| /* |
| * Copyright (C) 2006 by Bryan O'Donoghue, CodeHermit |
| * bodonoghue@CodeHermit.ie |
| * |
| * References |
| * DasUBoot/drivers/usb/gadget/omap1510_udc.c, for design and implementation |
| * ideas. |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| /* |
| * Notes : |
| * 1. #define __SIMULATE_ERROR__ to inject a CRC error into every 2nd TX |
| * packet to force the USB re-transmit protocol. |
| * |
| * 2. #define __DEBUG_UDC__ to switch on debug tracing to serial console |
| * be careful that tracing doesn't create Hiesen-bugs with respect to |
| * response timeouts to control requests. |
| * |
| * 3. This driver should be able to support any higher level driver that |
| * that wants to do either of the two standard UDC implementations |
| * Control-Bulk-Interrupt or Bulk-IN/Bulk-Out standards. Hence |
| * gserial and cdc_acm should work with this code. |
| * |
| * 4. NAK events never actually get raised at all, the documentation |
| * is just wrong ! |
| * |
| * 5. For some reason, cbd_datlen is *always* +2 the value it should be. |
| * this means that having an RX cbd of 16 bytes is not possible, since |
| * the same size is reported for 14 bytes received as 16 bytes received |
| * until we can find out why this happens, RX cbds must be limited to 8 |
| * bytes. TODO: check errata for this behaviour. |
| * |
| * 6. Right now this code doesn't support properly powering up with the USB |
| * cable attached to the USB host my development board the Adder87x doesn't |
| * have a pull-up fitted to allow this, so it is necessary to power the |
| * board and *then* attached the USB cable to the host. However somebody |
| * with a different design in their board may be able to keep the cable |
| * constantly connected and simply enable/disable a pull-up re |
| * figure 31.1 in MPC885RM.pdf instead of having to power up the board and |
| * then attach the cable ! |
| * |
| */ |
| #include <common.h> |
| #include <config.h> |
| #include <commproc.h> |
| #include <usbdevice.h> |
| #include <usb/mpc8xx_udc.h> |
| #include <usb/udc.h> |
| |
| #include "ep0.h" |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| #define ERR(fmt, args...)\ |
| serial_printf("ERROR : [%s] %s:%d: "fmt,\ |
| __FILE__,__FUNCTION__,__LINE__, ##args) |
| #ifdef __DEBUG_UDC__ |
| #define DBG(fmt,args...)\ |
| serial_printf("[%s] %s:%d: "fmt,\ |
| __FILE__,__FUNCTION__,__LINE__, ##args) |
| #else |
| #define DBG(fmt,args...) |
| #endif |
| |
| /* Static Data */ |
| #ifdef __SIMULATE_ERROR__ |
| static char err_poison_test = 0; |
| #endif |
| static struct mpc8xx_ep ep_ref[MAX_ENDPOINTS]; |
| static u32 address_base = STATE_NOT_READY; |
| static mpc8xx_udc_state_t udc_state = 0; |
| static struct usb_device_instance *udc_device = 0; |
| static volatile usb_epb_t *endpoints[MAX_ENDPOINTS]; |
| static volatile cbd_t *tx_cbd[TX_RING_SIZE]; |
| static volatile cbd_t *rx_cbd[RX_RING_SIZE]; |
| static volatile immap_t *immr = 0; |
| static volatile cpm8xx_t *cp = 0; |
| static volatile usb_pram_t *usb_paramp = 0; |
| static volatile usb_t *usbp = 0; |
| static int rx_ct = 0; |
| static int tx_ct = 0; |
| |
| /* Static Function Declarations */ |
| static void mpc8xx_udc_state_transition_up (usb_device_state_t initial, |
| usb_device_state_t final); |
| static void mpc8xx_udc_state_transition_down (usb_device_state_t initial, |
| usb_device_state_t final); |
| static void mpc8xx_udc_stall (unsigned int ep); |
| static void mpc8xx_udc_flush_tx_fifo (int epid); |
| static void mpc8xx_udc_flush_rx_fifo (void); |
| static void mpc8xx_udc_clear_rxbd (volatile cbd_t * rx_cbdp); |
| static void mpc8xx_udc_init_tx (struct usb_endpoint_instance *epi, |
| struct urb *tx_urb); |
| static void mpc8xx_udc_dump_request (struct usb_device_request *request); |
| static void mpc8xx_udc_clock_init (volatile immap_t * immr, |
| volatile cpm8xx_t * cp); |
| static int mpc8xx_udc_ep_tx (struct usb_endpoint_instance *epi); |
| static int mpc8xx_udc_epn_rx (unsigned int epid, volatile cbd_t * rx_cbdp); |
| static void mpc8xx_udc_ep0_rx (volatile cbd_t * rx_cbdp); |
| static void mpc8xx_udc_cbd_init (void); |
| static void mpc8xx_udc_endpoint_init (void); |
| static void mpc8xx_udc_cbd_attach (int ep, uchar tx_size, uchar rx_size); |
| static u32 mpc8xx_udc_alloc (u32 data_size, u32 alignment); |
| static int mpc8xx_udc_ep0_rx_setup (volatile cbd_t * rx_cbdp); |
| static void mpc8xx_udc_set_nak (unsigned int ep); |
| static short mpc8xx_udc_handle_txerr (void); |
| static void mpc8xx_udc_advance_rx (volatile cbd_t ** rx_cbdp, int epid); |
| |
| /****************************************************************************** |
| Global Linkage |
| *****************************************************************************/ |
| |
| /* udc_init |
| * |
| * Do initial bus gluing |
| */ |
| int udc_init (void) |
| { |
| /* Init various pointers */ |
| immr = (immap_t *) CONFIG_SYS_IMMR; |
| cp = (cpm8xx_t *) & (immr->im_cpm); |
| usb_paramp = (usb_pram_t *) & (cp->cp_dparam[PROFF_USB]); |
| usbp = (usb_t *) & (cp->cp_scc[0]); |
| |
| memset (ep_ref, 0x00, (sizeof (struct mpc8xx_ep) * MAX_ENDPOINTS)); |
| |
| udc_device = 0; |
| udc_state = STATE_NOT_READY; |
| |
| usbp->usmod = 0x00; |
| usbp->uscom = 0; |
| |
| /* Set USB Frame #0, Respond at Address & Get a clock source */ |
| usbp->usaddr = 0x00; |
| mpc8xx_udc_clock_init (immr, cp); |
| |
| /* PA15, PA14 as perhiperal USBRXD and USBOE */ |
| immr->im_ioport.iop_padir &= ~0x0003; |
| immr->im_ioport.iop_papar |= 0x0003; |
| |
| /* PC11/PC10 as peripheral USBRXP USBRXN */ |
| immr->im_ioport.iop_pcso |= 0x0030; |
| |
| /* PC7/PC6 as perhiperal USBTXP and USBTXN */ |
| immr->im_ioport.iop_pcdir |= 0x0300; |
| immr->im_ioport.iop_pcpar |= 0x0300; |
| |
| /* Set the base address */ |
| address_base = (u32) (cp->cp_dpmem + CPM_USB_BASE); |
| |
| /* Initialise endpoints and circular buffers */ |
| mpc8xx_udc_endpoint_init (); |
| mpc8xx_udc_cbd_init (); |
| |
| /* Assign allocated Dual Port Endpoint descriptors */ |
| usb_paramp->ep0ptr = (u32) endpoints[0]; |
| usb_paramp->ep1ptr = (u32) endpoints[1]; |
| usb_paramp->ep2ptr = (u32) endpoints[2]; |
| usb_paramp->ep3ptr = (u32) endpoints[3]; |
| usb_paramp->frame_n = 0; |
| |
| DBG ("ep0ptr=0x%08x ep1ptr=0x%08x ep2ptr=0x%08x ep3ptr=0x%08x\n", |
| usb_paramp->ep0ptr, usb_paramp->ep1ptr, usb_paramp->ep2ptr, |
| usb_paramp->ep3ptr); |
| |
| return 0; |
| } |
| |
| /* udc_irq |
| * |
| * Poll for whatever events may have occured |
| */ |
| void udc_irq (void) |
| { |
| int epid = 0; |
| volatile cbd_t *rx_cbdp = 0; |
| volatile cbd_t *rx_cbdp_base = 0; |
| |
| if (udc_state != STATE_READY) { |
| return; |
| } |
| |
| if (usbp->usber & USB_E_BSY) { |
| /* This shouldn't happen. If it does then it's a bug ! */ |
| usbp->usber |= USB_E_BSY; |
| mpc8xx_udc_flush_rx_fifo (); |
| } |
| |
| /* Scan all RX/Bidirectional Endpoints for RX data. */ |
| for (epid = 0; epid < MAX_ENDPOINTS; epid++) { |
| if (!ep_ref[epid].prx) { |
| continue; |
| } |
| rx_cbdp = rx_cbdp_base = ep_ref[epid].prx; |
| |
| do { |
| if (!(rx_cbdp->cbd_sc & RX_BD_E)) { |
| |
| if (rx_cbdp->cbd_sc & 0x1F) { |
| /* Corrupt data discard it. |
| * Controller has NAK'd this packet. |
| */ |
| mpc8xx_udc_clear_rxbd (rx_cbdp); |
| |
| } else { |
| if (!epid) { |
| mpc8xx_udc_ep0_rx (rx_cbdp); |
| |
| } else { |
| /* Process data */ |
| mpc8xx_udc_set_nak (epid); |
| mpc8xx_udc_epn_rx (epid, rx_cbdp); |
| mpc8xx_udc_clear_rxbd (rx_cbdp); |
| } |
| } |
| |
| /* Advance RX CBD pointer */ |
| mpc8xx_udc_advance_rx (&rx_cbdp, epid); |
| ep_ref[epid].prx = rx_cbdp; |
| } else { |
| /* Advance RX CBD pointer */ |
| mpc8xx_udc_advance_rx (&rx_cbdp, epid); |
| } |
| |
| } while (rx_cbdp != rx_cbdp_base); |
| } |
| |
| /* Handle TX events as appropiate, the correct place to do this is |
| * in a tx routine. Perhaps TX on epn was pre-empted by ep0 |
| */ |
| |
| if (usbp->usber & USB_E_TXB) { |
| usbp->usber |= USB_E_TXB; |
| } |
| |
| if (usbp->usber & (USB_TX_ERRMASK)) { |
| mpc8xx_udc_handle_txerr (); |
| } |
| |
| /* Switch to the default state, respond at the default address */ |
| if (usbp->usber & USB_E_RESET) { |
| usbp->usber |= USB_E_RESET; |
| usbp->usaddr = 0x00; |
| udc_device->device_state = STATE_DEFAULT; |
| } |
| |
| /* if(usbp->usber&USB_E_IDLE){ |
| We could suspend here ! |
| usbp->usber|=USB_E_IDLE; |
| DBG("idle state change\n"); |
| } |
| if(usbp->usbs){ |
| We could resume here when IDLE is deasserted ! |
| Not worth doing, so long as we are self powered though. |
| } |
| */ |
| |
| return; |
| } |
| |
| /* udc_endpoint_write |
| * |
| * Write some data to an endpoint |
| */ |
| int udc_endpoint_write (struct usb_endpoint_instance *epi) |
| { |
| int ep = 0; |
| short epid = 1, unnak = 0, ret = 0; |
| |
| if (udc_state != STATE_READY) { |
| ERR ("invalid udc_state != STATE_READY!\n"); |
| return -1; |
| } |
| |
| if (!udc_device || !epi) { |
| return -1; |
| } |
| |
| if (udc_device->device_state != STATE_CONFIGURED) { |
| return -1; |
| } |
| |
| ep = epi->endpoint_address & 0x03; |
| if (ep >= MAX_ENDPOINTS) { |
| return -1; |
| } |
| |
| /* Set NAK for all RX endpoints during TX */ |
| for (epid = 1; epid < MAX_ENDPOINTS; epid++) { |
| |
| /* Don't set NAK on DATA IN/CONTROL endpoints */ |
| if (ep_ref[epid].sc & USB_DIR_IN) { |
| continue; |
| } |
| |
| if (!(usbp->usep[epid] & (USEP_THS_NAK | USEP_RHS_NAK))) { |
| unnak |= 1 << epid; |
| } |
| |
| mpc8xx_udc_set_nak (epid); |
| } |
| |
| mpc8xx_udc_init_tx (&udc_device->bus->endpoint_array[ep], |
| epi->tx_urb); |
| ret = mpc8xx_udc_ep_tx (&udc_device->bus->endpoint_array[ep]); |
| |
| /* Remove temporary NAK */ |
| for (epid = 1; epid < MAX_ENDPOINTS; epid++) { |
| if (unnak & (1 << epid)) { |
| udc_unset_nak (epid); |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* mpc8xx_udc_assign_urb |
| * |
| * Associate a given urb to an endpoint TX or RX transmit/receive buffers |
| */ |
| static int mpc8xx_udc_assign_urb (int ep, char direction) |
| { |
| struct usb_endpoint_instance *epi = 0; |
| |
| if (ep >= MAX_ENDPOINTS) { |
| goto err; |
| } |
| epi = &udc_device->bus->endpoint_array[ep]; |
| if (!epi) { |
| goto err; |
| } |
| |
| if (!ep_ref[ep].urb) { |
| ep_ref[ep].urb = usbd_alloc_urb (udc_device, udc_device->bus->endpoint_array); |
| if (!ep_ref[ep].urb) { |
| goto err; |
| } |
| } else { |
| ep_ref[ep].urb->actual_length = 0; |
| } |
| |
| switch (direction) { |
| case USB_DIR_IN: |
| epi->tx_urb = ep_ref[ep].urb; |
| break; |
| case USB_DIR_OUT: |
| epi->rcv_urb = ep_ref[ep].urb; |
| break; |
| default: |
| goto err; |
| } |
| return 0; |
| |
| err: |
| udc_state = STATE_ERROR; |
| return -1; |
| } |
| |
| /* udc_setup_ep |
| * |
| * Associate U-Boot software endpoints to mpc8xx endpoint parameter ram |
| * Isochronous endpoints aren't yet supported! |
| */ |
| void udc_setup_ep (struct usb_device_instance *device, unsigned int ep, |
| struct usb_endpoint_instance *epi) |
| { |
| uchar direction = 0; |
| int ep_attrib = 0; |
| |
| if (epi && (ep < MAX_ENDPOINTS)) { |
| |
| if (ep == 0) { |
| if (epi->rcv_attributes != USB_ENDPOINT_XFER_CONTROL |
| || epi->tx_attributes != |
| USB_ENDPOINT_XFER_CONTROL) { |
| |
| /* ep0 must be a control endpoint */ |
| udc_state = STATE_ERROR; |
| return; |
| |
| } |
| if (!(ep_ref[ep].sc & EP_ATTACHED)) { |
| mpc8xx_udc_cbd_attach (ep, epi->tx_packetSize, |
| epi->rcv_packetSize); |
| } |
| usbp->usep[ep] = 0x0000; |
| return; |
| } |
| |
| if ((epi->endpoint_address & USB_ENDPOINT_DIR_MASK) |
| == USB_DIR_IN) { |
| |
| direction = 1; |
| ep_attrib = epi->tx_attributes; |
| epi->rcv_packetSize = 0; |
| ep_ref[ep].sc |= USB_DIR_IN; |
| } else { |
| |
| direction = 0; |
| ep_attrib = epi->rcv_attributes; |
| epi->tx_packetSize = 0; |
| ep_ref[ep].sc &= ~USB_DIR_IN; |
| } |
| |
| if (mpc8xx_udc_assign_urb (ep, epi->endpoint_address |
| & USB_ENDPOINT_DIR_MASK)) { |
| return; |
| } |
| |
| switch (ep_attrib) { |
| case USB_ENDPOINT_XFER_CONTROL: |
| if (!(ep_ref[ep].sc & EP_ATTACHED)) { |
| mpc8xx_udc_cbd_attach (ep, |
| epi->tx_packetSize, |
| epi->rcv_packetSize); |
| } |
| usbp->usep[ep] = ep << 12; |
| epi->rcv_urb = epi->tx_urb = ep_ref[ep].urb; |
| |
| break; |
| case USB_ENDPOINT_XFER_BULK: |
| case USB_ENDPOINT_XFER_INT: |
| if (!(ep_ref[ep].sc & EP_ATTACHED)) { |
| if (direction) { |
| mpc8xx_udc_cbd_attach (ep, |
| epi->tx_packetSize, |
| 0); |
| } else { |
| mpc8xx_udc_cbd_attach (ep, |
| 0, |
| epi->rcv_packetSize); |
| } |
| } |
| usbp->usep[ep] = (ep << 12) | ((ep_attrib) << 8); |
| |
| break; |
| case USB_ENDPOINT_XFER_ISOC: |
| default: |
| serial_printf ("Error endpoint attrib %d>3\n", ep_attrib); |
| udc_state = STATE_ERROR; |
| break; |
| } |
| } |
| |
| } |
| |
| /* udc_connect |
| * |
| * Move state, switch on the USB |
| */ |
| void udc_connect (void) |
| { |
| /* Enable pull-up resistor on D+ |
| * TODO: fit a pull-up resistor to drive SE0 for > 2.5us |
| */ |
| |
| if (udc_state != STATE_ERROR) { |
| udc_state = STATE_READY; |
| usbp->usmod |= USMOD_EN; |
| } |
| } |
| |
| /* udc_disconnect |
| * |
| * Disconnect is not used but, is included for completeness |
| */ |
| void udc_disconnect (void) |
| { |
| /* Disable pull-up resistor on D- |
| * TODO: fix a pullup resistor to control this |
| */ |
| |
| if (udc_state != STATE_ERROR) { |
| udc_state = STATE_NOT_READY; |
| } |
| usbp->usmod &= ~USMOD_EN; |
| } |
| |
| /* udc_enable |
| * |
| * Grab an EP0 URB, register interest in a subset of USB events |
| */ |
| void udc_enable (struct usb_device_instance *device) |
| { |
| if (udc_state == STATE_ERROR) { |
| return; |
| } |
| |
| udc_device = device; |
| |
| if (!ep_ref[0].urb) { |
| ep_ref[0].urb = usbd_alloc_urb (device, device->bus->endpoint_array); |
| } |
| |
| /* Register interest in all events except SOF, enable transceiver */ |
| usbp->usber = 0x03FF; |
| usbp->usbmr = 0x02F7; |
| |
| return; |
| } |
| |
| /* udc_disable |
| * |
| * disable the currently hooked device |
| */ |
| void udc_disable (void) |
| { |
| int i = 0; |
| |
| if (udc_state == STATE_ERROR) { |
| DBG ("Won't disable UDC. udc_state==STATE_ERROR !\n"); |
| return; |
| } |
| |
| udc_device = 0; |
| |
| for (; i < MAX_ENDPOINTS; i++) { |
| if (ep_ref[i].urb) { |
| usbd_dealloc_urb (ep_ref[i].urb); |
| ep_ref[i].urb = 0; |
| } |
| } |
| |
| usbp->usbmr = 0x00; |
| usbp->usmod = ~USMOD_EN; |
| udc_state = STATE_NOT_READY; |
| } |
| |
| /* udc_startup_events |
| * |
| * Enable the specified device |
| */ |
| void udc_startup_events (struct usb_device_instance *device) |
| { |
| udc_enable (device); |
| if (udc_state == STATE_READY) { |
| usbd_device_event_irq (device, DEVICE_CREATE, 0); |
| } |
| } |
| |
| /* udc_set_nak |
| * |
| * Allow upper layers to signal lower layers should not accept more RX data |
| * |
| */ |
| void udc_set_nak (int epid) |
| { |
| if (epid) { |
| mpc8xx_udc_set_nak (epid); |
| } |
| } |
| |
| /* udc_unset_nak |
| * |
| * Suspend sending of NAK tokens for DATA OUT tokens on a given endpoint. |
| * Switch off NAKing on this endpoint to accept more data output from host. |
| * |
| */ |
| void udc_unset_nak (int epid) |
| { |
| if (epid > MAX_ENDPOINTS) { |
| return; |
| } |
| |
| if (usbp->usep[epid] & (USEP_THS_NAK | USEP_RHS_NAK)) { |
| usbp->usep[epid] &= ~(USEP_THS_NAK | USEP_RHS_NAK); |
| __asm__ ("eieio"); |
| } |
| } |
| |
| /****************************************************************************** |
| Static Linkage |
| ******************************************************************************/ |
| |
| /* udc_state_transition_up |
| * udc_state_transition_down |
| * |
| * Helper functions to implement device state changes. The device states and |
| * the events that transition between them are: |
| * |
| * STATE_ATTACHED |
| * || /\ |
| * \/ || |
| * DEVICE_HUB_CONFIGURED DEVICE_HUB_RESET |
| * || /\ |
| * \/ || |
| * STATE_POWERED |
| * || /\ |
| * \/ || |
| * DEVICE_RESET DEVICE_POWER_INTERRUPTION |
| * || /\ |
| * \/ || |
| * STATE_DEFAULT |
| * || /\ |
| * \/ || |
| * DEVICE_ADDRESS_ASSIGNED DEVICE_RESET |
| * || /\ |
| * \/ || |
| * STATE_ADDRESSED |
| * || /\ |
| * \/ || |
| * DEVICE_CONFIGURED DEVICE_DE_CONFIGURED |
| * || /\ |
| * \/ || |
| * STATE_CONFIGURED |
| * |
| * udc_state_transition_up transitions up (in the direction from STATE_ATTACHED |
| * to STATE_CONFIGURED) from the specified initial state to the specified final |
| * state, passing through each intermediate state on the way. If the initial |
| * state is at or above (i.e. nearer to STATE_CONFIGURED) the final state, then |
| * no state transitions will take place. |
| * |
| * udc_state_transition_down transitions down (in the direction from |
| * STATE_CONFIGURED to STATE_ATTACHED) from the specified initial state to the |
| * specified final state, passing through each intermediate state on the way. |
| * If the initial state is at or below (i.e. nearer to STATE_ATTACHED) the final |
| * state, then no state transitions will take place. |
| * |
| */ |
| |
| static void mpc8xx_udc_state_transition_up (usb_device_state_t initial, |
| usb_device_state_t final) |
| { |
| if (initial < final) { |
| switch (initial) { |
| case STATE_ATTACHED: |
| usbd_device_event_irq (udc_device, |
| DEVICE_HUB_CONFIGURED, 0); |
| if (final == STATE_POWERED) |
| break; |
| case STATE_POWERED: |
| usbd_device_event_irq (udc_device, DEVICE_RESET, 0); |
| if (final == STATE_DEFAULT) |
| break; |
| case STATE_DEFAULT: |
| usbd_device_event_irq (udc_device, |
| DEVICE_ADDRESS_ASSIGNED, 0); |
| if (final == STATE_ADDRESSED) |
| break; |
| case STATE_ADDRESSED: |
| usbd_device_event_irq (udc_device, DEVICE_CONFIGURED, |
| 0); |
| case STATE_CONFIGURED: |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| static void mpc8xx_udc_state_transition_down (usb_device_state_t initial, |
| usb_device_state_t final) |
| { |
| if (initial > final) { |
| switch (initial) { |
| case STATE_CONFIGURED: |
| usbd_device_event_irq (udc_device, |
| DEVICE_DE_CONFIGURED, 0); |
| if (final == STATE_ADDRESSED) |
| break; |
| case STATE_ADDRESSED: |
| usbd_device_event_irq (udc_device, DEVICE_RESET, 0); |
| if (final == STATE_DEFAULT) |
| break; |
| case STATE_DEFAULT: |
| usbd_device_event_irq (udc_device, |
| DEVICE_POWER_INTERRUPTION, 0); |
| if (final == STATE_POWERED) |
| break; |
| case STATE_POWERED: |
| usbd_device_event_irq (udc_device, DEVICE_HUB_RESET, |
| 0); |
| case STATE_ATTACHED: |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| /* mpc8xx_udc_stall |
| * |
| * Force returning of STALL tokens on the given endpoint. Protocol or function |
| * STALL conditions are permissable here |
| */ |
| static void mpc8xx_udc_stall (unsigned int ep) |
| { |
| usbp->usep[ep] |= STALL_BITMASK; |
| } |
| |
| /* mpc8xx_udc_set_nak |
| * |
| * Force returning of NAK responses for the given endpoint as a kind of very |
| * simple flow control |
| */ |
| static void mpc8xx_udc_set_nak (unsigned int ep) |
| { |
| usbp->usep[ep] |= NAK_BITMASK; |
| __asm__ ("eieio"); |
| } |
| |
| /* mpc8xx_udc_handle_txerr |
| * |
| * Handle errors relevant to TX. Return a status code to allow calling |
| * indicative of what if anything happened |
| */ |
| static short mpc8xx_udc_handle_txerr () |
| { |
| short ep = 0, ret = 0; |
| |
| for (; ep < TX_RING_SIZE; ep++) { |
| if (usbp->usber & (0x10 << ep)) { |
| |
| /* Timeout or underrun */ |
| if (tx_cbd[ep]->cbd_sc & 0x06) { |
| ret = 1; |
| mpc8xx_udc_flush_tx_fifo (ep); |
| |
| } else { |
| if (usbp->usep[ep] & STALL_BITMASK) { |
| if (!ep) { |
| usbp->usep[ep] &= ~STALL_BITMASK; |
| } |
| } /* else NAK */ |
| } |
| usbp->usber |= (0x10 << ep); |
| } |
| } |
| return ret; |
| } |
| |
| /* mpc8xx_udc_advance_rx |
| * |
| * Advance cbd rx |
| */ |
| static void mpc8xx_udc_advance_rx (volatile cbd_t ** rx_cbdp, int epid) |
| { |
| if ((*rx_cbdp)->cbd_sc & RX_BD_W) { |
| *rx_cbdp = (volatile cbd_t *) (endpoints[epid]->rbase + CONFIG_SYS_IMMR); |
| |
| } else { |
| (*rx_cbdp)++; |
| } |
| } |
| |
| |
| /* mpc8xx_udc_flush_tx_fifo |
| * |
| * Flush a given TX fifo. Assumes one tx cbd per endpoint |
| */ |
| static void mpc8xx_udc_flush_tx_fifo (int epid) |
| { |
| volatile cbd_t *tx_cbdp = 0; |
| |
| if (epid > MAX_ENDPOINTS) { |
| return; |
| } |
| |
| /* TX stop */ |
| immr->im_cpm.cp_cpcr = ((epid << 2) | 0x1D01); |
| __asm__ ("eieio"); |
| while (immr->im_cpm.cp_cpcr & 0x01); |
| |
| usbp->uscom = 0x40 | 0; |
| |
| /* reset ring */ |
| tx_cbdp = (cbd_t *) (endpoints[epid]->tbptr + CONFIG_SYS_IMMR); |
| tx_cbdp->cbd_sc = (TX_BD_I | TX_BD_W); |
| |
| |
| endpoints[epid]->tptr = endpoints[epid]->tbase; |
| endpoints[epid]->tstate = 0x00; |
| endpoints[epid]->tbcnt = 0x00; |
| |
| /* TX start */ |
| immr->im_cpm.cp_cpcr = ((epid << 2) | 0x2D01); |
| __asm__ ("eieio"); |
| while (immr->im_cpm.cp_cpcr & 0x01); |
| |
| return; |
| } |
| |
| /* mpc8xx_udc_flush_rx_fifo |
| * |
| * For the sake of completeness of the namespace, it seems like |
| * a good-design-decision (tm) to include mpc8xx_udc_flush_rx_fifo(); |
| * If RX_BD_E is true => a driver bug either here or in an upper layer |
| * not polling frequently enough. If RX_BD_E is true we have told the host |
| * we have accepted data but, the CPM found it had no-where to put that data |
| * which needless to say would be a bad thing. |
| */ |
| static void mpc8xx_udc_flush_rx_fifo () |
| { |
| int i = 0; |
| |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| if (!(rx_cbd[i]->cbd_sc & RX_BD_E)) { |
| ERR ("buf %p used rx data len = 0x%x sc=0x%x!\n", |
| rx_cbd[i], rx_cbd[i]->cbd_datlen, |
| rx_cbd[i]->cbd_sc); |
| |
| } |
| } |
| ERR ("BUG : Input over-run\n"); |
| } |
| |
| /* mpc8xx_udc_clear_rxbd |
| * |
| * Release control of RX CBD to CP. |
| */ |
| static void mpc8xx_udc_clear_rxbd (volatile cbd_t * rx_cbdp) |
| { |
| rx_cbdp->cbd_datlen = 0x0000; |
| rx_cbdp->cbd_sc = ((rx_cbdp->cbd_sc & RX_BD_W) | (RX_BD_E | RX_BD_I)); |
| __asm__ ("eieio"); |
| } |
| |
| /* mpc8xx_udc_tx_irq |
| * |
| * Parse for tx timeout, control RX or USB reset/busy conditions |
| * Return -1 on timeout, -2 on fatal error, else return zero |
| */ |
| static int mpc8xx_udc_tx_irq (int ep) |
| { |
| int i = 0; |
| |
| if (usbp->usber & (USB_TX_ERRMASK)) { |
| if (mpc8xx_udc_handle_txerr ()) { |
| /* Timeout, controlling function must retry send */ |
| return -1; |
| } |
| } |
| |
| if (usbp->usber & (USB_E_RESET | USB_E_BSY)) { |
| /* Fatal, abandon TX transaction */ |
| return -2; |
| } |
| |
| if (usbp->usber & USB_E_RXB) { |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| if (!(rx_cbd[i]->cbd_sc & RX_BD_E)) { |
| if ((rx_cbd[i] == ep_ref[0].prx) || ep) { |
| return -2; |
| } |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* mpc8xx_udc_ep_tx |
| * |
| * Transmit in a re-entrant fashion outbound USB packets. |
| * Implement retry/timeout mechanism described in USB specification |
| * Toggle DATA0/DATA1 pids as necessary |
| * Introduces non-standard tx_retry. The USB standard has no scope for slave |
| * devices to give up TX, however tx_retry stops us getting stuck in an endless |
| * TX loop. |
| */ |
| static int mpc8xx_udc_ep_tx (struct usb_endpoint_instance *epi) |
| { |
| struct urb *urb = epi->tx_urb; |
| volatile cbd_t *tx_cbdp = 0; |
| unsigned int ep = 0, pkt_len = 0, x = 0, tx_retry = 0; |
| int ret = 0; |
| |
| if (!epi || (epi->endpoint_address & 0x03) >= MAX_ENDPOINTS || !urb) { |
| return -1; |
| } |
| |
| ep = epi->endpoint_address & 0x03; |
| tx_cbdp = (cbd_t *) (endpoints[ep]->tbptr + CONFIG_SYS_IMMR); |
| |
| if (tx_cbdp->cbd_sc & TX_BD_R || usbp->usber & USB_E_TXB) { |
| mpc8xx_udc_flush_tx_fifo (ep); |
| usbp->usber |= USB_E_TXB; |
| }; |
| |
| while (tx_retry++ < 100) { |
| ret = mpc8xx_udc_tx_irq (ep); |
| if (ret == -1) { |
| /* ignore timeout here */ |
| } else if (ret == -2) { |
| /* Abandon TX */ |
| mpc8xx_udc_flush_tx_fifo (ep); |
| return -1; |
| } |
| |
| tx_cbdp = (cbd_t *) (endpoints[ep]->tbptr + CONFIG_SYS_IMMR); |
| while (tx_cbdp->cbd_sc & TX_BD_R) { |
| }; |
| tx_cbdp->cbd_sc = (tx_cbdp->cbd_sc & TX_BD_W); |
| |
| pkt_len = urb->actual_length - epi->sent; |
| |
| if (pkt_len > epi->tx_packetSize || pkt_len > EP_MAX_PKT) { |
| pkt_len = MIN (epi->tx_packetSize, EP_MAX_PKT); |
| } |
| |
| for (x = 0; x < pkt_len; x++) { |
| *((unsigned char *) (tx_cbdp->cbd_bufaddr + x)) = |
| urb->buffer[epi->sent + x]; |
| } |
| tx_cbdp->cbd_datlen = pkt_len; |
| tx_cbdp->cbd_sc |= (CBD_TX_BITMASK | ep_ref[ep].pid); |
| __asm__ ("eieio"); |
| |
| #ifdef __SIMULATE_ERROR__ |
| if (++err_poison_test == 2) { |
| err_poison_test = 0; |
| tx_cbdp->cbd_sc &= ~TX_BD_TC; |
| } |
| #endif |
| |
| usbp->uscom = (USCOM_STR | ep); |
| |
| while (!(usbp->usber & USB_E_TXB)) { |
| ret = mpc8xx_udc_tx_irq (ep); |
| if (ret == -1) { |
| /* TX timeout */ |
| break; |
| } else if (ret == -2) { |
| if (usbp->usber & USB_E_TXB) { |
| usbp->usber |= USB_E_TXB; |
| } |
| mpc8xx_udc_flush_tx_fifo (ep); |
| return -1; |
| } |
| }; |
| |
| if (usbp->usber & USB_E_TXB) { |
| usbp->usber |= USB_E_TXB; |
| } |
| |
| /* ACK must be present <= 18bit times from TX */ |
| if (ret == -1) { |
| continue; |
| } |
| |
| /* TX ACK : USB 2.0 8.7.2, Toggle PID, Advance TX */ |
| epi->sent += pkt_len; |
| epi->last = MIN (urb->actual_length - epi->sent, epi->tx_packetSize); |
| TOGGLE_TX_PID (ep_ref[ep].pid); |
| |
| if (epi->sent >= epi->tx_urb->actual_length) { |
| |
| epi->tx_urb->actual_length = 0; |
| epi->sent = 0; |
| |
| if (ep_ref[ep].sc & EP_SEND_ZLP) { |
| ep_ref[ep].sc &= ~EP_SEND_ZLP; |
| } else { |
| return 0; |
| } |
| } |
| } |
| |
| ERR ("TX fail, endpoint 0x%x tx bytes 0x%x/0x%x\n", ep, epi->sent, |
| epi->tx_urb->actual_length); |
| |
| return -1; |
| } |
| |
| /* mpc8xx_udc_dump_request |
| * |
| * Dump a control request to console |
| */ |
| static void mpc8xx_udc_dump_request (struct usb_device_request *request) |
| { |
| DBG ("bmRequestType:%02x bRequest:%02x wValue:%04x " |
| "wIndex:%04x wLength:%04x ?\n", |
| request->bmRequestType, |
| request->bRequest, |
| request->wValue, request->wIndex, request->wLength); |
| |
| return; |
| } |
| |
| /* mpc8xx_udc_ep0_rx_setup |
| * |
| * Decode received ep0 SETUP packet. return non-zero on error |
| */ |
| static int mpc8xx_udc_ep0_rx_setup (volatile cbd_t * rx_cbdp) |
| { |
| unsigned int x = 0; |
| struct urb *purb = ep_ref[0].urb; |
| struct usb_endpoint_instance *epi = |
| &udc_device->bus->endpoint_array[0]; |
| |
| for (; x < rx_cbdp->cbd_datlen; x++) { |
| *(((unsigned char *) &ep_ref[0].urb->device_request) + x) = |
| *((unsigned char *) (rx_cbdp->cbd_bufaddr + x)); |
| } |
| |
| mpc8xx_udc_clear_rxbd (rx_cbdp); |
| |
| if (ep0_recv_setup (purb)) { |
| mpc8xx_udc_dump_request (&purb->device_request); |
| return -1; |
| } |
| |
| if ((purb->device_request.bmRequestType & USB_REQ_DIRECTION_MASK) |
| == USB_REQ_HOST2DEVICE) { |
| |
| switch (purb->device_request.bRequest) { |
| case USB_REQ_SET_ADDRESS: |
| /* Send the Status OUT ZLP */ |
| ep_ref[0].pid = TX_BD_PID_DATA1; |
| purb->actual_length = 0; |
| mpc8xx_udc_init_tx (epi, purb); |
| mpc8xx_udc_ep_tx (epi); |
| |
| /* Move to the addressed state */ |
| usbp->usaddr = udc_device->address; |
| mpc8xx_udc_state_transition_up (udc_device->device_state, |
| STATE_ADDRESSED); |
| return 0; |
| |
| case USB_REQ_SET_CONFIGURATION: |
| if (!purb->device_request.wValue) { |
| /* Respond at default address */ |
| usbp->usaddr = 0x00; |
| mpc8xx_udc_state_transition_down (udc_device->device_state, |
| STATE_ADDRESSED); |
| } else { |
| /* TODO: Support multiple configurations */ |
| mpc8xx_udc_state_transition_up (udc_device->device_state, |
| STATE_CONFIGURED); |
| for (x = 1; x < MAX_ENDPOINTS; x++) { |
| if ((udc_device->bus->endpoint_array[x].endpoint_address & USB_ENDPOINT_DIR_MASK) |
| == USB_DIR_IN) { |
| ep_ref[x].pid = TX_BD_PID_DATA0; |
| } else { |
| ep_ref[x].pid = RX_BD_PID_DATA0; |
| } |
| /* Set configuration must unstall endpoints */ |
| usbp->usep[x] &= ~STALL_BITMASK; |
| } |
| } |
| break; |
| default: |
| /* CDC/Vendor specific */ |
| break; |
| } |
| |
| /* Send ZLP as ACK in Status OUT phase */ |
| ep_ref[0].pid = TX_BD_PID_DATA1; |
| purb->actual_length = 0; |
| mpc8xx_udc_init_tx (epi, purb); |
| mpc8xx_udc_ep_tx (epi); |
| |
| } else { |
| |
| if (purb->actual_length) { |
| ep_ref[0].pid = TX_BD_PID_DATA1; |
| mpc8xx_udc_init_tx (epi, purb); |
| |
| if (!(purb->actual_length % EP0_MAX_PACKET_SIZE)) { |
| ep_ref[0].sc |= EP_SEND_ZLP; |
| } |
| |
| if (purb->device_request.wValue == |
| USB_DESCRIPTOR_TYPE_DEVICE) { |
| if (le16_to_cpu (purb->device_request.wLength) |
| > purb->actual_length) { |
| /* Send EP0_MAX_PACKET_SIZE bytes |
| * unless correct size requested. |
| */ |
| if (purb->actual_length > epi->tx_packetSize) { |
| purb->actual_length = epi->tx_packetSize; |
| } |
| } |
| } |
| mpc8xx_udc_ep_tx (epi); |
| |
| } else { |
| /* Corrupt SETUP packet? */ |
| ERR ("Zero length data or SETUP with DATA-IN phase ?\n"); |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /* mpc8xx_udc_init_tx |
| * |
| * Setup some basic parameters for a TX transaction |
| */ |
| static void mpc8xx_udc_init_tx (struct usb_endpoint_instance *epi, |
| struct urb *tx_urb) |
| { |
| epi->sent = 0; |
| epi->last = 0; |
| epi->tx_urb = tx_urb; |
| } |
| |
| /* mpc8xx_udc_ep0_rx |
| * |
| * Receive ep0/control USB data. Parse and possibly send a response. |
| */ |
| static void mpc8xx_udc_ep0_rx (volatile cbd_t * rx_cbdp) |
| { |
| if (rx_cbdp->cbd_sc & RX_BD_PID_SETUP) { |
| |
| /* Unconditionally accept SETUP packets */ |
| if (mpc8xx_udc_ep0_rx_setup (rx_cbdp)) { |
| mpc8xx_udc_stall (0); |
| } |
| |
| } else { |
| |
| mpc8xx_udc_clear_rxbd (rx_cbdp); |
| |
| if ((rx_cbdp->cbd_datlen - 2)) { |
| /* SETUP with a DATA phase |
| * outside of SETUP packet. |
| * Reply with STALL. |
| */ |
| mpc8xx_udc_stall (0); |
| } |
| } |
| } |
| |
| /* mpc8xx_udc_epn_rx |
| * |
| * Receive some data from cbd into USB system urb data abstraction |
| * Upper layers should NAK if there is insufficient RX data space |
| */ |
| static int mpc8xx_udc_epn_rx (unsigned int epid, volatile cbd_t * rx_cbdp) |
| { |
| struct usb_endpoint_instance *epi = 0; |
| struct urb *urb = 0; |
| unsigned int x = 0; |
| |
| if (epid >= MAX_ENDPOINTS || !rx_cbdp->cbd_datlen) { |
| return 0; |
| } |
| |
| /* USB 2.0 PDF section 8.6.4 |
| * Discard data with invalid PID it is a resend. |
| */ |
| if (ep_ref[epid].pid != (rx_cbdp->cbd_sc & 0xC0)) { |
| return 1; |
| } |
| TOGGLE_RX_PID (ep_ref[epid].pid); |
| |
| epi = &udc_device->bus->endpoint_array[epid]; |
| urb = epi->rcv_urb; |
| |
| for (; x < (rx_cbdp->cbd_datlen - 2); x++) { |
| *((unsigned char *) (urb->buffer + urb->actual_length + x)) = |
| *((unsigned char *) (rx_cbdp->cbd_bufaddr + x)); |
| } |
| |
| if (x) { |
| usbd_rcv_complete (epi, x, 0); |
| if (ep_ref[epid].urb->status == RECV_ERROR) { |
| DBG ("RX error unset NAK\n"); |
| udc_unset_nak (epid); |
| } |
| } |
| return x; |
| } |
| |
| /* mpc8xx_udc_clock_init |
| * |
| * Obtain a clock reference for Full Speed Signaling |
| */ |
| static void mpc8xx_udc_clock_init (volatile immap_t * immr, |
| volatile cpm8xx_t * cp) |
| { |
| |
| #if defined(CONFIG_SYS_USB_EXTC_CLK) |
| |
| /* This has been tested with a 48MHz crystal on CLK6 */ |
| switch (CONFIG_SYS_USB_EXTC_CLK) { |
| case 1: |
| immr->im_ioport.iop_papar |= 0x0100; |
| immr->im_ioport.iop_padir &= ~0x0100; |
| cp->cp_sicr |= 0x24; |
| break; |
| case 2: |
| immr->im_ioport.iop_papar |= 0x0200; |
| immr->im_ioport.iop_padir &= ~0x0200; |
| cp->cp_sicr |= 0x2D; |
| break; |
| case 3: |
| immr->im_ioport.iop_papar |= 0x0400; |
| immr->im_ioport.iop_padir &= ~0x0400; |
| cp->cp_sicr |= 0x36; |
| break; |
| case 4: |
| immr->im_ioport.iop_papar |= 0x0800; |
| immr->im_ioport.iop_padir &= ~0x0800; |
| cp->cp_sicr |= 0x3F; |
| break; |
| default: |
| udc_state = STATE_ERROR; |
| break; |
| } |
| |
| #elif defined(CONFIG_SYS_USB_BRGCLK) |
| |
| /* This has been tested with brgclk == 50MHz */ |
| int divisor = 0; |
| |
| if (gd->cpu_clk < 48000000L) { |
| ERR ("brgclk is too slow for full-speed USB!\n"); |
| udc_state = STATE_ERROR; |
| return; |
| } |
| |
| /* Assume the brgclk is 'good enough', we want !(gd->cpu_clk%48MHz) |
| * but, can /probably/ live with close-ish alternative rates. |
| */ |
| divisor = (gd->cpu_clk / 48000000L) - 1; |
| cp->cp_sicr &= ~0x0000003F; |
| |
| switch (CONFIG_SYS_USB_BRGCLK) { |
| case 1: |
| cp->cp_brgc1 |= (divisor | CPM_BRG_EN); |
| cp->cp_sicr &= ~0x2F; |
| break; |
| case 2: |
| cp->cp_brgc2 |= (divisor | CPM_BRG_EN); |
| cp->cp_sicr |= 0x00000009; |
| break; |
| case 3: |
| cp->cp_brgc3 |= (divisor | CPM_BRG_EN); |
| cp->cp_sicr |= 0x00000012; |
| break; |
| case 4: |
| cp->cp_brgc4 = (divisor | CPM_BRG_EN); |
| cp->cp_sicr |= 0x0000001B; |
| break; |
| default: |
| udc_state = STATE_ERROR; |
| break; |
| } |
| |
| #else |
| #error "CONFIG_SYS_USB_EXTC_CLK or CONFIG_SYS_USB_BRGCLK must be defined" |
| #endif |
| |
| } |
| |
| /* mpc8xx_udc_cbd_attach |
| * |
| * attach a cbd to and endpoint |
| */ |
| static void mpc8xx_udc_cbd_attach (int ep, uchar tx_size, uchar rx_size) |
| { |
| |
| if (!tx_cbd[ep] || !rx_cbd[ep] || ep >= MAX_ENDPOINTS) { |
| udc_state = STATE_ERROR; |
| return; |
| } |
| |
| if (tx_size > USB_MAX_PKT || rx_size > USB_MAX_PKT || |
| (!tx_size && !rx_size)) { |
| udc_state = STATE_ERROR; |
| return; |
| } |
| |
| /* Attach CBD to appropiate Parameter RAM Endpoint data structure */ |
| if (rx_size) { |
| endpoints[ep]->rbase = (u32) rx_cbd[rx_ct]; |
| endpoints[ep]->rbptr = (u32) rx_cbd[rx_ct]; |
| rx_ct++; |
| |
| if (!ep) { |
| |
| endpoints[ep]->rbptr = (u32) rx_cbd[rx_ct]; |
| rx_cbd[rx_ct]->cbd_sc |= RX_BD_W; |
| rx_ct++; |
| |
| } else { |
| rx_ct += 2; |
| endpoints[ep]->rbptr = (u32) rx_cbd[rx_ct]; |
| rx_cbd[rx_ct]->cbd_sc |= RX_BD_W; |
| rx_ct++; |
| } |
| |
| /* Where we expect to RX data on this endpoint */ |
| ep_ref[ep].prx = rx_cbd[rx_ct - 1]; |
| } else { |
| |
| ep_ref[ep].prx = 0; |
| endpoints[ep]->rbase = 0; |
| endpoints[ep]->rbptr = 0; |
| } |
| |
| if (tx_size) { |
| endpoints[ep]->tbase = (u32) tx_cbd[tx_ct]; |
| endpoints[ep]->tbptr = (u32) tx_cbd[tx_ct]; |
| tx_ct++; |
| } else { |
| endpoints[ep]->tbase = 0; |
| endpoints[ep]->tbptr = 0; |
| } |
| |
| endpoints[ep]->tstate = 0; |
| endpoints[ep]->tbcnt = 0; |
| endpoints[ep]->mrblr = EP_MAX_PKT; |
| endpoints[ep]->rfcr = 0x18; |
| endpoints[ep]->tfcr = 0x18; |
| ep_ref[ep].sc |= EP_ATTACHED; |
| |
| DBG ("ep %d rbase 0x%08x rbptr 0x%08x tbase 0x%08x tbptr 0x%08x prx = %p\n", |
| ep, endpoints[ep]->rbase, endpoints[ep]->rbptr, |
| endpoints[ep]->tbase, endpoints[ep]->tbptr, |
| ep_ref[ep].prx); |
| |
| return; |
| } |
| |
| /* mpc8xx_udc_cbd_init |
| * |
| * Allocate space for a cbd and allocate TX/RX data space |
| */ |
| static void mpc8xx_udc_cbd_init (void) |
| { |
| int i = 0; |
| |
| for (; i < TX_RING_SIZE; i++) { |
| tx_cbd[i] = (cbd_t *) |
| mpc8xx_udc_alloc (sizeof (cbd_t), sizeof (int)); |
| } |
| |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| rx_cbd[i] = (cbd_t *) |
| mpc8xx_udc_alloc (sizeof (cbd_t), sizeof (int)); |
| } |
| |
| for (i = 0; i < TX_RING_SIZE; i++) { |
| tx_cbd[i]->cbd_bufaddr = |
| mpc8xx_udc_alloc (EP_MAX_PKT, sizeof (int)); |
| |
| tx_cbd[i]->cbd_sc = (TX_BD_I | TX_BD_W); |
| tx_cbd[i]->cbd_datlen = 0x0000; |
| } |
| |
| |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| rx_cbd[i]->cbd_bufaddr = |
| mpc8xx_udc_alloc (EP_MAX_PKT, sizeof (int)); |
| rx_cbd[i]->cbd_sc = (RX_BD_I | RX_BD_E); |
| rx_cbd[i]->cbd_datlen = 0x0000; |
| |
| } |
| |
| return; |
| } |
| |
| /* mpc8xx_udc_endpoint_init |
| * |
| * Attach an endpoint to some dpram |
| */ |
| static void mpc8xx_udc_endpoint_init (void) |
| { |
| int i = 0; |
| |
| for (; i < MAX_ENDPOINTS; i++) { |
| endpoints[i] = (usb_epb_t *) |
| mpc8xx_udc_alloc (sizeof (usb_epb_t), 32); |
| } |
| } |
| |
| /* mpc8xx_udc_alloc |
| * |
| * Grab the address of some dpram |
| */ |
| static u32 mpc8xx_udc_alloc (u32 data_size, u32 alignment) |
| { |
| u32 retaddr = address_base; |
| |
| while (retaddr % alignment) { |
| retaddr++; |
| } |
| address_base += data_size; |
| |
| return retaddr; |
| } |