| /* |
| * Copyright (C) 2013, Intel Corporation |
| * Copyright (C) 2015, Bin Meng <bmeng.cn@gmail.com> |
| * |
| * Ported from Intel released Quark UEFI BIOS |
| * QuarkSocPkg/QuarkNorthCluster/MemoryInit/Pei |
| * |
| * SPDX-License-Identifier: Intel |
| */ |
| |
| #include <common.h> |
| #include <asm/arch/mrc.h> |
| #include <asm/arch/msg_port.h> |
| #include "mrc_util.h" |
| #include "hte.h" |
| |
| /** |
| * Enable HTE to detect all possible errors for the given training parameters |
| * (per-bit or full byte lane). |
| */ |
| static void hte_enable_all_errors(void) |
| { |
| msg_port_write(HTE, 0x000200A2, 0xFFFFFFFF); |
| msg_port_write(HTE, 0x000200A3, 0x000000FF); |
| msg_port_write(HTE, 0x000200A4, 0x00000000); |
| } |
| |
| /** |
| * Go and read the HTE register in order to find any error |
| * |
| * @return: The errors detected in the HTE status register |
| */ |
| static u32 hte_check_errors(void) |
| { |
| return msg_port_read(HTE, 0x000200A7); |
| } |
| |
| /** |
| * Wait until HTE finishes |
| */ |
| static void hte_wait_for_complete(void) |
| { |
| u32 tmp; |
| |
| ENTERFN(); |
| |
| do {} while ((msg_port_read(HTE, 0x00020012) & BIT30) != 0); |
| |
| tmp = msg_port_read(HTE, 0x00020011); |
| tmp |= BIT9; |
| tmp &= ~(BIT12 | BIT13); |
| msg_port_write(HTE, 0x00020011, tmp); |
| |
| LEAVEFN(); |
| } |
| |
| /** |
| * Clear registers related with errors in the HTE |
| */ |
| static void hte_clear_error_regs(void) |
| { |
| u32 tmp; |
| |
| /* |
| * Clear all HTE errors and enable error checking |
| * for burst and chunk. |
| */ |
| tmp = msg_port_read(HTE, 0x000200A1); |
| tmp |= BIT8; |
| msg_port_write(HTE, 0x000200A1, tmp); |
| } |
| |
| /** |
| * Execute a basic single-cache-line memory write/read/verify test using simple |
| * constant pattern, different for READ_TRAIN and WRITE_TRAIN modes. |
| * |
| * See hte_basic_write_read() which is the external visible wrapper. |
| * |
| * @mrc_params: host structure for all MRC global data |
| * @addr: memory adress being tested (must hit specific channel/rank) |
| * @first_run: if set then the HTE registers are configured, otherwise it is |
| * assumed configuration is done and we just re-run the test |
| * @mode: READ_TRAIN or WRITE_TRAIN (the difference is in the pattern) |
| * |
| * @return: byte lane failure on each bit (for Quark only bit0 and bit1) |
| */ |
| static u16 hte_basic_data_cmp(struct mrc_params *mrc_params, u32 addr, |
| u8 first_run, u8 mode) |
| { |
| u32 pattern; |
| u32 offset; |
| |
| if (first_run) { |
| msg_port_write(HTE, 0x00020020, 0x01B10021); |
| msg_port_write(HTE, 0x00020021, 0x06000000); |
| msg_port_write(HTE, 0x00020022, addr >> 6); |
| msg_port_write(HTE, 0x00020062, 0x00800015); |
| msg_port_write(HTE, 0x00020063, 0xAAAAAAAA); |
| msg_port_write(HTE, 0x00020064, 0xCCCCCCCC); |
| msg_port_write(HTE, 0x00020065, 0xF0F0F0F0); |
| msg_port_write(HTE, 0x00020061, 0x00030008); |
| |
| if (mode == WRITE_TRAIN) |
| pattern = 0xC33C0000; |
| else /* READ_TRAIN */ |
| pattern = 0xAA5555AA; |
| |
| for (offset = 0x80; offset <= 0x8F; offset++) |
| msg_port_write(HTE, offset, pattern); |
| } |
| |
| msg_port_write(HTE, 0x000200A1, 0xFFFF1000); |
| msg_port_write(HTE, 0x00020011, 0x00011000); |
| msg_port_write(HTE, 0x00020011, 0x00011100); |
| |
| hte_wait_for_complete(); |
| |
| /* |
| * Return bits 15:8 of HTE_CH0_ERR_XSTAT to check for |
| * any bytelane errors. |
| */ |
| return (hte_check_errors() >> 8) & 0xFF; |
| } |
| |
| /** |
| * Examine a single-cache-line memory with write/read/verify test using multiple |
| * data patterns (victim-aggressor algorithm). |
| * |
| * See hte_write_stress_bit_lanes() which is the external visible wrapper. |
| * |
| * @mrc_params: host structure for all MRC global data |
| * @addr: memory adress being tested (must hit specific channel/rank) |
| * @loop_cnt: number of test iterations |
| * @seed_victim: victim data pattern seed |
| * @seed_aggressor: aggressor data pattern seed |
| * @victim_bit: should be 0 as auto-rotate feature is in use |
| * @first_run: if set then the HTE registers are configured, otherwise it is |
| * assumed configuration is done and we just re-run the test |
| * |
| * @return: byte lane failure on each bit (for Quark only bit0 and bit1) |
| */ |
| static u16 hte_rw_data_cmp(struct mrc_params *mrc_params, u32 addr, |
| u8 loop_cnt, u32 seed_victim, u32 seed_aggressor, |
| u8 victim_bit, u8 first_run) |
| { |
| u32 offset; |
| u32 tmp; |
| |
| if (first_run) { |
| msg_port_write(HTE, 0x00020020, 0x00910024); |
| msg_port_write(HTE, 0x00020023, 0x00810024); |
| msg_port_write(HTE, 0x00020021, 0x06070000); |
| msg_port_write(HTE, 0x00020024, 0x06070000); |
| msg_port_write(HTE, 0x00020022, addr >> 6); |
| msg_port_write(HTE, 0x00020025, addr >> 6); |
| msg_port_write(HTE, 0x00020062, 0x0000002A); |
| msg_port_write(HTE, 0x00020063, seed_victim); |
| msg_port_write(HTE, 0x00020064, seed_aggressor); |
| msg_port_write(HTE, 0x00020065, seed_victim); |
| |
| /* |
| * Write the pattern buffers to select the victim bit |
| * |
| * Start with bit0 |
| */ |
| for (offset = 0x80; offset <= 0x8F; offset++) { |
| if ((offset % 8) == victim_bit) |
| msg_port_write(HTE, offset, 0x55555555); |
| else |
| msg_port_write(HTE, offset, 0xCCCCCCCC); |
| } |
| |
| msg_port_write(HTE, 0x00020061, 0x00000000); |
| msg_port_write(HTE, 0x00020066, 0x03440000); |
| msg_port_write(HTE, 0x000200A1, 0xFFFF1000); |
| } |
| |
| tmp = 0x10001000 | (loop_cnt << 16); |
| msg_port_write(HTE, 0x00020011, tmp); |
| msg_port_write(HTE, 0x00020011, tmp | BIT8); |
| |
| hte_wait_for_complete(); |
| |
| /* |
| * Return bits 15:8 of HTE_CH0_ERR_XSTAT to check for |
| * any bytelane errors. |
| */ |
| return (hte_check_errors() >> 8) & 0xFF; |
| } |
| |
| /** |
| * Use HW HTE engine to initialize or test all memory attached to a given DUNIT. |
| * If flag is MRC_MEM_INIT, this routine writes 0s to all memory locations to |
| * initialize ECC. If flag is MRC_MEM_TEST, this routine will send an 5AA55AA5 |
| * pattern to all memory locations on the RankMask and then read it back. |
| * Then it sends an A55AA55A pattern to all memory locations on the RankMask |
| * and reads it back. |
| * |
| * @mrc_params: host structure for all MRC global data |
| * @flag: MRC_MEM_INIT or MRC_MEM_TEST |
| * |
| * @return: errors register showing HTE failures. Also prints out which rank |
| * failed the HTE test if failure occurs. For rank detection to work, |
| * the address map must be left in its default state. If MRC changes |
| * the address map, this function must be modified to change it back |
| * to default at the beginning, then restore it at the end. |
| */ |
| u32 hte_mem_init(struct mrc_params *mrc_params, u8 flag) |
| { |
| u32 offset; |
| int test_num; |
| int i; |
| |
| /* |
| * Clear out the error registers at the start of each memory |
| * init or memory test run. |
| */ |
| hte_clear_error_regs(); |
| |
| msg_port_write(HTE, 0x00020062, 0x00000015); |
| |
| for (offset = 0x80; offset <= 0x8F; offset++) |
| msg_port_write(HTE, offset, ((offset & 1) ? 0xA55A : 0x5AA5)); |
| |
| msg_port_write(HTE, 0x00020021, 0x00000000); |
| msg_port_write(HTE, 0x00020022, (mrc_params->mem_size >> 6) - 1); |
| msg_port_write(HTE, 0x00020063, 0xAAAAAAAA); |
| msg_port_write(HTE, 0x00020064, 0xCCCCCCCC); |
| msg_port_write(HTE, 0x00020065, 0xF0F0F0F0); |
| msg_port_write(HTE, 0x00020066, 0x03000000); |
| |
| switch (flag) { |
| case MRC_MEM_INIT: |
| /* |
| * Only 1 write pass through memory is needed |
| * to initialize ECC |
| */ |
| test_num = 1; |
| break; |
| case MRC_MEM_TEST: |
| /* Write/read then write/read with inverted pattern */ |
| test_num = 4; |
| break; |
| default: |
| DPF(D_INFO, "Unknown parameter for flag: %d\n", flag); |
| return 0xFFFFFFFF; |
| } |
| |
| DPF(D_INFO, "hte_mem_init"); |
| |
| for (i = 0; i < test_num; i++) { |
| DPF(D_INFO, "."); |
| |
| if (i == 0) { |
| msg_port_write(HTE, 0x00020061, 0x00000000); |
| msg_port_write(HTE, 0x00020020, 0x00110010); |
| } else if (i == 1) { |
| msg_port_write(HTE, 0x00020061, 0x00000000); |
| msg_port_write(HTE, 0x00020020, 0x00010010); |
| } else if (i == 2) { |
| msg_port_write(HTE, 0x00020061, 0x00010100); |
| msg_port_write(HTE, 0x00020020, 0x00110010); |
| } else { |
| msg_port_write(HTE, 0x00020061, 0x00010100); |
| msg_port_write(HTE, 0x00020020, 0x00010010); |
| } |
| |
| msg_port_write(HTE, 0x00020011, 0x00111000); |
| msg_port_write(HTE, 0x00020011, 0x00111100); |
| |
| hte_wait_for_complete(); |
| |
| /* If this is a READ pass, check for errors at the end */ |
| if ((i % 2) == 1) { |
| /* Return immediately if error */ |
| if (hte_check_errors()) |
| break; |
| } |
| } |
| |
| DPF(D_INFO, "done\n"); |
| |
| return hte_check_errors(); |
| } |
| |
| /** |
| * Execute a basic single-cache-line memory write/read/verify test using simple |
| * constant pattern, different for READ_TRAIN and WRITE_TRAIN modes. |
| * |
| * @mrc_params: host structure for all MRC global data |
| * @addr: memory adress being tested (must hit specific channel/rank) |
| * @first_run: if set then the HTE registers are configured, otherwise it is |
| * assumed configuration is done and we just re-run the test |
| * @mode: READ_TRAIN or WRITE_TRAIN (the difference is in the pattern) |
| * |
| * @return: byte lane failure on each bit (for Quark only bit0 and bit1) |
| */ |
| u16 hte_basic_write_read(struct mrc_params *mrc_params, u32 addr, |
| u8 first_run, u8 mode) |
| { |
| u16 errors; |
| |
| ENTERFN(); |
| |
| /* Enable all error reporting in preparation for HTE test */ |
| hte_enable_all_errors(); |
| hte_clear_error_regs(); |
| |
| errors = hte_basic_data_cmp(mrc_params, addr, first_run, mode); |
| |
| LEAVEFN(); |
| |
| return errors; |
| } |
| |
| /** |
| * Examine a single-cache-line memory with write/read/verify test using multiple |
| * data patterns (victim-aggressor algorithm). |
| * |
| * @mrc_params: host structure for all MRC global data |
| * @addr: memory adress being tested (must hit specific channel/rank) |
| * @first_run: if set then the HTE registers are configured, otherwise it is |
| * assumed configuration is done and we just re-run the test |
| * |
| * @return: byte lane failure on each bit (for Quark only bit0 and bit1) |
| */ |
| u16 hte_write_stress_bit_lanes(struct mrc_params *mrc_params, |
| u32 addr, u8 first_run) |
| { |
| u16 errors; |
| u8 victim_bit = 0; |
| |
| ENTERFN(); |
| |
| /* Enable all error reporting in preparation for HTE test */ |
| hte_enable_all_errors(); |
| hte_clear_error_regs(); |
| |
| /* |
| * Loop through each bit in the bytelane. |
| * |
| * Each pass creates a victim bit while keeping all other bits the same |
| * as aggressors. AVN HTE adds an auto-rotate feature which allows us |
| * to program the entire victim/aggressor sequence in 1 step. |
| * |
| * The victim bit rotates on each pass so no need to have software |
| * implement a victim bit loop like on VLV. |
| */ |
| errors = hte_rw_data_cmp(mrc_params, addr, HTE_LOOP_CNT, |
| HTE_LFSR_VICTIM_SEED, HTE_LFSR_AGRESSOR_SEED, |
| victim_bit, first_run); |
| |
| LEAVEFN(); |
| |
| return errors; |
| } |
| |
| /** |
| * Execute a basic single-cache-line memory write or read. |
| * This is just for receive enable / fine write-levelling purpose. |
| * |
| * @addr: memory adress being tested (must hit specific channel/rank) |
| * @first_run: if set then the HTE registers are configured, otherwise it is |
| * assumed configuration is done and we just re-run the test |
| * @is_write: when non-zero memory write operation executed, otherwise read |
| */ |
| void hte_mem_op(u32 addr, u8 first_run, u8 is_write) |
| { |
| u32 offset; |
| u32 tmp; |
| |
| hte_enable_all_errors(); |
| hte_clear_error_regs(); |
| |
| if (first_run) { |
| tmp = is_write ? 0x01110021 : 0x01010021; |
| msg_port_write(HTE, 0x00020020, tmp); |
| |
| msg_port_write(HTE, 0x00020021, 0x06000000); |
| msg_port_write(HTE, 0x00020022, addr >> 6); |
| msg_port_write(HTE, 0x00020062, 0x00800015); |
| msg_port_write(HTE, 0x00020063, 0xAAAAAAAA); |
| msg_port_write(HTE, 0x00020064, 0xCCCCCCCC); |
| msg_port_write(HTE, 0x00020065, 0xF0F0F0F0); |
| msg_port_write(HTE, 0x00020061, 0x00030008); |
| |
| for (offset = 0x80; offset <= 0x8F; offset++) |
| msg_port_write(HTE, offset, 0xC33C0000); |
| } |
| |
| msg_port_write(HTE, 0x000200A1, 0xFFFF1000); |
| msg_port_write(HTE, 0x00020011, 0x00011000); |
| msg_port_write(HTE, 0x00020011, 0x00011100); |
| |
| hte_wait_for_complete(); |
| } |