (addr)) |
| #define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size)) |
| #define ext2_find_next_zero_bit(addr, size, offset) \ |
| find_next_zero_bit((addr), (size), (offset)) |
| |
| #endif /* !(__MIPSEB__) */ |
| |
| /* |
| * Bitmap functions for the minix filesystem. |
| * FIXME: These assume that Minix uses the native byte/bitorder. |
| * This limits the Minix filesystem's value for data exchange very much. |
| */ |
| #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) |
| #define minix_set_bit(nr,addr) set_bit(nr,addr) |
| #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) |
| #define minix_test_bit(nr,addr) test_bit(nr,addr) |
| #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) |
| |
| #endif /* _ASM_BITOPS_H */ |