| /* |
| * drivers/mtd/nand/docg4.c |
| * |
| * Copyright (C) 2013 Mike Dunn <mikedunn@newsguy.com> |
| * |
| * This file is released under the terms of GPL v2 and any later version. |
| * See the file COPYING in the root directory of the source tree for details. |
| * |
| * mtd nand driver for M-Systems DiskOnChip G4 |
| * |
| * Tested on the Palm Treo 680. The G4 is also present on Toshiba Portege, Asus |
| * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others. |
| * Should work on these as well. Let me know! |
| * |
| * TODO: |
| * |
| * Mechanism for management of password-protected areas |
| * |
| * Hamming ecc when reading oob only |
| * |
| * According to the M-Sys documentation, this device is also available in a |
| * "dual-die" configuration having a 256MB capacity, but no mechanism for |
| * detecting this variant is documented. Currently this driver assumes 128MB |
| * capacity. |
| * |
| * Support for multiple cascaded devices ("floors"). Not sure which gadgets |
| * contain multiple G4s in a cascaded configuration, if any. |
| * |
| */ |
| |
| |
| #include <common.h> |
| #include <asm/arch/hardware.h> |
| #include <asm/io.h> |
| #include <asm/bitops.h> |
| #include <asm/errno.h> |
| #include <malloc.h> |
| #include <nand.h> |
| #include <linux/bch.h> |
| #include <linux/bitrev.h> |
| #include <linux/mtd/docg4.h> |
| |
| /* |
| * The device has a nop register which M-Sys claims is for the purpose of |
| * inserting precise delays. But beware; at least some operations fail if the |
| * nop writes are replaced with a generic delay! |
| */ |
| static inline void write_nop(void __iomem *docptr) |
| { |
| writew(0, docptr + DOC_NOP); |
| } |
| |
| |
| static int poll_status(void __iomem *docptr) |
| { |
| /* |
| * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL |
| * register. Operations known to take a long time (e.g., block erase) |
| * should sleep for a while before calling this. |
| */ |
| |
| uint8_t flash_status; |
| |
| /* hardware quirk requires reading twice initially */ |
| flash_status = readb(docptr + DOC_FLASHCONTROL); |
| |
| do { |
| flash_status = readb(docptr + DOC_FLASHCONTROL); |
| } while (!(flash_status & DOC_CTRL_FLASHREADY)); |
| |
| return 0; |
| } |
| |
| static void write_addr(void __iomem *docptr, uint32_t docg4_addr) |
| { |
| /* write the four address bytes packed in docg4_addr to the device */ |
| |
| writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); |
| docg4_addr >>= 8; |
| writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); |
| docg4_addr >>= 8; |
| writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); |
| docg4_addr >>= 8; |
| writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); |
| } |
| |
| /* |
| * This is a module parameter in the linux kernel version of this driver. It is |
| * hard-coded to 'off' for u-boot. This driver uses oob to mark bad blocks. |
| * This can be problematic when dealing with data not intended for the mtd/nand |
| * subsystem. For example, on boards that boot from the docg4 and use the IPL |
| * to load an spl + u-boot image, the blocks containing the image will be |
| * reported as "bad" because the oob of the first page of each block contains a |
| * magic number that the IPL looks for, which causes the badblock scan to |
| * erroneously add them to the bad block table. To erase such a block, use |
| * u-boot's 'nand scrub'. scrub is safe for the docg4. The device does have a |
| * factory bad block table, but it is read-only, and is used in conjunction with |
| * oob bad block markers that are written by mtd/nand when a block is deemed to |
| * be bad. To read data from "bad" blocks, use 'read.raw'. Unfortunately, |
| * read.raw does not use ecc, which would still work fine on such misidentified |
| * bad blocks. TODO: u-boot nand utilities need the ability to ignore bad |
| * blocks. |
| */ |
| static const int ignore_badblocks; /* remains false */ |
| |
| struct docg4_priv { |
| int status; |
| struct { |
| unsigned int command; |
| int column; |
| int page; |
| } last_command; |
| uint8_t oob_buf[16]; |
| uint8_t ecc_buf[7]; |
| int oob_page; |
| struct bch_control *bch; |
| }; |
| /* |
| * Oob bytes 0 - 6 are available to the user. |
| * Byte 7 is hamming ecc for first 7 bytes. Bytes 8 - 14 are hw-generated ecc. |
| * Byte 15 (the last) is used by the driver as a "page written" flag. |
| */ |
| static struct nand_ecclayout docg4_oobinfo = { |
| .eccbytes = 9, |
| .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15}, |
| .oobavail = 7, |
| .oobfree = { {0, 7} } |
| }; |
| |
| static void reset(void __iomem *docptr) |
| { |
| /* full device reset */ |
| |
| writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN, docptr + DOC_ASICMODE); |
| writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN), |
| docptr + DOC_ASICMODECONFIRM); |
| write_nop(docptr); |
| |
| writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN, |
| docptr + DOC_ASICMODE); |
| writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN), |
| docptr + DOC_ASICMODECONFIRM); |
| |
| writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1); |
| |
| poll_status(docptr); |
| } |
| |
| static void docg4_select_chip(struct mtd_info *mtd, int chip) |
| { |
| /* |
| * Select among multiple cascaded chips ("floors"). Multiple floors are |
| * not yet supported, so the only valid non-negative value is 0. |
| */ |
| void __iomem *docptr = CONFIG_SYS_NAND_BASE; |
| |
| if (chip < 0) |
| return; /* deselected */ |
| |
| if (chip > 0) |
| printf("multiple floors currently unsupported\n"); |
| |
| writew(0, docptr + DOC_DEVICESELECT); |
| } |
| |
| static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf) |
| { |
| /* read the 7 hw-generated ecc bytes */ |
| |
| int i; |
| for (i = 0; i < 7; i++) { /* hw quirk; read twice */ |
| ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i)); |
| ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i)); |
| } |
| } |
| |
| static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page) |
| { |
| /* |
| * Called after a page read when hardware reports bitflips. |
| * Up to four bitflips can be corrected. |
| */ |
| |
| struct nand_chip *nand = mtd->priv; |
| struct docg4_priv *doc = nand->priv; |
| void __iomem *docptr = CONFIG_SYS_NAND_BASE; |
| int i, numerrs; |
| unsigned int errpos[4]; |
| const uint8_t blank_read_hwecc[8] = { |
| 0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 }; |
| |
| read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */ |
| |
| /* check if read error is due to a blank page */ |
| if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7)) |
| return 0; /* yes */ |
| |
| /* skip additional check of "written flag" if ignore_badblocks */ |
| if (!ignore_badblocks) { |
| /* |
| * If the hw ecc bytes are not those of a blank page, there's |
| * still a chance that the page is blank, but was read with |
| * errors. Check the "written flag" in last oob byte, which |
| * is set to zero when a page is written. If more than half |
| * the bits are set, assume a blank page. Unfortunately, the |
| * bit flips(s) are not reported in stats. |
| */ |
| |
| if (doc->oob_buf[15]) { |
| int bit, numsetbits = 0; |
| unsigned long written_flag = doc->oob_buf[15]; |
| |
| for (bit = 0; bit < 8; bit++) { |
| if (written_flag & 0x01) |
| numsetbits++; |
| written_flag >>= 1; |
| } |
| if (numsetbits > 4) { /* assume blank */ |
| printf("errors in blank page at offset %08x\n", |
| page * DOCG4_PAGE_SIZE); |
| return 0; |
| } |
| } |
| } |
| |
| /* |
| * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch |
| * algorithm is used to decode this. However the hw operates on page |
| * data in a bit order that is the reverse of that of the bch alg, |
| * requiring that the bits be reversed on the result. Thanks to Ivan |
| * Djelic for his analysis! |
| */ |
| for (i = 0; i < 7; i++) |
| doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]); |
| |
| numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL, |
| doc->ecc_buf, NULL, errpos); |
| |
| if (numerrs == -EBADMSG) { |
| printf("uncorrectable errors at offset %08x\n", |
| page * DOCG4_PAGE_SIZE); |
| return -EBADMSG; |
| } |
| |
| BUG_ON(numerrs < 0); /* -EINVAL, or anything other than -EBADMSG */ |
| |
| /* undo last step in BCH alg (modulo mirroring not needed) */ |
| for (i = 0; i < numerrs; i++) |
| errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7)); |
| |
| /* fix the errors */ |
| for (i = 0; i < numerrs; i++) { |
| /* ignore if error within oob ecc bytes */ |
| if (errpos[i] > DOCG4_USERDATA_LEN * 8) |
| continue; |
| |
| /* if error within oob area preceeding ecc bytes... */ |
| if (errpos[i] > DOCG4_PAGE_SIZE * 8) |
| __change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8, |
| (unsigned long *)doc->oob_buf); |
| |
| else /* error in page data */ |
| __change_bit(errpos[i], (unsigned long *)buf); |
| } |
| |
| printf("%d error(s) corrected at offset %08x\n", |
| numerrs, page * DOCG4_PAGE_SIZE); |
| |
| return numerrs; |
| } |
| |
| static int read_progstatus(struct docg4_priv *doc, void __iomem *docptr) |
| { |
| /* |
| * This apparently checks the status of programming. Done after an |
| * erasure, and after page data is written. On error, the status is |
| * saved, to be later retrieved by the nand infrastructure code. |
| */ |
| |
| /* status is read from the I/O reg */ |
| uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA); |
| uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA); |
| uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG); |
| |
| MTDDEBUG(MTD_DEBUG_LEVEL3, "docg4: %s: %02x %02x %02x\n", |
| __func__, status1, status2, status3); |
| |
| if (status1 != DOCG4_PROGSTATUS_GOOD || |
| status2 != DOCG4_PROGSTATUS_GOOD_2 || |
| status3 != DOCG4_PROGSTATUS_GOOD_2) { |
| doc->status = NAND_STATUS_FAIL; |
| printf("read_progstatus failed: %02x, %02x, %02x\n", |
| status1, status2, status3); |
| return -EIO; |
| } |
| return 0; |
| } |
| |
| static int pageprog(struct mtd_info *mtd) |
| { |
| /* |
| * Final step in writing a page. Writes the contents of its |
| * internal buffer out to the flash array, or some such. |
| */ |
| |
| struct nand_chip *nand = mtd->priv; |
| struct docg4_priv *doc = nand->priv; |
| void __iomem *docptr = CONFIG_SYS_NAND_BASE; |
| int retval = 0; |
| |
| MTDDEBUG(MTD_DEBUG_LEVEL3, "docg4: %s\n", __func__); |
| |
| writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE); |
| writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND); |
| write_nop(docptr); |
| write_nop(docptr); |
| |
| /* Just busy-wait; usleep_range() slows things down noticeably. */ |
| poll_status(docptr); |
| |
| writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE); |
| writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND); |
| writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0); |
| write_nop(docptr); |
| write_nop(docptr); |
| write_nop(docptr); |
| write_nop(docptr); |
| write_nop(docptr); |
| |
| retval = read_progstatus(doc, docptr); |
| writew(0, docptr + DOC_DATAEND); |
| write_nop(docptr); |
| poll_status(docptr); |
| write_nop(docptr); |
| |
| return retval; |
| } |
| |
| static void sequence_reset(void __iomem *docptr) |
| { |
| /* common starting sequence for all operations */ |
| |
| writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL); |
| writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE); |
| writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND); |
| write_nop(docptr); |
| write_nop(docptr); |
| poll_status(docptr); |
| write_nop(docptr); |
| } |
| |
| static void read_page_prologue(void __iomem *docptr, uint32_t docg4_addr) |
| { |
| /* first step in reading a page */ |
| |
| sequence_reset(docptr); |
| |
| writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE); |
| writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND); |
| write_nop(docptr); |
| |
| write_addr(docptr, docg4_addr); |
| |
| write_nop(docptr); |
| writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND); |
| write_nop(docptr); |
| write_nop(docptr); |
| |
| poll_status(docptr); |
| } |
| |
| static void write_page_prologue(void __iomem *docptr, uint32_t docg4_addr) |
| { |
| /* first step in writing a page */ |
| |
| sequence_reset(docptr); |
| writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE); |
| writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND); |
| write_nop(docptr); |
| write_addr(docptr, docg4_addr); |
| write_nop(docptr); |
| write_nop(docptr); |
| poll_status(docptr); |
| } |
| |
| static uint32_t mtd_to_docg4_address(int page, int column) |
| { |
| /* |
| * Convert mtd address to format used by the device, 32 bit packed. |
| * |
| * Some notes on G4 addressing... The M-Sys documentation on this device |
| * claims that pages are 2K in length, and indeed, the format of the |
| * address used by the device reflects that. But within each page are |
| * four 512 byte "sub-pages", each with its own oob data that is |
| * read/written immediately after the 512 bytes of page data. This oob |
| * data contains the ecc bytes for the preceeding 512 bytes. |
| * |
| * Rather than tell the mtd nand infrastructure that page size is 2k, |
| * with four sub-pages each, we engage in a little subterfuge and tell |
| * the infrastructure code that pages are 512 bytes in size. This is |
| * done because during the course of reverse-engineering the device, I |
| * never observed an instance where an entire 2K "page" was read or |
| * written as a unit. Each "sub-page" is always addressed individually, |
| * its data read/written, and ecc handled before the next "sub-page" is |
| * addressed. |
| * |
| * This requires us to convert addresses passed by the mtd nand |
| * infrastructure code to those used by the device. |
| * |
| * The address that is written to the device consists of four bytes: the |
| * first two are the 2k page number, and the second is the index into |
| * the page. The index is in terms of 16-bit half-words and includes |
| * the preceeding oob data, so e.g., the index into the second |
| * "sub-page" is 0x108, and the full device address of the start of mtd |
| * page 0x201 is 0x00800108. |
| */ |
| int g4_page = page / 4; /* device's 2K page */ |
| int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */ |
| return (g4_page << 16) | g4_index; /* pack */ |
| } |
| |
| static void docg4_command(struct mtd_info *mtd, unsigned command, int column, |
| int page_addr) |
| { |
| /* handle standard nand commands */ |
| |
| struct nand_chip *nand = mtd->priv; |
| struct docg4_priv *doc = nand->priv; |
| uint32_t g4_addr = mtd_to_docg4_address(page_addr, column); |
| |
| MTDDEBUG(MTD_DEBUG_LEVEL3, "%s %x, page_addr=%x, column=%x\n", |
| __func__, command, page_addr, column); |
| |
| /* |
| * Save the command and its arguments. This enables emulation of |
| * standard flash devices, and also some optimizations. |
| */ |
| doc->last_command.command = command; |
| doc->last_command.column = column; |
| doc->last_command.page = page_addr; |
| |
| switch (command) { |
| case NAND_CMD_RESET: |
| reset(CONFIG_SYS_NAND_BASE); |
| break; |
| |
| case NAND_CMD_READ0: |
| read_page_prologue(CONFIG_SYS_NAND_BASE, g4_addr); |
| break; |
| |
| case NAND_CMD_STATUS: |
| /* next call to read_byte() will expect a status */ |
| break; |
| |
| case NAND_CMD_SEQIN: |
| write_page_prologue(CONFIG_SYS_NAND_BASE, g4_addr); |
| |
| /* hack for deferred write of oob bytes */ |
| if (doc->oob_page == page_addr) |
| memcpy(nand->oob_poi, doc->oob_buf, 16); |
| break; |
| |
| case NAND_CMD_PAGEPROG: |
| pageprog(mtd); |
| break; |
| |
| /* we don't expect these, based on review of nand_base.c */ |
| case NAND_CMD_READOOB: |
| case NAND_CMD_READID: |
| case NAND_CMD_ERASE1: |
| case NAND_CMD_ERASE2: |
| printf("docg4_command: unexpected nand command 0x%x\n", |
| command); |
| break; |
| } |
| } |
| |
| static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| { |
| int i; |
| struct nand_chip *nand = mtd->priv; |
| uint16_t *p = (uint16_t *)buf; |
| len >>= 1; |
| |
| for (i = 0; i < len; i++) |
| p[i] = readw(nand->IO_ADDR_R); |
| } |
| |
| static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand, |
| int page, int sndcmd) |
| { |
| struct docg4_priv *doc = nand->priv; |
| void __iomem *docptr = CONFIG_SYS_NAND_BASE; |
| uint16_t status; |
| |
| MTDDEBUG(MTD_DEBUG_LEVEL3, "%s: page %x\n", __func__, page); |
| |
| /* |
| * Oob bytes are read as part of a normal page read. If the previous |
| * nand command was a read of the page whose oob is now being read, just |
| * copy the oob bytes that we saved in a local buffer and avoid a |
| * separate oob read. |
| */ |
| if (doc->last_command.command == NAND_CMD_READ0 && |
| doc->last_command.page == page) { |
| memcpy(nand->oob_poi, doc->oob_buf, 16); |
| return 0; |
| } |
| |
| /* |
| * Separate read of oob data only. |
| */ |
| docg4_command(mtd, NAND_CMD_READ0, nand->ecc.size, page); |
| |
| writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0); |
| write_nop(docptr); |
| write_nop(docptr); |
| write_nop(docptr); |
| write_nop(docptr); |
| write_nop(docptr); |
| |
| /* the 1st byte from the I/O reg is a status; the rest is oob data */ |
| status = readw(docptr + DOC_IOSPACE_DATA); |
| if (status & DOCG4_READ_ERROR) { |
| printf("docg4_read_oob failed: status = 0x%02x\n", status); |
| return -EIO; |
| } |
| |
| MTDDEBUG(MTD_DEBUG_LEVEL3, "%s: status = 0x%x\n", __func__, status); |
| |
| docg4_read_buf(mtd, nand->oob_poi, 16); |
| |
| write_nop(docptr); |
| write_nop(docptr); |
| write_nop(docptr); |
| writew(0, docptr + DOC_DATAEND); |
| write_nop(docptr); |
| |
| return 0; |
| } |
| |
| static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand, |
| int page) |
| { |
| /* |
| * Writing oob-only is not really supported, because MLC nand must write |
| * oob bytes at the same time as page data. Nonetheless, we save the |
| * oob buffer contents here, and then write it along with the page data |
| * if the same page is subsequently written. This allows user space |
| * utilities that write the oob data prior to the page data to work |
| * (e.g., nandwrite). The disdvantage is that, if the intention was to |
| * write oob only, the operation is quietly ignored. Also, oob can get |
| * corrupted if two concurrent processes are running nandwrite. |
| */ |
| |
| /* note that bytes 7..14 are hw generated hamming/ecc and overwritten */ |
| struct docg4_priv *doc = nand->priv; |
| doc->oob_page = page; |
| memcpy(doc->oob_buf, nand->oob_poi, 16); |
| return 0; |
| } |
| |
| static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs, int getchip) |
| { |
| /* only called when module_param ignore_badblocks is set */ |
| return 0; |
| } |
| |
| static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) |
| { |
| int i; |
| struct nand_chip *nand = mtd->priv; |
| uint16_t *p = (uint16_t *)buf; |
| len >>= 1; |
| |
| for (i = 0; i < len; i++) |
| writew(p[i], nand->IO_ADDR_W); |
| } |
| |
| static void write_page(struct mtd_info *mtd, struct nand_chip *nand, |
| const uint8_t *buf, int use_ecc) |
| { |
| void __iomem *docptr = CONFIG_SYS_NAND_BASE; |
| uint8_t ecc_buf[8]; |
| |
| writew(DOC_ECCCONF0_ECC_ENABLE | |
| DOC_ECCCONF0_UNKNOWN | |
| DOCG4_BCH_SIZE, |
| docptr + DOC_ECCCONF0); |
| write_nop(docptr); |
| |
| /* write the page data */ |
| docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE); |
| |
| /* oob bytes 0 through 5 are written to I/O reg */ |
| docg4_write_buf16(mtd, nand->oob_poi, 6); |
| |
| /* oob byte 6 written to a separate reg */ |
| writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7); |
| |
| write_nop(docptr); |
| write_nop(docptr); |
| |
| /* write hw-generated ecc bytes to oob */ |
| if (likely(use_ecc)) { |
| /* oob byte 7 is hamming code */ |
| uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY); |
| hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */ |
| writew(hamming, docptr + DOCG4_OOB_6_7); |
| write_nop(docptr); |
| |
| /* read the 7 bch bytes from ecc regs */ |
| read_hw_ecc(docptr, ecc_buf); |
| ecc_buf[7] = 0; /* clear the "page written" flag */ |
| } |
| |
| /* write user-supplied bytes to oob */ |
| else { |
| writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7); |
| write_nop(docptr); |
| memcpy(ecc_buf, &nand->oob_poi[8], 8); |
| } |
| |
| docg4_write_buf16(mtd, ecc_buf, 8); |
| write_nop(docptr); |
| write_nop(docptr); |
| writew(0, docptr + DOC_DATAEND); |
| write_nop(docptr); |
| } |
| |
| static void docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand, |
| const uint8_t *buf) |
| { |
| return write_page(mtd, nand, buf, 0); |
| } |
| |
| static void docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand, |
| const uint8_t *buf) |
| { |
| return write_page(mtd, nand, buf, 1); |
| } |
| |
| static int read_page(struct mtd_info *mtd, struct nand_chip *nand, |
| uint8_t *buf, int page, int use_ecc) |
| { |
| struct docg4_priv *doc = nand->priv; |
| void __iomem *docptr = CONFIG_SYS_NAND_BASE; |
| uint16_t status, edc_err, *buf16; |
| |
| writew(DOC_ECCCONF0_READ_MODE | |
| DOC_ECCCONF0_ECC_ENABLE | |
| DOC_ECCCONF0_UNKNOWN | |
| DOCG4_BCH_SIZE, |
| docptr + DOC_ECCCONF0); |
| write_nop(docptr); |
| write_nop(docptr); |
| write_nop(docptr); |
| write_nop(docptr); |
| write_nop(docptr); |
| |
| /* the 1st byte from the I/O reg is a status; the rest is page data */ |
| status = readw(docptr + DOC_IOSPACE_DATA); |
| if (status & DOCG4_READ_ERROR) { |
| printf("docg4_read_page: bad status: 0x%02x\n", status); |
| writew(0, docptr + DOC_DATAEND); |
| return -EIO; |
| } |
| |
| docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */ |
| |
| /* first 14 oob bytes read from I/O reg */ |
| docg4_read_buf(mtd, nand->oob_poi, 14); |
| |
| /* last 2 read from another reg */ |
| buf16 = (uint16_t *)(nand->oob_poi + 14); |
| *buf16 = readw(docptr + DOCG4_MYSTERY_REG); |
| |
| /* |
| * Diskonchips read oob immediately after a page read. Mtd |
| * infrastructure issues a separate command for reading oob after the |
| * page is read. So we save the oob bytes in a local buffer and just |
| * copy it if the next command reads oob from the same page. |
| */ |
| memcpy(doc->oob_buf, nand->oob_poi, 16); |
| |
| write_nop(docptr); |
| |
| if (likely(use_ecc)) { |
| /* read the register that tells us if bitflip(s) detected */ |
| edc_err = readw(docptr + DOC_ECCCONF1); |
| edc_err = readw(docptr + DOC_ECCCONF1); |
| |
| /* If bitflips are reported, attempt to correct with ecc */ |
| if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) { |
| int bits_corrected = correct_data(mtd, buf, page); |
| if (bits_corrected == -EBADMSG) |
| mtd->ecc_stats.failed++; |
| else |
| mtd->ecc_stats.corrected += bits_corrected; |
| } |
| } |
| |
| writew(0, docptr + DOC_DATAEND); |
| return 0; |
| } |
| |
| |
| static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand, |
| uint8_t *buf, int page) |
| { |
| return read_page(mtd, nand, buf, page, 0); |
| } |
| |
| static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand, |
| uint8_t *buf, int page) |
| { |
| return read_page(mtd, nand, buf, page, 1); |
| } |
| |
| static void docg4_erase_block(struct mtd_info *mtd, int page) |
| { |
| struct nand_chip *nand = mtd->priv; |
| struct docg4_priv *doc = nand->priv; |
| void __iomem *docptr = CONFIG_SYS_NAND_BASE; |
| uint16_t g4_page; |
| |
| MTDDEBUG(MTD_DEBUG_LEVEL3, "%s: page %04x\n", __func__, page); |
| |
| sequence_reset(docptr); |
| |
| writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE); |
| writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND); |
| write_nop(docptr); |
| |
| /* only 2 bytes of address are written to specify erase block */ |
| g4_page = (uint16_t)(page / 4); /* to g4's 2k page addressing */ |
| writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS); |
| g4_page >>= 8; |
| writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS); |
| write_nop(docptr); |
| |
| /* start the erasure */ |
| writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND); |
| write_nop(docptr); |
| write_nop(docptr); |
| |
| poll_status(docptr); |
| writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE); |
| writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND); |
| writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0); |
| write_nop(docptr); |
| write_nop(docptr); |
| write_nop(docptr); |
| write_nop(docptr); |
| write_nop(docptr); |
| |
| read_progstatus(doc, docptr); |
| |
| writew(0, docptr + DOC_DATAEND); |
| write_nop(docptr); |
| poll_status(docptr); |
| write_nop(docptr); |
| } |
| |
| static int read_factory_bbt(struct mtd_info *mtd) |
| { |
| /* |
| * The device contains a read-only factory bad block table. Read it and |
| * update the memory-based bbt accordingly. |
| */ |
| |
| struct nand_chip *nand = mtd->priv; |
| uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0); |
| uint8_t *buf; |
| int i, block, status; |
| |
| buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL); |
| if (buf == NULL) |
| return -ENOMEM; |
| |
| read_page_prologue(CONFIG_SYS_NAND_BASE, g4_addr); |
| status = docg4_read_page(mtd, nand, buf, DOCG4_FACTORY_BBT_PAGE); |
| if (status) |
| goto exit; |
| |
| /* |
| * If no memory-based bbt was created, exit. This will happen if module |
| * parameter ignore_badblocks is set. Then why even call this function? |
| * For an unknown reason, block erase always fails if it's the first |
| * operation after device power-up. The above read ensures it never is. |
| * Ugly, I know. |
| */ |
| if (nand->bbt == NULL) /* no memory-based bbt */ |
| goto exit; |
| |
| /* |
| * Parse factory bbt and update memory-based bbt. Factory bbt format is |
| * simple: one bit per block, block numbers increase left to right (msb |
| * to lsb). Bit clear means bad block. |
| */ |
| for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) { |
| int bitnum; |
| uint8_t mask; |
| for (bitnum = 0, mask = 0x80; |
| bitnum < 8; bitnum++, mask >>= 1) { |
| if (!(buf[i] & mask)) { |
| int badblock = block + bitnum; |
| nand->bbt[badblock / 4] |= |
| 0x03 << ((badblock % 4) * 2); |
| mtd->ecc_stats.badblocks++; |
| printf("factory-marked bad block: %d\n", |
| badblock); |
| } |
| } |
| } |
| exit: |
| kfree(buf); |
| return status; |
| } |
| |
| static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs) |
| { |
| /* |
| * Mark a block as bad. Bad blocks are marked in the oob area of the |
| * first page of the block. The default scan_bbt() in the nand |
| * infrastructure code works fine for building the memory-based bbt |
| * during initialization, as does the nand infrastructure function that |
| * checks if a block is bad by reading the bbt. This function replaces |
| * the nand default because writes to oob-only are not supported. |
| */ |
| |
| int ret, i; |
| uint8_t *buf; |
| struct nand_chip *nand = mtd->priv; |
| struct nand_bbt_descr *bbtd = nand->badblock_pattern; |
| int block = (int)(ofs >> nand->bbt_erase_shift); |
| int page = (int)(ofs >> nand->page_shift); |
| uint32_t g4_addr = mtd_to_docg4_address(page, 0); |
| |
| MTDDEBUG(MTD_DEBUG_LEVEL3, "%s: %08llx\n", __func__, ofs); |
| |
| if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1))) |
| printf("%s: ofs %llx not start of block!\n", |
| __func__, ofs); |
| |
| /* allocate blank buffer for page data */ |
| buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL); |
| if (buf == NULL) |
| return -ENOMEM; |
| |
| /* update bbt in memory */ |
| nand->bbt[block / 4] |= 0x01 << ((block & 0x03) * 2); |
| |
| /* write bit-wise negation of pattern to oob buffer */ |
| memset(nand->oob_poi, 0xff, mtd->oobsize); |
| for (i = 0; i < bbtd->len; i++) |
| nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i]; |
| |
| /* write first page of block */ |
| write_page_prologue(CONFIG_SYS_NAND_BASE, g4_addr); |
| docg4_write_page(mtd, nand, buf); |
| ret = pageprog(mtd); |
| if (!ret) |
| mtd->ecc_stats.badblocks++; |
| |
| kfree(buf); |
| |
| return ret; |
| } |
| |
| static uint8_t docg4_read_byte(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand = mtd->priv; |
| struct docg4_priv *doc = nand->priv; |
| |
| MTDDEBUG(MTD_DEBUG_LEVEL3, "%s\n", __func__); |
| |
| if (doc->last_command.command == NAND_CMD_STATUS) { |
| int status; |
| |
| /* |
| * Previous nand command was status request, so nand |
| * infrastructure code expects to read the status here. If an |
| * error occurred in a previous operation, report it. |
| */ |
| doc->last_command.command = 0; |
| |
| if (doc->status) { |
| status = doc->status; |
| doc->status = 0; |
| } |
| |
| /* why is NAND_STATUS_WP inverse logic?? */ |
| else |
| status = NAND_STATUS_WP | NAND_STATUS_READY; |
| |
| return status; |
| } |
| |
| printf("unexpectd call to read_byte()\n"); |
| |
| return 0; |
| } |
| |
| static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand) |
| { |
| struct docg4_priv *doc = nand->priv; |
| int status = NAND_STATUS_WP; /* inverse logic?? */ |
| MTDDEBUG(MTD_DEBUG_LEVEL3, "%s...\n", __func__); |
| |
| /* report any previously unreported error */ |
| if (doc->status) { |
| status |= doc->status; |
| doc->status = 0; |
| return status; |
| } |
| |
| status |= poll_status(CONFIG_SYS_NAND_BASE); |
| return status; |
| } |
| |
| int docg4_nand_init(struct mtd_info *mtd, struct nand_chip *nand, int devnum) |
| { |
| uint16_t id1, id2; |
| struct docg4_priv *docg4; |
| int retval; |
| |
| docg4 = kzalloc(sizeof(*docg4), GFP_KERNEL); |
| if (!docg4) |
| return -1; |
| |
| mtd->priv = nand; |
| nand->priv = docg4; |
| |
| /* These must be initialized here because the docg4 is non-standard |
| * and doesn't produce an id that the nand code can use to look up |
| * these values (nand_scan_ident() not called). |
| */ |
| mtd->size = DOCG4_CHIP_SIZE; |
| mtd->name = "Msys_Diskonchip_G4"; |
| mtd->writesize = DOCG4_PAGE_SIZE; |
| mtd->erasesize = DOCG4_BLOCK_SIZE; |
| mtd->oobsize = DOCG4_OOB_SIZE; |
| |
| nand->IO_ADDR_R = |
| (void __iomem *)CONFIG_SYS_NAND_BASE + DOC_IOSPACE_DATA; |
| nand->IO_ADDR_W = nand->IO_ADDR_R; |
| nand->chipsize = DOCG4_CHIP_SIZE; |
| nand->chip_shift = DOCG4_CHIP_SHIFT; |
| nand->bbt_erase_shift = DOCG4_ERASE_SHIFT; |
| nand->phys_erase_shift = DOCG4_ERASE_SHIFT; |
| nand->chip_delay = 20; |
| nand->page_shift = DOCG4_PAGE_SHIFT; |
| nand->pagemask = 0x3ffff; |
| nand->badblockpos = NAND_LARGE_BADBLOCK_POS; |
| nand->badblockbits = 8; |
| nand->ecc.layout = &docg4_oobinfo; |
| nand->ecc.mode = NAND_ECC_HW_SYNDROME; |
| nand->ecc.size = DOCG4_PAGE_SIZE; |
| nand->ecc.prepad = 8; |
| nand->ecc.bytes = 8; |
| nand->options = |
| NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE | NAND_NO_AUTOINCR; |
| nand->controller = &nand->hwcontrol; |
| |
| /* methods */ |
| nand->cmdfunc = docg4_command; |
| nand->waitfunc = docg4_wait; |
| nand->select_chip = docg4_select_chip; |
| nand->read_byte = docg4_read_byte; |
| nand->block_markbad = docg4_block_markbad; |
| nand->read_buf = docg4_read_buf; |
| nand->write_buf = docg4_write_buf16; |
| nand->scan_bbt = nand_default_bbt; |
| nand->erase_cmd = docg4_erase_block; |
| nand->ecc.read_page = docg4_read_page; |
| nand->ecc.write_page = docg4_write_page; |
| nand->ecc.read_page_raw = docg4_read_page_raw; |
| nand->ecc.write_page_raw = docg4_write_page_raw; |
| nand->ecc.read_oob = docg4_read_oob; |
| nand->ecc.write_oob = docg4_write_oob; |
| |
| /* |
| * The way the nand infrastructure code is written, a memory-based bbt |
| * is not created if NAND_SKIP_BBTSCAN is set. With no memory bbt, |
| * nand->block_bad() is used. So when ignoring bad blocks, we skip the |
| * scan and define a dummy block_bad() which always returns 0. |
| */ |
| if (ignore_badblocks) { |
| nand->options |= NAND_SKIP_BBTSCAN; |
| nand->block_bad = docg4_block_neverbad; |
| } |
| |
| reset(CONFIG_SYS_NAND_BASE); |
| |
| /* check for presence of g4 chip by reading id registers */ |
| id1 = readw(CONFIG_SYS_NAND_BASE + DOC_CHIPID); |
| id1 = readw(CONFIG_SYS_NAND_BASE + DOCG4_MYSTERY_REG); |
| id2 = readw(CONFIG_SYS_NAND_BASE + DOC_CHIPID_INV); |
| id2 = readw(CONFIG_SYS_NAND_BASE + DOCG4_MYSTERY_REG); |
| if (id1 != DOCG4_IDREG1_VALUE || id2 != DOCG4_IDREG2_VALUE) |
| return -1; |
| |
| /* initialize bch algorithm */ |
| docg4->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY); |
| if (docg4->bch == NULL) |
| return -1; |
| |
| retval = nand_scan_tail(mtd); |
| if (retval) |
| return -1; |
| |
| /* |
| * Scan for bad blocks and create bbt here, then add the factory-marked |
| * bad blocks to the bbt. |
| */ |
| nand->scan_bbt(mtd); |
| nand->options |= NAND_BBT_SCANNED; |
| retval = read_factory_bbt(mtd); |
| if (retval) |
| return -1; |
| |
| retval = nand_register(devnum); |
| if (retval) |
| return -1; |
| |
| return 0; |
| } |