blob: a5fc7809bc41919c8cf964b907abbebbdb0cb8ca [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2018 Texas Instruments Incorporated - http://www.ti.com
* Author: Peter Ujfalusi <peter.ujfalusi@ti.com>
*/
#define pr_fmt(fmt) "udma: " fmt
#include <common.h>
#include <asm/io.h>
#include <asm/bitops.h>
#include <malloc.h>
#include <asm/dma-mapping.h>
#include <dm.h>
#include <dm/read.h>
#include <dm/of_access.h>
#include <dma.h>
#include <dma-uclass.h>
#include <linux/delay.h>
#include <dt-bindings/dma/k3-udma.h>
#include <linux/soc/ti/k3-navss-ringacc.h>
#include <linux/soc/ti/cppi5.h>
#include <linux/soc/ti/ti-udma.h>
#include <linux/soc/ti/ti_sci_protocol.h>
#include "k3-udma-hwdef.h"
#if BITS_PER_LONG == 64
#define RINGACC_RING_USE_PROXY (0)
#else
#define RINGACC_RING_USE_PROXY (1)
#endif
struct udma_chan;
enum udma_mmr {
MMR_GCFG = 0,
MMR_RCHANRT,
MMR_TCHANRT,
MMR_LAST,
};
static const char * const mmr_names[] = {
"gcfg", "rchanrt", "tchanrt"
};
struct udma_tchan {
void __iomem *reg_rt;
int id;
struct k3_nav_ring *t_ring; /* Transmit ring */
struct k3_nav_ring *tc_ring; /* Transmit Completion ring */
};
struct udma_rchan {
void __iomem *reg_rt;
int id;
struct k3_nav_ring *fd_ring; /* Free Descriptor ring */
struct k3_nav_ring *r_ring; /* Receive ring*/
};
struct udma_rflow {
int id;
};
struct udma_dev {
struct device *dev;
void __iomem *mmrs[MMR_LAST];
struct k3_nav_ringacc *ringacc;
u32 features;
int tchan_cnt;
int echan_cnt;
int rchan_cnt;
int rflow_cnt;
unsigned long *tchan_map;
unsigned long *rchan_map;
unsigned long *rflow_map;
struct udma_tchan *tchans;
struct udma_rchan *rchans;
struct udma_rflow *rflows;
struct udma_chan *channels;
u32 psil_base;
u32 ch_count;
const struct ti_sci_handle *tisci;
const struct ti_sci_rm_udmap_ops *tisci_udmap_ops;
const struct ti_sci_rm_psil_ops *tisci_psil_ops;
u32 tisci_dev_id;
u32 tisci_navss_dev_id;
bool is_coherent;
};
struct udma_chan {
struct udma_dev *ud;
char name[20];
struct udma_tchan *tchan;
struct udma_rchan *rchan;
struct udma_rflow *rflow;
u32 bcnt; /* number of bytes completed since the start of the channel */
bool pkt_mode; /* TR or packet */
bool needs_epib; /* EPIB is needed for the communication or not */
u32 psd_size; /* size of Protocol Specific Data */
u32 metadata_size; /* (needs_epib ? 16:0) + psd_size */
int slave_thread_id;
u32 src_thread;
u32 dst_thread;
u32 static_tr_type;
u32 id;
enum dma_direction dir;
struct cppi5_host_desc_t *desc_tx;
u32 hdesc_size;
bool in_use;
void *desc_rx;
u32 num_rx_bufs;
u32 desc_rx_cur;
};
#define UDMA_CH_1000(ch) (ch * 0x1000)
#define UDMA_CH_100(ch) (ch * 0x100)
#define UDMA_CH_40(ch) (ch * 0x40)
#ifdef PKTBUFSRX
#define UDMA_RX_DESC_NUM PKTBUFSRX
#else
#define UDMA_RX_DESC_NUM 4
#endif
/* Generic register access functions */
static inline u32 udma_read(void __iomem *base, int reg)
{
u32 v;
v = __raw_readl(base + reg);
pr_debug("READL(32): v(%08X)<--reg(%p)\n", v, base + reg);
return v;
}
static inline void udma_write(void __iomem *base, int reg, u32 val)
{
pr_debug("WRITEL(32): v(%08X)-->reg(%p)\n", val, base + reg);
__raw_writel(val, base + reg);
}
static inline void udma_update_bits(void __iomem *base, int reg,
u32 mask, u32 val)
{
u32 tmp, orig;
orig = udma_read(base, reg);
tmp = orig & ~mask;
tmp |= (val & mask);
if (tmp != orig)
udma_write(base, reg, tmp);
}
/* TCHANRT */
static inline u32 udma_tchanrt_read(struct udma_tchan *tchan, int reg)
{
if (!tchan)
return 0;
return udma_read(tchan->reg_rt, reg);
}
static inline void udma_tchanrt_write(struct udma_tchan *tchan,
int reg, u32 val)
{
if (!tchan)
return;
udma_write(tchan->reg_rt, reg, val);
}
/* RCHANRT */
static inline u32 udma_rchanrt_read(struct udma_rchan *rchan, int reg)
{
if (!rchan)
return 0;
return udma_read(rchan->reg_rt, reg);
}
static inline void udma_rchanrt_write(struct udma_rchan *rchan,
int reg, u32 val)
{
if (!rchan)
return;
udma_write(rchan->reg_rt, reg, val);
}
static inline int udma_navss_psil_pair(struct udma_dev *ud, u32 src_thread,
u32 dst_thread)
{
dst_thread |= UDMA_PSIL_DST_THREAD_ID_OFFSET;
return ud->tisci_psil_ops->pair(ud->tisci,
ud->tisci_navss_dev_id,
src_thread, dst_thread);
}
static inline int udma_navss_psil_unpair(struct udma_dev *ud, u32 src_thread,
u32 dst_thread)
{
dst_thread |= UDMA_PSIL_DST_THREAD_ID_OFFSET;
return ud->tisci_psil_ops->unpair(ud->tisci,
ud->tisci_navss_dev_id,
src_thread, dst_thread);
}
static inline char *udma_get_dir_text(enum dma_direction dir)
{
switch (dir) {
case DMA_DEV_TO_MEM:
return "DEV_TO_MEM";
case DMA_MEM_TO_DEV:
return "MEM_TO_DEV";
case DMA_MEM_TO_MEM:
return "MEM_TO_MEM";
case DMA_DEV_TO_DEV:
return "DEV_TO_DEV";
default:
break;
}
return "invalid";
}
static inline bool udma_is_chan_running(struct udma_chan *uc)
{
u32 trt_ctl = 0;
u32 rrt_ctl = 0;
switch (uc->dir) {
case DMA_DEV_TO_MEM:
rrt_ctl = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_CTL_REG);
pr_debug("%s: rrt_ctl: 0x%08x (peer: 0x%08x)\n",
__func__, rrt_ctl,
udma_rchanrt_read(uc->rchan,
UDMA_RCHAN_RT_PEER_RT_EN_REG));
break;
case DMA_MEM_TO_DEV:
trt_ctl = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_CTL_REG);
pr_debug("%s: trt_ctl: 0x%08x (peer: 0x%08x)\n",
__func__, trt_ctl,
udma_tchanrt_read(uc->tchan,
UDMA_TCHAN_RT_PEER_RT_EN_REG));
break;
case DMA_MEM_TO_MEM:
trt_ctl = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_CTL_REG);
rrt_ctl = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_CTL_REG);
break;
default:
break;
}
if (trt_ctl & UDMA_CHAN_RT_CTL_EN || rrt_ctl & UDMA_CHAN_RT_CTL_EN)
return true;
return false;
}
static int udma_is_coherent(struct udma_chan *uc)
{
return uc->ud->is_coherent;
}
static int udma_pop_from_ring(struct udma_chan *uc, dma_addr_t *addr)
{
struct k3_nav_ring *ring = NULL;
int ret = -ENOENT;
switch (uc->dir) {
case DMA_DEV_TO_MEM:
ring = uc->rchan->r_ring;
break;
case DMA_MEM_TO_DEV:
ring = uc->tchan->tc_ring;
break;
case DMA_MEM_TO_MEM:
ring = uc->tchan->tc_ring;
break;
default:
break;
}
if (ring && k3_nav_ringacc_ring_get_occ(ring))
ret = k3_nav_ringacc_ring_pop(ring, addr);
return ret;
}
static void udma_reset_rings(struct udma_chan *uc)
{
struct k3_nav_ring *ring1 = NULL;
struct k3_nav_ring *ring2 = NULL;
switch (uc->dir) {
case DMA_DEV_TO_MEM:
ring1 = uc->rchan->fd_ring;
ring2 = uc->rchan->r_ring;
break;
case DMA_MEM_TO_DEV:
ring1 = uc->tchan->t_ring;
ring2 = uc->tchan->tc_ring;
break;
case DMA_MEM_TO_MEM:
ring1 = uc->tchan->t_ring;
ring2 = uc->tchan->tc_ring;
break;
default:
break;
}
if (ring1)
k3_nav_ringacc_ring_reset_dma(ring1, 0);
if (ring2)
k3_nav_ringacc_ring_reset(ring2);
}
static void udma_reset_counters(struct udma_chan *uc)
{
u32 val;
if (uc->tchan) {
val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_BCNT_REG);
udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_BCNT_REG, val);
val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_SBCNT_REG);
udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_SBCNT_REG, val);
val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_PCNT_REG);
udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PCNT_REG, val);
val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_PEER_BCNT_REG);
udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PEER_BCNT_REG, val);
}
if (uc->rchan) {
val = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_BCNT_REG);
udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_BCNT_REG, val);
val = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_SBCNT_REG);
udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_SBCNT_REG, val);
val = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_PCNT_REG);
udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PCNT_REG, val);
val = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_PEER_BCNT_REG);
udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PEER_BCNT_REG, val);
}
uc->bcnt = 0;
}
static inline int udma_stop_hard(struct udma_chan *uc)
{
pr_debug("%s: ENTER (chan%d)\n", __func__, uc->id);
switch (uc->dir) {
case DMA_DEV_TO_MEM:
udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PEER_RT_EN_REG, 0);
udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG, 0);
break;
case DMA_MEM_TO_DEV:
udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG, 0);
udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PEER_RT_EN_REG, 0);
break;
case DMA_MEM_TO_MEM:
udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG, 0);
udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG, 0);
break;
default:
return -EINVAL;
}
return 0;
}
static int udma_start(struct udma_chan *uc)
{
/* Channel is already running, no need to proceed further */
if (udma_is_chan_running(uc))
goto out;
pr_debug("%s: chan:%d dir:%s (static_tr_type: %d)\n",
__func__, uc->id, udma_get_dir_text(uc->dir),
uc->static_tr_type);
/* Make sure that we clear the teardown bit, if it is set */
udma_stop_hard(uc);
/* Reset all counters */
udma_reset_counters(uc);
switch (uc->dir) {
case DMA_DEV_TO_MEM:
udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG,
UDMA_CHAN_RT_CTL_EN);
/* Enable remote */
udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PEER_RT_EN_REG,
UDMA_PEER_RT_EN_ENABLE);
pr_debug("%s(rx): RT_CTL:0x%08x PEER RT_ENABLE:0x%08x\n",
__func__,
udma_rchanrt_read(uc->rchan,
UDMA_RCHAN_RT_CTL_REG),
udma_rchanrt_read(uc->rchan,
UDMA_RCHAN_RT_PEER_RT_EN_REG));
break;
case DMA_MEM_TO_DEV:
/* Enable remote */
udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PEER_RT_EN_REG,
UDMA_PEER_RT_EN_ENABLE);
udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG,
UDMA_CHAN_RT_CTL_EN);
pr_debug("%s(tx): RT_CTL:0x%08x PEER RT_ENABLE:0x%08x\n",
__func__,
udma_rchanrt_read(uc->rchan,
UDMA_TCHAN_RT_CTL_REG),
udma_rchanrt_read(uc->rchan,
UDMA_TCHAN_RT_PEER_RT_EN_REG));
break;
case DMA_MEM_TO_MEM:
udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG,
UDMA_CHAN_RT_CTL_EN);
udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG,
UDMA_CHAN_RT_CTL_EN);
break;
default:
return -EINVAL;
}
pr_debug("%s: DONE chan:%d\n", __func__, uc->id);
out:
return 0;
}
static inline void udma_stop_mem2dev(struct udma_chan *uc, bool sync)
{
int i = 0;
u32 val;
udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG,
UDMA_CHAN_RT_CTL_EN |
UDMA_CHAN_RT_CTL_TDOWN);
val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_CTL_REG);
while (sync && (val & UDMA_CHAN_RT_CTL_EN)) {
val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_CTL_REG);
udelay(1);
if (i > 1000) {
printf(" %s TIMEOUT !\n", __func__);
break;
}
i++;
}
val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_PEER_RT_EN_REG);
if (val & UDMA_PEER_RT_EN_ENABLE)
printf("%s: peer not stopped TIMEOUT !\n", __func__);
}
static inline void udma_stop_dev2mem(struct udma_chan *uc, bool sync)
{
int i = 0;
u32 val;
udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PEER_RT_EN_REG,
UDMA_PEER_RT_EN_ENABLE |
UDMA_PEER_RT_EN_TEARDOWN);
val = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_CTL_REG);
while (sync && (val & UDMA_CHAN_RT_CTL_EN)) {
val = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_CTL_REG);
udelay(1);
if (i > 1000) {
printf("%s TIMEOUT !\n", __func__);
break;
}
i++;
}
val = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_PEER_RT_EN_REG);
if (val & UDMA_PEER_RT_EN_ENABLE)
printf("%s: peer not stopped TIMEOUT !\n", __func__);
}
static inline int udma_stop(struct udma_chan *uc)
{
pr_debug("%s: chan:%d dir:%s\n",
__func__, uc->id, udma_get_dir_text(uc->dir));
udma_reset_counters(uc);
switch (uc->dir) {
case DMA_DEV_TO_MEM:
udma_stop_dev2mem(uc, true);
break;
case DMA_MEM_TO_DEV:
udma_stop_mem2dev(uc, true);
break;
case DMA_MEM_TO_MEM:
udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG, 0);
udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG, 0);
break;
default:
return -EINVAL;
}
return 0;
}
static void udma_poll_completion(struct udma_chan *uc, dma_addr_t *paddr)
{
int i = 1;
while (udma_pop_from_ring(uc, paddr)) {
udelay(1);
if (!(i % 1000000))
printf(".");
i++;
}
}
#define UDMA_RESERVE_RESOURCE(res) \
static struct udma_##res *__udma_reserve_##res(struct udma_dev *ud, \
int id) \
{ \
if (id >= 0) { \
if (test_bit(id, ud->res##_map)) { \
dev_err(ud->dev, "res##%d is in use\n", id); \
return ERR_PTR(-ENOENT); \
} \
} else { \
id = find_first_zero_bit(ud->res##_map, ud->res##_cnt); \
if (id == ud->res##_cnt) { \
return ERR_PTR(-ENOENT); \
} \
} \
\
__set_bit(id, ud->res##_map); \
return &ud->res##s[id]; \
}
UDMA_RESERVE_RESOURCE(tchan);
UDMA_RESERVE_RESOURCE(rchan);
UDMA_RESERVE_RESOURCE(rflow);
static int udma_get_tchan(struct udma_chan *uc)
{
struct udma_dev *ud = uc->ud;
if (uc->tchan) {
dev_dbg(ud->dev, "chan%d: already have tchan%d allocated\n",
uc->id, uc->tchan->id);
return 0;
}
uc->tchan = __udma_reserve_tchan(ud, -1);
if (IS_ERR(uc->tchan))
return PTR_ERR(uc->tchan);
pr_debug("chan%d: got tchan%d\n", uc->id, uc->tchan->id);
return 0;
}
static int udma_get_rchan(struct udma_chan *uc)
{
struct udma_dev *ud = uc->ud;
if (uc->rchan) {
dev_dbg(ud->dev, "chan%d: already have rchan%d allocated\n",
uc->id, uc->rchan->id);
return 0;
}
uc->rchan = __udma_reserve_rchan(ud, -1);
if (IS_ERR(uc->rchan))
return PTR_ERR(uc->rchan);
pr_debug("chan%d: got rchan%d\n", uc->id, uc->rchan->id);
return 0;
}
static int udma_get_chan_pair(struct udma_chan *uc)
{
struct udma_dev *ud = uc->ud;
int chan_id, end;
if ((uc->tchan && uc->rchan) && uc->tchan->id == uc->rchan->id) {
dev_info(ud->dev, "chan%d: already have %d pair allocated\n",
uc->id, uc->tchan->id);
return 0;
}
if (uc->tchan) {
dev_err(ud->dev, "chan%d: already have tchan%d allocated\n",
uc->id, uc->tchan->id);
return -EBUSY;
} else if (uc->rchan) {
dev_err(ud->dev, "chan%d: already have rchan%d allocated\n",
uc->id, uc->rchan->id);
return -EBUSY;
}
/* Can be optimized, but let's have it like this for now */
end = min(ud->tchan_cnt, ud->rchan_cnt);
for (chan_id = 0; chan_id < end; chan_id++) {
if (!test_bit(chan_id, ud->tchan_map) &&
!test_bit(chan_id, ud->rchan_map))
break;
}
if (chan_id == end)
return -ENOENT;
__set_bit(chan_id, ud->tchan_map);
__set_bit(chan_id, ud->rchan_map);
uc->tchan = &ud->tchans[chan_id];
uc->rchan = &ud->rchans[chan_id];
pr_debug("chan%d: got t/rchan%d pair\n", uc->id, chan_id);
return 0;
}
static int udma_get_rflow(struct udma_chan *uc, int flow_id)
{
struct udma_dev *ud = uc->ud;
if (uc->rflow) {
dev_dbg(ud->dev, "chan%d: already have rflow%d allocated\n",
uc->id, uc->rflow->id);
return 0;
}
if (!uc->rchan)
dev_warn(ud->dev, "chan%d: does not have rchan??\n", uc->id);
uc->rflow = __udma_reserve_rflow(ud, flow_id);
if (IS_ERR(uc->rflow))
return PTR_ERR(uc->rflow);
pr_debug("chan%d: got rflow%d\n", uc->id, uc->rflow->id);
return 0;
}
static void udma_put_rchan(struct udma_chan *uc)
{
struct udma_dev *ud = uc->ud;
if (uc->rchan) {
dev_dbg(ud->dev, "chan%d: put rchan%d\n", uc->id,
uc->rchan->id);
__clear_bit(uc->rchan->id, ud->rchan_map);
uc->rchan = NULL;
}
}
static void udma_put_tchan(struct udma_chan *uc)
{
struct udma_dev *ud = uc->ud;
if (uc->tchan) {
dev_dbg(ud->dev, "chan%d: put tchan%d\n", uc->id,
uc->tchan->id);
__clear_bit(uc->tchan->id, ud->tchan_map);
uc->tchan = NULL;
}
}
static void udma_put_rflow(struct udma_chan *uc)
{
struct udma_dev *ud = uc->ud;
if (uc->rflow) {
dev_dbg(ud->dev, "chan%d: put rflow%d\n", uc->id,
uc->rflow->id);
__clear_bit(uc->rflow->id, ud->rflow_map);
uc->rflow = NULL;
}
}
static void udma_free_tx_resources(struct udma_chan *uc)
{
if (!uc->tchan)
return;
k3_nav_ringacc_ring_free(uc->tchan->t_ring);
k3_nav_ringacc_ring_free(uc->tchan->tc_ring);
uc->tchan->t_ring = NULL;
uc->tchan->tc_ring = NULL;
udma_put_tchan(uc);
}
static int udma_alloc_tx_resources(struct udma_chan *uc)
{
struct k3_nav_ring_cfg ring_cfg;
struct udma_dev *ud = uc->ud;
int ret;
ret = udma_get_tchan(uc);
if (ret)
return ret;
uc->tchan->t_ring = k3_nav_ringacc_request_ring(
ud->ringacc, uc->tchan->id,
RINGACC_RING_USE_PROXY);
if (!uc->tchan->t_ring) {
ret = -EBUSY;
goto err_tx_ring;
}
uc->tchan->tc_ring = k3_nav_ringacc_request_ring(
ud->ringacc, -1, RINGACC_RING_USE_PROXY);
if (!uc->tchan->tc_ring) {
ret = -EBUSY;
goto err_txc_ring;
}
memset(&ring_cfg, 0, sizeof(ring_cfg));
ring_cfg.size = 16;
ring_cfg.elm_size = K3_NAV_RINGACC_RING_ELSIZE_8;
ring_cfg.mode = K3_NAV_RINGACC_RING_MODE_MESSAGE;
ret = k3_nav_ringacc_ring_cfg(uc->tchan->t_ring, &ring_cfg);
ret |= k3_nav_ringacc_ring_cfg(uc->tchan->tc_ring, &ring_cfg);
if (ret)
goto err_ringcfg;
return 0;
err_ringcfg:
k3_nav_ringacc_ring_free(uc->tchan->tc_ring);
uc->tchan->tc_ring = NULL;
err_txc_ring:
k3_nav_ringacc_ring_free(uc->tchan->t_ring);
uc->tchan->t_ring = NULL;
err_tx_ring:
udma_put_tchan(uc);
return ret;
}
static void udma_free_rx_resources(struct udma_chan *uc)
{
if (!uc->rchan)
return;
k3_nav_ringacc_ring_free(uc->rchan->fd_ring);
k3_nav_ringacc_ring_free(uc->rchan->r_ring);
uc->rchan->fd_ring = NULL;
uc->rchan->r_ring = NULL;
udma_put_rflow(uc);
udma_put_rchan(uc);
}
static int udma_alloc_rx_resources(struct udma_chan *uc)
{
struct k3_nav_ring_cfg ring_cfg;
struct udma_dev *ud = uc->ud;
int fd_ring_id;
int ret;
ret = udma_get_rchan(uc);
if (ret)
return ret;
/* For MEM_TO_MEM we don't need rflow or rings */
if (uc->dir == DMA_MEM_TO_MEM)
return 0;
ret = udma_get_rflow(uc, uc->rchan->id);
if (ret) {
ret = -EBUSY;
goto err_rflow;
}
fd_ring_id = ud->tchan_cnt + ud->echan_cnt + uc->rchan->id;
uc->rchan->fd_ring = k3_nav_ringacc_request_ring(
ud->ringacc, fd_ring_id,
RINGACC_RING_USE_PROXY);
if (!uc->rchan->fd_ring) {
ret = -EBUSY;
goto err_rx_ring;
}
uc->rchan->r_ring = k3_nav_ringacc_request_ring(
ud->ringacc, -1, RINGACC_RING_USE_PROXY);
if (!uc->rchan->r_ring) {
ret = -EBUSY;
goto err_rxc_ring;
}
memset(&ring_cfg, 0, sizeof(ring_cfg));
ring_cfg.size = 16;
ring_cfg.elm_size = K3_NAV_RINGACC_RING_ELSIZE_8;
ring_cfg.mode = K3_NAV_RINGACC_RING_MODE_MESSAGE;
ret = k3_nav_ringacc_ring_cfg(uc->rchan->fd_ring, &ring_cfg);
ret |= k3_nav_ringacc_ring_cfg(uc->rchan->r_ring, &ring_cfg);
if (ret)
goto err_ringcfg;
return 0;
err_ringcfg:
k3_nav_ringacc_ring_free(uc->rchan->r_ring);
uc->rchan->r_ring = NULL;
err_rxc_ring:
k3_nav_ringacc_ring_free(uc->rchan->fd_ring);
uc->rchan->fd_ring = NULL;
err_rx_ring:
udma_put_rflow(uc);
err_rflow:
udma_put_rchan(uc);
return ret;
}
static int udma_alloc_tchan_sci_req(struct udma_chan *uc)
{
struct udma_dev *ud = uc->ud;
int tc_ring = k3_nav_ringacc_get_ring_id(uc->tchan->tc_ring);
struct ti_sci_msg_rm_udmap_tx_ch_cfg req;
u32 mode;
int ret;
if (uc->pkt_mode)
mode = TI_SCI_RM_UDMAP_CHAN_TYPE_PKT_PBRR;
else
mode = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_BCOPY_PBRR;
req.valid_params = TI_SCI_MSG_VALUE_RM_UDMAP_CH_CHAN_TYPE_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_CH_FETCH_SIZE_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_CH_CQ_QNUM_VALID;
req.nav_id = ud->tisci_dev_id;
req.index = uc->tchan->id;
req.tx_chan_type = mode;
if (uc->dir == DMA_MEM_TO_MEM)
req.tx_fetch_size = sizeof(struct cppi5_desc_hdr_t) >> 2;
else
req.tx_fetch_size = cppi5_hdesc_calc_size(uc->needs_epib,
uc->psd_size,
0) >> 2;
req.txcq_qnum = tc_ring;
ret = ud->tisci_udmap_ops->tx_ch_cfg(ud->tisci, &req);
if (ret)
dev_err(ud->dev, "tisci tx alloc failed %d\n", ret);
return ret;
}
static int udma_alloc_rchan_sci_req(struct udma_chan *uc)
{
struct udma_dev *ud = uc->ud;
int fd_ring = k3_nav_ringacc_get_ring_id(uc->rchan->fd_ring);
int rx_ring = k3_nav_ringacc_get_ring_id(uc->rchan->r_ring);
int tc_ring = k3_nav_ringacc_get_ring_id(uc->tchan->tc_ring);
struct ti_sci_msg_rm_udmap_rx_ch_cfg req = { 0 };
struct ti_sci_msg_rm_udmap_flow_cfg flow_req = { 0 };
u32 mode;
int ret;
if (uc->pkt_mode)
mode = TI_SCI_RM_UDMAP_CHAN_TYPE_PKT_PBRR;
else
mode = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_BCOPY_PBRR;
req.valid_params = TI_SCI_MSG_VALUE_RM_UDMAP_CH_FETCH_SIZE_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_CH_CQ_QNUM_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_CH_CHAN_TYPE_VALID;
req.nav_id = ud->tisci_dev_id;
req.index = uc->rchan->id;
req.rx_chan_type = mode;
if (uc->dir == DMA_MEM_TO_MEM) {
req.rx_fetch_size = sizeof(struct cppi5_desc_hdr_t) >> 2;
req.rxcq_qnum = tc_ring;
} else {
req.rx_fetch_size = cppi5_hdesc_calc_size(uc->needs_epib,
uc->psd_size,
0) >> 2;
req.rxcq_qnum = rx_ring;
}
if (uc->rflow->id != uc->rchan->id && uc->dir != DMA_MEM_TO_MEM) {
req.flowid_start = uc->rflow->id;
req.flowid_cnt = 1;
req.valid_params |=
TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_FLOWID_START_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_FLOWID_CNT_VALID;
}
ret = ud->tisci_udmap_ops->rx_ch_cfg(ud->tisci, &req);
if (ret) {
dev_err(ud->dev, "tisci rx %u cfg failed %d\n",
uc->rchan->id, ret);
return ret;
}
if (uc->dir == DMA_MEM_TO_MEM)
return ret;
flow_req.valid_params =
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_EINFO_PRESENT_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_PSINFO_PRESENT_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_ERROR_HANDLING_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DESC_TYPE_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_QNUM_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_SRC_TAG_HI_SEL_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_SRC_TAG_LO_SEL_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_TAG_HI_SEL_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_TAG_LO_SEL_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ0_SZ0_QNUM_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ1_QNUM_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ2_QNUM_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ3_QNUM_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_PS_LOCATION_VALID;
flow_req.nav_id = ud->tisci_dev_id;
flow_req.flow_index = uc->rflow->id;
if (uc->needs_epib)
flow_req.rx_einfo_present = 1;
else
flow_req.rx_einfo_present = 0;
if (uc->psd_size)
flow_req.rx_psinfo_present = 1;
else
flow_req.rx_psinfo_present = 0;
flow_req.rx_error_handling = 0;
flow_req.rx_desc_type = 0;
flow_req.rx_dest_qnum = rx_ring;
flow_req.rx_src_tag_hi_sel = 2;
flow_req.rx_src_tag_lo_sel = 4;
flow_req.rx_dest_tag_hi_sel = 5;
flow_req.rx_dest_tag_lo_sel = 4;
flow_req.rx_fdq0_sz0_qnum = fd_ring;
flow_req.rx_fdq1_qnum = fd_ring;
flow_req.rx_fdq2_qnum = fd_ring;
flow_req.rx_fdq3_qnum = fd_ring;
flow_req.rx_ps_location = 0;
ret = ud->tisci_udmap_ops->rx_flow_cfg(ud->tisci, &flow_req);
if (ret)
dev_err(ud->dev, "tisci rx %u flow %u cfg failed %d\n",
uc->rchan->id, uc->rflow->id, ret);
return ret;
}
static int udma_alloc_chan_resources(struct udma_chan *uc)
{
struct udma_dev *ud = uc->ud;
int ret;
pr_debug("%s: chan:%d as %s\n",
__func__, uc->id, udma_get_dir_text(uc->dir));
switch (uc->dir) {
case DMA_MEM_TO_MEM:
/* Non synchronized - mem to mem type of transfer */
ret = udma_get_chan_pair(uc);
if (ret)
return ret;
ret = udma_alloc_tx_resources(uc);
if (ret)
goto err_free_res;
ret = udma_alloc_rx_resources(uc);
if (ret)
goto err_free_res;
uc->src_thread = ud->psil_base + uc->tchan->id;
uc->dst_thread = (ud->psil_base + uc->rchan->id) | 0x8000;
break;
case DMA_MEM_TO_DEV:
/* Slave transfer synchronized - mem to dev (TX) trasnfer */
ret = udma_alloc_tx_resources(uc);
if (ret)
goto err_free_res;
uc->src_thread = ud->psil_base + uc->tchan->id;
uc->dst_thread = uc->slave_thread_id;
if (!(uc->dst_thread & 0x8000))
uc->dst_thread |= 0x8000;
break;
case DMA_DEV_TO_MEM:
/* Slave transfer synchronized - dev to mem (RX) trasnfer */
ret = udma_alloc_rx_resources(uc);
if (ret)
goto err_free_res;
uc->src_thread = uc->slave_thread_id;
uc->dst_thread = (ud->psil_base + uc->rchan->id) | 0x8000;
break;
default:
/* Can not happen */
pr_debug("%s: chan:%d invalid direction (%u)\n",
__func__, uc->id, uc->dir);
return -EINVAL;
}
/* We have channel indexes and rings */
if (uc->dir == DMA_MEM_TO_MEM) {
ret = udma_alloc_tchan_sci_req(uc);
if (ret)
goto err_free_res;
ret = udma_alloc_rchan_sci_req(uc);
if (ret)
goto err_free_res;
} else {
/* Slave transfer */
if (uc->dir == DMA_MEM_TO_DEV) {
ret = udma_alloc_tchan_sci_req(uc);
if (ret)
goto err_free_res;
} else {
ret = udma_alloc_rchan_sci_req(uc);
if (ret)
goto err_free_res;
}
}
if (udma_is_chan_running(uc)) {
dev_warn(ud->dev, "chan%d: is running!\n", uc->id);
udma_stop(uc);
if (udma_is_chan_running(uc)) {
dev_err(ud->dev, "chan%d: won't stop!\n", uc->id);
goto err_free_res;
}
}
/* PSI-L pairing */
ret = udma_navss_psil_pair(ud, uc->src_thread, uc->dst_thread);
if (ret) {
dev_err(ud->dev, "k3_nav_psil_request_link fail\n");
goto err_free_res;
}
return 0;
err_free_res:
udma_free_tx_resources(uc);
udma_free_rx_resources(uc);
uc->slave_thread_id = -1;
return ret;
}
static void udma_free_chan_resources(struct udma_chan *uc)
{
/* Some configuration to UDMA-P channel: disable, reset, whatever */
/* Release PSI-L pairing */
udma_navss_psil_unpair(uc->ud, uc->src_thread, uc->dst_thread);
/* Reset the rings for a new start */
udma_reset_rings(uc);
udma_free_tx_resources(uc);
udma_free_rx_resources(uc);
uc->slave_thread_id = -1;
uc->dir = DMA_MEM_TO_MEM;
}
static int udma_get_mmrs(struct udevice *dev)
{
struct udma_dev *ud = dev_get_priv(dev);
int i;
for (i = 0; i < MMR_LAST; i++) {
ud->mmrs[i] = (uint32_t *)devfdt_get_addr_name(dev,
mmr_names[i]);
if (!ud->mmrs[i])
return -EINVAL;
}
return 0;
}
#define UDMA_MAX_CHANNELS 192
static int udma_probe(struct udevice *dev)
{
struct dma_dev_priv *uc_priv = dev_get_uclass_priv(dev);
struct udma_dev *ud = dev_get_priv(dev);
int i, ret;
u32 cap2, cap3;
struct udevice *tmp;
struct udevice *tisci_dev = NULL;
ret = udma_get_mmrs(dev);
if (ret)
return ret;
ret = uclass_get_device_by_phandle(UCLASS_MISC, dev,
"ti,ringacc", &tmp);
ud->ringacc = dev_get_priv(tmp);
if (IS_ERR(ud->ringacc))
return PTR_ERR(ud->ringacc);
ud->psil_base = dev_read_u32_default(dev, "ti,psil-base", 0);
if (!ud->psil_base) {
dev_info(dev,
"Missing ti,psil-base property, using %d.\n", ret);
return -EINVAL;
}
ret = uclass_get_device_by_name(UCLASS_FIRMWARE, "dmsc", &tisci_dev);
if (ret) {
debug("TISCI RA RM get failed (%d)\n", ret);
ud->tisci = NULL;
return 0;
}
ud->tisci = (struct ti_sci_handle *)
(ti_sci_get_handle_from_sysfw(tisci_dev));
ret = dev_read_u32_default(dev, "ti,sci", 0);
if (!ret) {
dev_err(dev, "TISCI RA RM disabled\n");
ud->tisci = NULL;
}
if (ud->tisci) {
ofnode navss_ofnode = ofnode_get_parent(dev_ofnode(dev));
ud->tisci_dev_id = -1;
ret = dev_read_u32(dev, "ti,sci-dev-id", &ud->tisci_dev_id);
if (ret) {
dev_err(dev, "ti,sci-dev-id read failure %d\n", ret);
return ret;
}
ud->tisci_navss_dev_id = -1;
ret = ofnode_read_u32(navss_ofnode, "ti,sci-dev-id",
&ud->tisci_navss_dev_id);
if (ret) {
dev_err(dev, "navss sci-dev-id read failure %d\n", ret);
return ret;
}
ud->tisci_udmap_ops = &ud->tisci->ops.rm_udmap_ops;
ud->tisci_psil_ops = &ud->tisci->ops.rm_psil_ops;
}
ud->is_coherent = dev_read_bool(dev, "dma-coherent");
cap2 = udma_read(ud->mmrs[MMR_GCFG], 0x28);
cap3 = udma_read(ud->mmrs[MMR_GCFG], 0x2c);
ud->rflow_cnt = cap3 & 0x3fff;
ud->tchan_cnt = cap2 & 0x1ff;
ud->echan_cnt = (cap2 >> 9) & 0x1ff;
ud->rchan_cnt = (cap2 >> 18) & 0x1ff;
ud->ch_count = ud->tchan_cnt + ud->rchan_cnt;
dev_info(dev,
"Number of channels: %u (tchan: %u, echan: %u, rchan: %u dev-id %u)\n",
ud->ch_count, ud->tchan_cnt, ud->echan_cnt, ud->rchan_cnt,
ud->tisci_dev_id);
dev_info(dev, "Number of rflows: %u\n", ud->rflow_cnt);
ud->channels = devm_kcalloc(dev, ud->ch_count, sizeof(*ud->channels),
GFP_KERNEL);
ud->tchan_map = devm_kcalloc(dev, BITS_TO_LONGS(ud->tchan_cnt),
sizeof(unsigned long), GFP_KERNEL);
ud->tchans = devm_kcalloc(dev, ud->tchan_cnt,
sizeof(*ud->tchans), GFP_KERNEL);
ud->rchan_map = devm_kcalloc(dev, BITS_TO_LONGS(ud->rchan_cnt),
sizeof(unsigned long), GFP_KERNEL);
ud->rchans = devm_kcalloc(dev, ud->rchan_cnt,
sizeof(*ud->rchans), GFP_KERNEL);
ud->rflow_map = devm_kcalloc(dev, BITS_TO_LONGS(ud->rflow_cnt),
sizeof(unsigned long), GFP_KERNEL);
ud->rflows = devm_kcalloc(dev, ud->rflow_cnt,
sizeof(*ud->rflows), GFP_KERNEL);
if (!ud->channels || !ud->tchan_map || !ud->rchan_map ||
!ud->rflow_map || !ud->tchans || !ud->rchans || !ud->rflows)
return -ENOMEM;
for (i = 0; i < ud->tchan_cnt; i++) {
struct udma_tchan *tchan = &ud->tchans[i];
tchan->id = i;
tchan->reg_rt = ud->mmrs[MMR_TCHANRT] + UDMA_CH_1000(i);
}
for (i = 0; i < ud->rchan_cnt; i++) {
struct udma_rchan *rchan = &ud->rchans[i];
rchan->id = i;
rchan->reg_rt = ud->mmrs[MMR_RCHANRT] + UDMA_CH_1000(i);
}
for (i = 0; i < ud->rflow_cnt; i++) {
struct udma_rflow *rflow = &ud->rflows[i];
rflow->id = i;
}
for (i = 0; i < ud->ch_count; i++) {
struct udma_chan *uc = &ud->channels[i];
uc->ud = ud;
uc->id = i;
uc->slave_thread_id = -1;
uc->tchan = NULL;
uc->rchan = NULL;
uc->dir = DMA_MEM_TO_MEM;
sprintf(uc->name, "UDMA chan%d\n", i);
if (!i)
uc->in_use = true;
}
pr_debug("UDMA(rev: 0x%08x) CAP0-3: 0x%08x, 0x%08x, 0x%08x, 0x%08x\n",
udma_read(ud->mmrs[MMR_GCFG], 0),
udma_read(ud->mmrs[MMR_GCFG], 0x20),
udma_read(ud->mmrs[MMR_GCFG], 0x24),
udma_read(ud->mmrs[MMR_GCFG], 0x28),
udma_read(ud->mmrs[MMR_GCFG], 0x2c));
uc_priv->supported = DMA_SUPPORTS_MEM_TO_MEM | DMA_SUPPORTS_MEM_TO_DEV;
return ret;
}
static int *udma_prep_dma_memcpy(struct udma_chan *uc, dma_addr_t dest,
dma_addr_t src, size_t len)
{
u32 tc_ring_id = k3_nav_ringacc_get_ring_id(uc->tchan->tc_ring);
struct cppi5_tr_type15_t *tr_req;
int num_tr;
size_t tr_size = sizeof(struct cppi5_tr_type15_t);
u16 tr0_cnt0, tr0_cnt1, tr1_cnt0;
unsigned long dummy;
void *tr_desc;
size_t desc_size;
if (len < SZ_64K) {
num_tr = 1;
tr0_cnt0 = len;
tr0_cnt1 = 1;
} else {
unsigned long align_to = __ffs(src | dest);
if (align_to > 3)
align_to = 3;
/*
* Keep simple: tr0: SZ_64K-alignment blocks,
* tr1: the remaining
*/
num_tr = 2;
tr0_cnt0 = (SZ_64K - BIT(align_to));
if (len / tr0_cnt0 >= SZ_64K) {
dev_err(uc->ud->dev, "size %zu is not supported\n",
len);
return NULL;
}
tr0_cnt1 = len / tr0_cnt0;
tr1_cnt0 = len % tr0_cnt0;
}
desc_size = cppi5_trdesc_calc_size(num_tr, tr_size);
tr_desc = dma_alloc_coherent(desc_size, &dummy);
if (!tr_desc)
return NULL;
memset(tr_desc, 0, desc_size);
cppi5_trdesc_init(tr_desc, num_tr, tr_size, 0, 0);
cppi5_desc_set_pktids(tr_desc, uc->id, 0x3fff);
cppi5_desc_set_retpolicy(tr_desc, 0, tc_ring_id);
tr_req = tr_desc + tr_size;
cppi5_tr_init(&tr_req[0].flags, CPPI5_TR_TYPE15, false, true,
CPPI5_TR_EVENT_SIZE_COMPLETION, 1);
cppi5_tr_csf_set(&tr_req[0].flags, CPPI5_TR_CSF_SUPR_EVT);
tr_req[0].addr = src;
tr_req[0].icnt0 = tr0_cnt0;
tr_req[0].icnt1 = tr0_cnt1;
tr_req[0].icnt2 = 1;
tr_req[0].icnt3 = 1;
tr_req[0].dim1 = tr0_cnt0;
tr_req[0].daddr = dest;
tr_req[0].dicnt0 = tr0_cnt0;
tr_req[0].dicnt1 = tr0_cnt1;
tr_req[0].dicnt2 = 1;
tr_req[0].dicnt3 = 1;
tr_req[0].ddim1 = tr0_cnt0;
if (num_tr == 2) {
cppi5_tr_init(&tr_req[1].flags, CPPI5_TR_TYPE15, false, true,
CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
cppi5_tr_csf_set(&tr_req[1].flags, CPPI5_TR_CSF_SUPR_EVT);
tr_req[1].addr = src + tr0_cnt1 * tr0_cnt0;
tr_req[1].icnt0 = tr1_cnt0;
tr_req[1].icnt1 = 1;
tr_req[1].icnt2 = 1;
tr_req[1].icnt3 = 1;
tr_req[1].daddr = dest + tr0_cnt1 * tr0_cnt0;
tr_req[1].dicnt0 = tr1_cnt0;
tr_req[1].dicnt1 = 1;
tr_req[1].dicnt2 = 1;
tr_req[1].dicnt3 = 1;
}
cppi5_tr_csf_set(&tr_req[num_tr - 1].flags, CPPI5_TR_CSF_EOP);
if (!udma_is_coherent(uc)) {
flush_dcache_range((u64)tr_desc,
ALIGN((u64)tr_desc + desc_size,
ARCH_DMA_MINALIGN));
}
k3_nav_ringacc_ring_push(uc->tchan->t_ring, &tr_desc);
return 0;
}
static int udma_transfer(struct udevice *dev, int direction,
void *dst, void *src, size_t len)
{
struct udma_dev *ud = dev_get_priv(dev);
/* Channel0 is reserved for memcpy */
struct udma_chan *uc = &ud->channels[0];
dma_addr_t paddr = 0;
int ret;
ret = udma_alloc_chan_resources(uc);
if (ret)
return ret;
udma_prep_dma_memcpy(uc, (dma_addr_t)dst, (dma_addr_t)src, len);
udma_start(uc);
udma_poll_completion(uc, &paddr);
udma_stop(uc);
udma_free_chan_resources(uc);
return 0;
}
static int udma_request(struct dma *dma)
{
struct udma_dev *ud = dev_get_priv(dma->dev);
struct udma_chan *uc;
unsigned long dummy;
int ret;
if (dma->id >= (ud->rchan_cnt + ud->tchan_cnt)) {
dev_err(dma->dev, "invalid dma ch_id %lu\n", dma->id);
return -EINVAL;
}
uc = &ud->channels[dma->id];
ret = udma_alloc_chan_resources(uc);
if (ret) {
dev_err(dma->dev, "alloc dma res failed %d\n", ret);
return -EINVAL;
}
uc->hdesc_size = cppi5_hdesc_calc_size(uc->needs_epib,
uc->psd_size, 0);
uc->hdesc_size = ALIGN(uc->hdesc_size, ARCH_DMA_MINALIGN);
if (uc->dir == DMA_MEM_TO_DEV) {
uc->desc_tx = dma_alloc_coherent(uc->hdesc_size, &dummy);
memset(uc->desc_tx, 0, uc->hdesc_size);
} else {
uc->desc_rx = dma_alloc_coherent(
uc->hdesc_size * UDMA_RX_DESC_NUM, &dummy);
memset(uc->desc_rx, 0, uc->hdesc_size * UDMA_RX_DESC_NUM);
}
uc->in_use = true;
uc->desc_rx_cur = 0;
uc->num_rx_bufs = 0;
return 0;
}
static int udma_free(struct dma *dma)
{
struct udma_dev *ud = dev_get_priv(dma->dev);
struct udma_chan *uc;
if (dma->id >= (ud->rchan_cnt + ud->tchan_cnt)) {
dev_err(dma->dev, "invalid dma ch_id %lu\n", dma->id);
return -EINVAL;
}
uc = &ud->channels[dma->id];
if (udma_is_chan_running(uc))
udma_stop(uc);
udma_free_chan_resources(uc);
uc->in_use = false;
return 0;
}
static int udma_enable(struct dma *dma)
{
struct udma_dev *ud = dev_get_priv(dma->dev);
struct udma_chan *uc;
int ret;
if (dma->id >= (ud->rchan_cnt + ud->tchan_cnt)) {
dev_err(dma->dev, "invalid dma ch_id %lu\n", dma->id);
return -EINVAL;
}
uc = &ud->channels[dma->id];
ret = udma_start(uc);
return ret;
}
static int udma_disable(struct dma *dma)
{
struct udma_dev *ud = dev_get_priv(dma->dev);
struct udma_chan *uc;
int ret = 0;
if (dma->id >= (ud->rchan_cnt + ud->tchan_cnt)) {
dev_err(dma->dev, "invalid dma ch_id %lu\n", dma->id);
return -EINVAL;
}
uc = &ud->channels[dma->id];
if (udma_is_chan_running(uc))
ret = udma_stop(uc);
else
dev_err(dma->dev, "%s not running\n", __func__);
return ret;
}
static int udma_send(struct dma *dma, void *src, size_t len, void *metadata)
{
struct udma_dev *ud = dev_get_priv(dma->dev);
struct cppi5_host_desc_t *desc_tx;
dma_addr_t dma_src = (dma_addr_t)src;
struct ti_udma_drv_packet_data packet_data = { 0 };
dma_addr_t paddr;
struct udma_chan *uc;
u32 tc_ring_id;
int ret;
if (metadata)
packet_data = *((struct ti_udma_drv_packet_data *)metadata);
if (dma->id >= (ud->rchan_cnt + ud->tchan_cnt)) {
dev_err(dma->dev, "invalid dma ch_id %lu\n", dma->id);
return -EINVAL;
}
uc = &ud->channels[dma->id];
if (uc->dir != DMA_MEM_TO_DEV)
return -EINVAL;
tc_ring_id = k3_nav_ringacc_get_ring_id(uc->tchan->tc_ring);
desc_tx = uc->desc_tx;
cppi5_hdesc_reset_hbdesc(desc_tx);
cppi5_hdesc_init(desc_tx,
uc->needs_epib ? CPPI5_INFO0_HDESC_EPIB_PRESENT : 0,
uc->psd_size);
cppi5_hdesc_set_pktlen(desc_tx, len);
cppi5_hdesc_attach_buf(desc_tx, dma_src, len, dma_src, len);
cppi5_desc_set_pktids(&desc_tx->hdr, uc->id, 0x3fff);
cppi5_desc_set_retpolicy(&desc_tx->hdr, 0, tc_ring_id);
/* pass below information from caller */
cppi5_hdesc_set_pkttype(desc_tx, packet_data.pkt_type);
cppi5_desc_set_tags_ids(&desc_tx->hdr, 0, packet_data.dest_tag);
if (!udma_is_coherent(uc)) {
flush_dcache_range((u64)dma_src,
ALIGN((u64)dma_src + len,
ARCH_DMA_MINALIGN));
flush_dcache_range((u64)desc_tx,
ALIGN((u64)desc_tx + uc->hdesc_size,
ARCH_DMA_MINALIGN));
}
ret = k3_nav_ringacc_ring_push(uc->tchan->t_ring, &uc->desc_tx);
if (ret) {
dev_err(dma->dev, "TX dma push fail ch_id %lu %d\n",
dma->id, ret);
return ret;
}
udma_poll_completion(uc, &paddr);
return 0;
}
static int udma_receive(struct dma *dma, void **dst, void *metadata)
{
struct udma_dev *ud = dev_get_priv(dma->dev);
struct cppi5_host_desc_t *desc_rx;
dma_addr_t buf_dma;
struct udma_chan *uc;
u32 buf_dma_len, pkt_len;
u32 port_id = 0;
int ret;
if (dma->id >= (ud->rchan_cnt + ud->tchan_cnt)) {
dev_err(dma->dev, "invalid dma ch_id %lu\n", dma->id);
return -EINVAL;
}
uc = &ud->channels[dma->id];
if (uc->dir != DMA_DEV_TO_MEM)
return -EINVAL;
if (!uc->num_rx_bufs)
return -EINVAL;
ret = k3_nav_ringacc_ring_pop(uc->rchan->r_ring, &desc_rx);
if (ret && ret != -ENODATA) {
dev_err(dma->dev, "rx dma fail ch_id:%lu %d\n", dma->id, ret);
return ret;
} else if (ret == -ENODATA) {
return 0;
}
/* invalidate cache data */
if (!udma_is_coherent(uc)) {
invalidate_dcache_range((ulong)desc_rx,
(ulong)(desc_rx + uc->hdesc_size));
}
cppi5_hdesc_get_obuf(desc_rx, &buf_dma, &buf_dma_len);
pkt_len = cppi5_hdesc_get_pktlen(desc_rx);
/* invalidate cache data */
if (!udma_is_coherent(uc)) {
invalidate_dcache_range((ulong)buf_dma,
(ulong)(buf_dma + buf_dma_len));
}
cppi5_desc_get_tags_ids(&desc_rx->hdr, &port_id, NULL);
*dst = (void *)buf_dma;
uc->num_rx_bufs--;
return pkt_len;
}
static int udma_of_xlate(struct dma *dma, struct ofnode_phandle_args *args)
{
struct udma_dev *ud = dev_get_priv(dma->dev);
struct udma_chan *uc = &ud->channels[0];
ofnode chconf_node, slave_node;
char prop[50];
u32 val;
for (val = 0; val < ud->ch_count; val++) {
uc = &ud->channels[val];
if (!uc->in_use)
break;
}
if (val == ud->ch_count)
return -EBUSY;
uc->dir = DMA_DEV_TO_MEM;
if (args->args[2] == UDMA_DIR_TX)
uc->dir = DMA_MEM_TO_DEV;
slave_node = ofnode_get_by_phandle(args->args[0]);
if (!ofnode_valid(slave_node)) {
dev_err(ud->dev, "slave node is missing\n");
return -EINVAL;
}
snprintf(prop, sizeof(prop), "ti,psil-config%u", args->args[1]);
chconf_node = ofnode_find_subnode(slave_node, prop);
if (!ofnode_valid(chconf_node)) {
dev_err(ud->dev, "Channel configuration node is missing\n");
return -EINVAL;
}
if (!ofnode_read_u32(chconf_node, "linux,udma-mode", &val)) {
if (val == UDMA_PKT_MODE)
uc->pkt_mode = true;
}
if (!ofnode_read_u32(chconf_node, "statictr-type", &val))
uc->static_tr_type = val;
uc->needs_epib = ofnode_read_bool(chconf_node, "ti,needs-epib");
if (!ofnode_read_u32(chconf_node, "ti,psd-size", &val))
uc->psd_size = val;
uc->metadata_size = (uc->needs_epib ? 16 : 0) + uc->psd_size;
if (ofnode_read_u32(slave_node, "ti,psil-base", &val)) {
dev_err(ud->dev, "ti,psil-base is missing\n");
return -EINVAL;
}
uc->slave_thread_id = val + args->args[1];
dma->id = uc->id;
pr_debug("Allocated dma chn:%lu epib:%d psdata:%u meta:%u thread_id:%x\n",
dma->id, uc->needs_epib,
uc->psd_size, uc->metadata_size,
uc->slave_thread_id);
return 0;
}
int udma_prepare_rcv_buf(struct dma *dma, void *dst, size_t size)
{
struct udma_dev *ud = dev_get_priv(dma->dev);
struct cppi5_host_desc_t *desc_rx;
dma_addr_t dma_dst;
struct udma_chan *uc;
u32 desc_num;
if (dma->id >= (ud->rchan_cnt + ud->tchan_cnt)) {
dev_err(dma->dev, "invalid dma ch_id %lu\n", dma->id);
return -EINVAL;
}
uc = &ud->channels[dma->id];
if (uc->dir != DMA_DEV_TO_MEM)
return -EINVAL;
if (uc->num_rx_bufs >= UDMA_RX_DESC_NUM)
return -EINVAL;
desc_num = uc->desc_rx_cur % UDMA_RX_DESC_NUM;
desc_rx = uc->desc_rx + (desc_num * uc->hdesc_size);
dma_dst = (dma_addr_t)dst;
cppi5_hdesc_reset_hbdesc(desc_rx);
cppi5_hdesc_init(desc_rx,
uc->needs_epib ? CPPI5_INFO0_HDESC_EPIB_PRESENT : 0,
uc->psd_size);
cppi5_hdesc_set_pktlen(desc_rx, size);
cppi5_hdesc_attach_buf(desc_rx, dma_dst, size, dma_dst, size);
if (!udma_is_coherent(uc)) {
flush_dcache_range((u64)desc_rx,
ALIGN((u64)desc_rx + uc->hdesc_size,
ARCH_DMA_MINALIGN));
}
k3_nav_ringacc_ring_push(uc->rchan->fd_ring, &desc_rx);
uc->num_rx_bufs++;
uc->desc_rx_cur++;
return 0;
}
static const struct dma_ops udma_ops = {
.transfer = udma_transfer,
.of_xlate = udma_of_xlate,
.request = udma_request,
.free = udma_free,
.enable = udma_enable,
.disable = udma_disable,
.send = udma_send,
.receive = udma_receive,
.prepare_rcv_buf = udma_prepare_rcv_buf,
};
static const struct udevice_id udma_ids[] = {
{ .compatible = "ti,k3-navss-udmap" },
{ }
};
U_BOOT_DRIVER(ti_edma3) = {
.name = "ti-udma",
.id = UCLASS_DMA,
.of_match = udma_ids,
.ops = &udma_ops,
.probe = udma_probe,
.priv_auto_alloc_size = sizeof(struct udma_dev),
};