blob: 61e48ee0f62d4fc022ef6701797cf1e387f85aed [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Ingenic JZ MMC driver
*
* Copyright (c) 2013 Imagination Technologies
* Author: Paul Burton <paul.burton@imgtec.com>
*/
#include <common.h>
#include <malloc.h>
#include <mmc.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <asm/unaligned.h>
#include <errno.h>
#include <dm/device_compat.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <mach/jz4780.h>
#include <wait_bit.h>
/* Registers */
#define MSC_STRPCL 0x000
#define MSC_STAT 0x004
#define MSC_CLKRT 0x008
#define MSC_CMDAT 0x00c
#define MSC_RESTO 0x010
#define MSC_RDTO 0x014
#define MSC_BLKLEN 0x018
#define MSC_NOB 0x01c
#define MSC_SNOB 0x020
#define MSC_IMASK 0x024
#define MSC_IREG 0x028
#define MSC_CMD 0x02c
#define MSC_ARG 0x030
#define MSC_RES 0x034
#define MSC_RXFIFO 0x038
#define MSC_TXFIFO 0x03c
#define MSC_LPM 0x040
#define MSC_DMAC 0x044
#define MSC_DMANDA 0x048
#define MSC_DMADA 0x04c
#define MSC_DMALEN 0x050
#define MSC_DMACMD 0x054
#define MSC_CTRL2 0x058
#define MSC_RTCNT 0x05c
#define MSC_DBG 0x0fc
/* MSC Clock and Control Register (MSC_STRPCL) */
#define MSC_STRPCL_EXIT_MULTIPLE BIT(7)
#define MSC_STRPCL_EXIT_TRANSFER BIT(6)
#define MSC_STRPCL_START_READWAIT BIT(5)
#define MSC_STRPCL_STOP_READWAIT BIT(4)
#define MSC_STRPCL_RESET BIT(3)
#define MSC_STRPCL_START_OP BIT(2)
#define MSC_STRPCL_CLOCK_CONTROL_STOP BIT(0)
#define MSC_STRPCL_CLOCK_CONTROL_START BIT(1)
/* MSC Status Register (MSC_STAT) */
#define MSC_STAT_AUTO_CMD_DONE BIT(31)
#define MSC_STAT_IS_RESETTING BIT(15)
#define MSC_STAT_SDIO_INT_ACTIVE BIT(14)
#define MSC_STAT_PRG_DONE BIT(13)
#define MSC_STAT_DATA_TRAN_DONE BIT(12)
#define MSC_STAT_END_CMD_RES BIT(11)
#define MSC_STAT_DATA_FIFO_AFULL BIT(10)
#define MSC_STAT_IS_READWAIT BIT(9)
#define MSC_STAT_CLK_EN BIT(8)
#define MSC_STAT_DATA_FIFO_FULL BIT(7)
#define MSC_STAT_DATA_FIFO_EMPTY BIT(6)
#define MSC_STAT_CRC_RES_ERR BIT(5)
#define MSC_STAT_CRC_READ_ERROR BIT(4)
#define MSC_STAT_CRC_WRITE_ERROR BIT(2)
#define MSC_STAT_CRC_WRITE_ERROR_NOSTS BIT(4)
#define MSC_STAT_TIME_OUT_RES BIT(1)
#define MSC_STAT_TIME_OUT_READ BIT(0)
/* MSC Bus Clock Control Register (MSC_CLKRT) */
#define MSC_CLKRT_CLK_RATE_MASK 0x7
/* MSC Command Sequence Control Register (MSC_CMDAT) */
#define MSC_CMDAT_IO_ABORT BIT(11)
#define MSC_CMDAT_BUS_WIDTH_1BIT (0x0 << 9)
#define MSC_CMDAT_BUS_WIDTH_4BIT (0x2 << 9)
#define MSC_CMDAT_DMA_EN BIT(8)
#define MSC_CMDAT_INIT BIT(7)
#define MSC_CMDAT_BUSY BIT(6)
#define MSC_CMDAT_STREAM_BLOCK BIT(5)
#define MSC_CMDAT_WRITE BIT(4)
#define MSC_CMDAT_DATA_EN BIT(3)
#define MSC_CMDAT_RESPONSE_MASK (0x7 << 0)
#define MSC_CMDAT_RESPONSE_NONE (0x0 << 0) /* No response */
#define MSC_CMDAT_RESPONSE_R1 (0x1 << 0) /* Format R1 and R1b */
#define MSC_CMDAT_RESPONSE_R2 (0x2 << 0) /* Format R2 */
#define MSC_CMDAT_RESPONSE_R3 (0x3 << 0) /* Format R3 */
#define MSC_CMDAT_RESPONSE_R4 (0x4 << 0) /* Format R4 */
#define MSC_CMDAT_RESPONSE_R5 (0x5 << 0) /* Format R5 */
#define MSC_CMDAT_RESPONSE_R6 (0x6 << 0) /* Format R6 */
/* MSC Interrupts Mask Register (MSC_IMASK) */
#define MSC_IMASK_TIME_OUT_RES BIT(9)
#define MSC_IMASK_TIME_OUT_READ BIT(8)
#define MSC_IMASK_SDIO BIT(7)
#define MSC_IMASK_TXFIFO_WR_REQ BIT(6)
#define MSC_IMASK_RXFIFO_RD_REQ BIT(5)
#define MSC_IMASK_END_CMD_RES BIT(2)
#define MSC_IMASK_PRG_DONE BIT(1)
#define MSC_IMASK_DATA_TRAN_DONE BIT(0)
/* MSC Interrupts Status Register (MSC_IREG) */
#define MSC_IREG_TIME_OUT_RES BIT(9)
#define MSC_IREG_TIME_OUT_READ BIT(8)
#define MSC_IREG_SDIO BIT(7)
#define MSC_IREG_TXFIFO_WR_REQ BIT(6)
#define MSC_IREG_RXFIFO_RD_REQ BIT(5)
#define MSC_IREG_END_CMD_RES BIT(2)
#define MSC_IREG_PRG_DONE BIT(1)
#define MSC_IREG_DATA_TRAN_DONE BIT(0)
struct jz_mmc_plat {
struct mmc_config cfg;
struct mmc mmc;
};
struct jz_mmc_priv {
void __iomem *regs;
u32 flags;
/* priv flags */
#define JZ_MMC_BUS_WIDTH_MASK 0x3
#define JZ_MMC_BUS_WIDTH_1 0x0
#define JZ_MMC_BUS_WIDTH_4 0x2
#define JZ_MMC_BUS_WIDTH_8 0x3
#define JZ_MMC_SENT_INIT BIT(2)
};
static int jz_mmc_clock_rate(void)
{
return 24000000;
}
#if CONFIG_IS_ENABLED(MMC_WRITE)
static inline void jz_mmc_write_data(struct jz_mmc_priv *priv, struct mmc_data *data)
{
int sz = DIV_ROUND_UP(data->blocks * data->blocksize, 4);
const void *buf = data->src;
while (sz--) {
u32 val = get_unaligned_le32(buf);
wait_for_bit_le32(priv->regs + MSC_IREG,
MSC_IREG_TXFIFO_WR_REQ,
true, 10000, false);
writel(val, priv->regs + MSC_TXFIFO);
buf += 4;
}
}
#else
static void jz_mmc_write_data(struct jz_mmc_priv *priv, struct mmc_data *data)
{}
#endif
static inline int jz_mmc_read_data(struct jz_mmc_priv *priv, struct mmc_data *data)
{
int sz = data->blocks * data->blocksize;
void *buf = data->dest;
u32 stat, val;
do {
stat = readl(priv->regs + MSC_STAT);
if (stat & MSC_STAT_TIME_OUT_READ)
return -ETIMEDOUT;
if (stat & MSC_STAT_CRC_READ_ERROR)
return -EINVAL;
if (stat & MSC_STAT_DATA_FIFO_EMPTY) {
udelay(10);
continue;
}
do {
val = readl(priv->regs + MSC_RXFIFO);
if (sz == 1)
*(u8 *)buf = (u8)val;
else if (sz == 2)
put_unaligned_le16(val, buf);
else if (sz >= 4)
put_unaligned_le32(val, buf);
buf += 4;
sz -= 4;
stat = readl(priv->regs + MSC_STAT);
} while (!(stat & MSC_STAT_DATA_FIFO_EMPTY));
} while (!(stat & MSC_STAT_DATA_TRAN_DONE));
return 0;
}
static int jz_mmc_send_cmd(struct mmc *mmc, struct jz_mmc_priv *priv,
struct mmc_cmd *cmd, struct mmc_data *data)
{
u32 stat, mask, cmdat = 0;
int i, ret;
/* stop the clock */
writel(MSC_STRPCL_CLOCK_CONTROL_STOP, priv->regs + MSC_STRPCL);
ret = wait_for_bit_le32(priv->regs + MSC_STAT,
MSC_STAT_CLK_EN, false, 10000, false);
if (ret)
return ret;
writel(0, priv->regs + MSC_DMAC);
/* setup command */
writel(cmd->cmdidx, priv->regs + MSC_CMD);
writel(cmd->cmdarg, priv->regs + MSC_ARG);
if (data) {
/* setup data */
cmdat |= MSC_CMDAT_DATA_EN;
if (data->flags & MMC_DATA_WRITE)
cmdat |= MSC_CMDAT_WRITE;
writel(data->blocks, priv->regs + MSC_NOB);
writel(data->blocksize, priv->regs + MSC_BLKLEN);
} else {
writel(0, priv->regs + MSC_NOB);
writel(0, priv->regs + MSC_BLKLEN);
}
/* setup response */
switch (cmd->resp_type) {
case MMC_RSP_NONE:
break;
case MMC_RSP_R1:
case MMC_RSP_R1b:
cmdat |= MSC_CMDAT_RESPONSE_R1;
break;
case MMC_RSP_R2:
cmdat |= MSC_CMDAT_RESPONSE_R2;
break;
case MMC_RSP_R3:
cmdat |= MSC_CMDAT_RESPONSE_R3;
break;
default:
break;
}
if (cmd->resp_type & MMC_RSP_BUSY)
cmdat |= MSC_CMDAT_BUSY;
/* set init for the first command only */
if (!(priv->flags & JZ_MMC_SENT_INIT)) {
cmdat |= MSC_CMDAT_INIT;
priv->flags |= JZ_MMC_SENT_INIT;
}
cmdat |= (priv->flags & JZ_MMC_BUS_WIDTH_MASK) << 9;
/* write the data setup */
writel(cmdat, priv->regs + MSC_CMDAT);
/* unmask interrupts */
mask = 0xffffffff & ~(MSC_IMASK_END_CMD_RES | MSC_IMASK_TIME_OUT_RES);
if (data) {
mask &= ~MSC_IMASK_DATA_TRAN_DONE;
if (data->flags & MMC_DATA_WRITE) {
mask &= ~MSC_IMASK_TXFIFO_WR_REQ;
} else {
mask &= ~(MSC_IMASK_RXFIFO_RD_REQ |
MSC_IMASK_TIME_OUT_READ);
}
}
writel(mask, priv->regs + MSC_IMASK);
/* clear interrupts */
writel(0xffffffff, priv->regs + MSC_IREG);
/* start the command (& the clock) */
writel(MSC_STRPCL_START_OP | MSC_STRPCL_CLOCK_CONTROL_START,
priv->regs + MSC_STRPCL);
/* wait for completion */
for (i = 0; i < 100; i++) {
stat = readl(priv->regs + MSC_IREG);
stat &= MSC_IREG_END_CMD_RES | MSC_IREG_TIME_OUT_RES;
if (stat)
break;
mdelay(1);
}
writel(stat, priv->regs + MSC_IREG);
if (stat & MSC_IREG_TIME_OUT_RES)
return -ETIMEDOUT;
if (cmd->resp_type & MMC_RSP_PRESENT) {
/* read the response */
if (cmd->resp_type & MMC_RSP_136) {
u16 a, b, c, i;
a = readw(priv->regs + MSC_RES);
for (i = 0; i < 4; i++) {
b = readw(priv->regs + MSC_RES);
c = readw(priv->regs + MSC_RES);
cmd->response[i] =
(a << 24) | (b << 8) | (c >> 8);
a = c;
}
} else {
cmd->response[0] = readw(priv->regs + MSC_RES) << 24;
cmd->response[0] |= readw(priv->regs + MSC_RES) << 8;
cmd->response[0] |= readw(priv->regs + MSC_RES) & 0xff;
}
}
if (data) {
if (data->flags & MMC_DATA_WRITE)
jz_mmc_write_data(priv, data);
else if (data->flags & MMC_DATA_READ) {
ret = jz_mmc_read_data(priv, data);
if (ret)
return ret;
}
}
return 0;
}
static int jz_mmc_set_ios(struct mmc *mmc, struct jz_mmc_priv *priv)
{
u32 real_rate = jz_mmc_clock_rate();
u8 clk_div = 0;
/* calculate clock divide */
while ((real_rate > mmc->clock) && (clk_div < 7)) {
real_rate >>= 1;
clk_div++;
}
writel(clk_div & MSC_CLKRT_CLK_RATE_MASK, priv->regs + MSC_CLKRT);
/* set the bus width for the next command */
priv->flags &= ~JZ_MMC_BUS_WIDTH_MASK;
if (mmc->bus_width == 8)
priv->flags |= JZ_MMC_BUS_WIDTH_8;
else if (mmc->bus_width == 4)
priv->flags |= JZ_MMC_BUS_WIDTH_4;
else
priv->flags |= JZ_MMC_BUS_WIDTH_1;
return 0;
}
static int jz_mmc_core_init(struct mmc *mmc)
{
struct jz_mmc_priv *priv = mmc->priv;
int ret;
/* Reset */
writel(MSC_STRPCL_RESET, priv->regs + MSC_STRPCL);
ret = wait_for_bit_le32(priv->regs + MSC_STAT,
MSC_STAT_IS_RESETTING, false, 10000, false);
if (ret)
return ret;
/* Maximum timeouts */
writel(0xffff, priv->regs + MSC_RESTO);
writel(0xffffffff, priv->regs + MSC_RDTO);
/* Enable low power mode */
writel(0x1, priv->regs + MSC_LPM);
return 0;
}
#if !CONFIG_IS_ENABLED(DM_MMC)
static int jz_mmc_legacy_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct jz_mmc_priv *priv = mmc->priv;
return jz_mmc_send_cmd(mmc, priv, cmd, data);
}
static int jz_mmc_legacy_set_ios(struct mmc *mmc)
{
struct jz_mmc_priv *priv = mmc->priv;
return jz_mmc_set_ios(mmc, priv);
};
static const struct mmc_ops jz_msc_ops = {
.send_cmd = jz_mmc_legacy_send_cmd,
.set_ios = jz_mmc_legacy_set_ios,
.init = jz_mmc_core_init,
};
static struct jz_mmc_priv jz_mmc_priv_static;
static struct jz_mmc_plat jz_mmc_plat_static = {
.cfg = {
.name = "MSC",
.ops = &jz_msc_ops,
.voltages = MMC_VDD_27_28 | MMC_VDD_28_29 | MMC_VDD_29_30 |
MMC_VDD_30_31 | MMC_VDD_31_32 | MMC_VDD_32_33 |
MMC_VDD_33_34 | MMC_VDD_34_35 | MMC_VDD_35_36,
.host_caps = MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS,
.f_min = 375000,
.f_max = 48000000,
.b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT,
},
};
int jz_mmc_init(void __iomem *base)
{
struct mmc *mmc;
jz_mmc_priv_static.regs = base;
mmc = mmc_create(&jz_mmc_plat_static.cfg, &jz_mmc_priv_static);
return mmc ? 0 : -ENODEV;
}
#else /* CONFIG_DM_MMC */
#include <dm.h>
DECLARE_GLOBAL_DATA_PTR;
static int jz_mmc_dm_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct jz_mmc_priv *priv = dev_get_priv(dev);
struct mmc *mmc = mmc_get_mmc_dev(dev);
return jz_mmc_send_cmd(mmc, priv, cmd, data);
}
static int jz_mmc_dm_set_ios(struct udevice *dev)
{
struct jz_mmc_priv *priv = dev_get_priv(dev);
struct mmc *mmc = mmc_get_mmc_dev(dev);
return jz_mmc_set_ios(mmc, priv);
};
static const struct dm_mmc_ops jz_msc_ops = {
.send_cmd = jz_mmc_dm_send_cmd,
.set_ios = jz_mmc_dm_set_ios,
};
static int jz_mmc_of_to_plat(struct udevice *dev)
{
struct jz_mmc_priv *priv = dev_get_priv(dev);
struct jz_mmc_plat *plat = dev_get_plat(dev);
struct mmc_config *cfg;
int ret;
priv->regs = map_physmem(dev_read_addr(dev), 0x100, MAP_NOCACHE);
cfg = &plat->cfg;
cfg->name = "MSC";
cfg->host_caps = MMC_MODE_HS_52MHz | MMC_MODE_HS;
ret = mmc_of_parse(dev, cfg);
if (ret < 0) {
dev_err(dev, "failed to parse host caps\n");
return ret;
}
cfg->f_min = 400000;
cfg->f_max = 52000000;
cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
return 0;
}
static int jz_mmc_bind(struct udevice *dev)
{
struct jz_mmc_plat *plat = dev_get_plat(dev);
return mmc_bind(dev, &plat->mmc, &plat->cfg);
}
static int jz_mmc_probe(struct udevice *dev)
{
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
struct jz_mmc_priv *priv = dev_get_priv(dev);
struct jz_mmc_plat *plat = dev_get_plat(dev);
plat->mmc.priv = priv;
upriv->mmc = &plat->mmc;
return jz_mmc_core_init(&plat->mmc);
}
static const struct udevice_id jz_mmc_ids[] = {
{ .compatible = "ingenic,jz4780-mmc" },
{ }
};
U_BOOT_DRIVER(jz_mmc_drv) = {
.name = "jz_mmc",
.id = UCLASS_MMC,
.of_match = jz_mmc_ids,
.of_to_plat = jz_mmc_of_to_plat,
.bind = jz_mmc_bind,
.probe = jz_mmc_probe,
.priv_auto = sizeof(struct jz_mmc_priv),
.plat_auto = sizeof(struct jz_mmc_plat),
.ops = &jz_msc_ops,
};
#endif /* CONFIG_DM_MMC */