| /************************************************************************** |
| Intel Pro 1000 for ppcboot/das-u-boot |
| Drivers are port from Intel's Linux driver e1000-4.3.15 |
| and from Etherboot pro 1000 driver by mrakes at vivato dot net |
| tested on both gig copper and gig fiber boards |
| ***************************************************************************/ |
| /******************************************************************************* |
| |
| |
| Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved. |
| |
| * SPDX-License-Identifier: GPL-2.0+ |
| |
| Contact Information: |
| Linux NICS <linux.nics@intel.com> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| *******************************************************************************/ |
| /* |
| * Copyright (C) Archway Digital Solutions. |
| * |
| * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org> |
| * 2/9/2002 |
| * |
| * Copyright (C) Linux Networx. |
| * Massive upgrade to work with the new intel gigabit NICs. |
| * <ebiederman at lnxi dot com> |
| * |
| * Copyright 2011 Freescale Semiconductor, Inc. |
| */ |
| |
| #include "e1000.h" |
| |
| #define TOUT_LOOP 100000 |
| |
| #define virt_to_bus(devno, v) pci_virt_to_mem(devno, (void *) (v)) |
| #define bus_to_phys(devno, a) pci_mem_to_phys(devno, a) |
| |
| #define E1000_DEFAULT_PCI_PBA 0x00000030 |
| #define E1000_DEFAULT_PCIE_PBA 0x000a0026 |
| |
| /* NIC specific static variables go here */ |
| |
| /* Intel i210 needs the DMA descriptor rings aligned to 128b */ |
| #define E1000_BUFFER_ALIGN 128 |
| |
| DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN); |
| DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN); |
| DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN); |
| |
| static int tx_tail; |
| static int rx_tail, rx_last; |
| |
| static struct pci_device_id e1000_supported[] = { |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF}, |
| /* E1000 PCIe card */ |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER }, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES }, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX}, |
| |
| {} |
| }; |
| |
| /* Function forward declarations */ |
| static int e1000_setup_link(struct eth_device *nic); |
| static int e1000_setup_fiber_link(struct eth_device *nic); |
| static int e1000_setup_copper_link(struct eth_device *nic); |
| static int e1000_phy_setup_autoneg(struct e1000_hw *hw); |
| static void e1000_config_collision_dist(struct e1000_hw *hw); |
| static int e1000_config_mac_to_phy(struct e1000_hw *hw); |
| static int e1000_config_fc_after_link_up(struct e1000_hw *hw); |
| static int e1000_check_for_link(struct eth_device *nic); |
| static int e1000_wait_autoneg(struct e1000_hw *hw); |
| static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed, |
| uint16_t * duplex); |
| static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, |
| uint16_t * phy_data); |
| static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, |
| uint16_t phy_data); |
| static int32_t e1000_phy_hw_reset(struct e1000_hw *hw); |
| static int e1000_phy_reset(struct e1000_hw *hw); |
| static int e1000_detect_gig_phy(struct e1000_hw *hw); |
| static void e1000_set_media_type(struct e1000_hw *hw); |
| |
| static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask); |
| static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); |
| |
| #ifndef CONFIG_E1000_NO_NVM |
| static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw); |
| static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, |
| uint16_t words, |
| uint16_t *data); |
| /****************************************************************************** |
| * Raises the EEPROM's clock input. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * eecd - EECD's current value |
| *****************************************************************************/ |
| void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd) |
| { |
| /* Raise the clock input to the EEPROM (by setting the SK bit), and then |
| * wait 50 microseconds. |
| */ |
| *eecd = *eecd | E1000_EECD_SK; |
| E1000_WRITE_REG(hw, EECD, *eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(50); |
| } |
| |
| /****************************************************************************** |
| * Lowers the EEPROM's clock input. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * eecd - EECD's current value |
| *****************************************************************************/ |
| void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd) |
| { |
| /* Lower the clock input to the EEPROM (by clearing the SK bit), and then |
| * wait 50 microseconds. |
| */ |
| *eecd = *eecd & ~E1000_EECD_SK; |
| E1000_WRITE_REG(hw, EECD, *eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(50); |
| } |
| |
| /****************************************************************************** |
| * Shift data bits out to the EEPROM. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * data - data to send to the EEPROM |
| * count - number of bits to shift out |
| *****************************************************************************/ |
| static void |
| e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count) |
| { |
| uint32_t eecd; |
| uint32_t mask; |
| |
| /* We need to shift "count" bits out to the EEPROM. So, value in the |
| * "data" parameter will be shifted out to the EEPROM one bit at a time. |
| * In order to do this, "data" must be broken down into bits. |
| */ |
| mask = 0x01 << (count - 1); |
| eecd = E1000_READ_REG(hw, EECD); |
| eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
| do { |
| /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", |
| * and then raising and then lowering the clock (the SK bit controls |
| * the clock input to the EEPROM). A "0" is shifted out to the EEPROM |
| * by setting "DI" to "0" and then raising and then lowering the clock. |
| */ |
| eecd &= ~E1000_EECD_DI; |
| |
| if (data & mask) |
| eecd |= E1000_EECD_DI; |
| |
| E1000_WRITE_REG(hw, EECD, eecd); |
| E1000_WRITE_FLUSH(hw); |
| |
| udelay(50); |
| |
| e1000_raise_ee_clk(hw, &eecd); |
| e1000_lower_ee_clk(hw, &eecd); |
| |
| mask = mask >> 1; |
| |
| } while (mask); |
| |
| /* We leave the "DI" bit set to "0" when we leave this routine. */ |
| eecd &= ~E1000_EECD_DI; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| } |
| |
| /****************************************************************************** |
| * Shift data bits in from the EEPROM |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static uint16_t |
| e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count) |
| { |
| uint32_t eecd; |
| uint32_t i; |
| uint16_t data; |
| |
| /* In order to read a register from the EEPROM, we need to shift 'count' |
| * bits in from the EEPROM. Bits are "shifted in" by raising the clock |
| * input to the EEPROM (setting the SK bit), and then reading the |
| * value of the "DO" bit. During this "shifting in" process the |
| * "DI" bit should always be clear. |
| */ |
| |
| eecd = E1000_READ_REG(hw, EECD); |
| |
| eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
| data = 0; |
| |
| for (i = 0; i < count; i++) { |
| data = data << 1; |
| e1000_raise_ee_clk(hw, &eecd); |
| |
| eecd = E1000_READ_REG(hw, EECD); |
| |
| eecd &= ~(E1000_EECD_DI); |
| if (eecd & E1000_EECD_DO) |
| data |= 1; |
| |
| e1000_lower_ee_clk(hw, &eecd); |
| } |
| |
| return data; |
| } |
| |
| /****************************************************************************** |
| * Returns EEPROM to a "standby" state |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| void e1000_standby_eeprom(struct e1000_hw *hw) |
| { |
| struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| uint32_t eecd; |
| |
| eecd = E1000_READ_REG(hw, EECD); |
| |
| if (eeprom->type == e1000_eeprom_microwire) { |
| eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
| E1000_WRITE_REG(hw, EECD, eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(eeprom->delay_usec); |
| |
| /* Clock high */ |
| eecd |= E1000_EECD_SK; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(eeprom->delay_usec); |
| |
| /* Select EEPROM */ |
| eecd |= E1000_EECD_CS; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(eeprom->delay_usec); |
| |
| /* Clock low */ |
| eecd &= ~E1000_EECD_SK; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(eeprom->delay_usec); |
| } else if (eeprom->type == e1000_eeprom_spi) { |
| /* Toggle CS to flush commands */ |
| eecd |= E1000_EECD_CS; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(eeprom->delay_usec); |
| eecd &= ~E1000_EECD_CS; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(eeprom->delay_usec); |
| } |
| } |
| |
| /*************************************************************************** |
| * Description: Determines if the onboard NVM is FLASH or EEPROM. |
| * |
| * hw - Struct containing variables accessed by shared code |
| ****************************************************************************/ |
| static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) |
| { |
| uint32_t eecd = 0; |
| |
| DEBUGFUNC(); |
| |
| if (hw->mac_type == e1000_ich8lan) |
| return false; |
| |
| if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) { |
| eecd = E1000_READ_REG(hw, EECD); |
| |
| /* Isolate bits 15 & 16 */ |
| eecd = ((eecd >> 15) & 0x03); |
| |
| /* If both bits are set, device is Flash type */ |
| if (eecd == 0x03) |
| return false; |
| } |
| return true; |
| } |
| |
| /****************************************************************************** |
| * Prepares EEPROM for access |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This |
| * function should be called before issuing a command to the EEPROM. |
| *****************************************************************************/ |
| int32_t e1000_acquire_eeprom(struct e1000_hw *hw) |
| { |
| struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| uint32_t eecd, i = 0; |
| |
| DEBUGFUNC(); |
| |
| if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM)) |
| return -E1000_ERR_SWFW_SYNC; |
| eecd = E1000_READ_REG(hw, EECD); |
| |
| if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) { |
| /* Request EEPROM Access */ |
| if (hw->mac_type > e1000_82544) { |
| eecd |= E1000_EECD_REQ; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| eecd = E1000_READ_REG(hw, EECD); |
| while ((!(eecd & E1000_EECD_GNT)) && |
| (i < E1000_EEPROM_GRANT_ATTEMPTS)) { |
| i++; |
| udelay(5); |
| eecd = E1000_READ_REG(hw, EECD); |
| } |
| if (!(eecd & E1000_EECD_GNT)) { |
| eecd &= ~E1000_EECD_REQ; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| DEBUGOUT("Could not acquire EEPROM grant\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| } |
| } |
| |
| /* Setup EEPROM for Read/Write */ |
| |
| if (eeprom->type == e1000_eeprom_microwire) { |
| /* Clear SK and DI */ |
| eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); |
| E1000_WRITE_REG(hw, EECD, eecd); |
| |
| /* Set CS */ |
| eecd |= E1000_EECD_CS; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| } else if (eeprom->type == e1000_eeprom_spi) { |
| /* Clear SK and CS */ |
| eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
| E1000_WRITE_REG(hw, EECD, eecd); |
| udelay(1); |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Sets up eeprom variables in the hw struct. Must be called after mac_type |
| * is configured. Additionally, if this is ICH8, the flash controller GbE |
| * registers must be mapped, or this will crash. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static int32_t e1000_init_eeprom_params(struct e1000_hw *hw) |
| { |
| struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| uint32_t eecd; |
| int32_t ret_val = E1000_SUCCESS; |
| uint16_t eeprom_size; |
| |
| if (hw->mac_type == e1000_igb) |
| eecd = E1000_READ_REG(hw, I210_EECD); |
| else |
| eecd = E1000_READ_REG(hw, EECD); |
| |
| DEBUGFUNC(); |
| |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| case e1000_82543: |
| case e1000_82544: |
| eeprom->type = e1000_eeprom_microwire; |
| eeprom->word_size = 64; |
| eeprom->opcode_bits = 3; |
| eeprom->address_bits = 6; |
| eeprom->delay_usec = 50; |
| eeprom->use_eerd = false; |
| eeprom->use_eewr = false; |
| break; |
| case e1000_82540: |
| case e1000_82545: |
| case e1000_82545_rev_3: |
| case e1000_82546: |
| case e1000_82546_rev_3: |
| eeprom->type = e1000_eeprom_microwire; |
| eeprom->opcode_bits = 3; |
| eeprom->delay_usec = 50; |
| if (eecd & E1000_EECD_SIZE) { |
| eeprom->word_size = 256; |
| eeprom->address_bits = 8; |
| } else { |
| eeprom->word_size = 64; |
| eeprom->address_bits = 6; |
| } |
| eeprom->use_eerd = false; |
| eeprom->use_eewr = false; |
| break; |
| case e1000_82541: |
| case e1000_82541_rev_2: |
| case e1000_82547: |
| case e1000_82547_rev_2: |
| if (eecd & E1000_EECD_TYPE) { |
| eeprom->type = e1000_eeprom_spi; |
| eeprom->opcode_bits = 8; |
| eeprom->delay_usec = 1; |
| if (eecd & E1000_EECD_ADDR_BITS) { |
| eeprom->page_size = 32; |
| eeprom->address_bits = 16; |
| } else { |
| eeprom->page_size = 8; |
| eeprom->address_bits = 8; |
| } |
| } else { |
| eeprom->type = e1000_eeprom_microwire; |
| eeprom->opcode_bits = 3; |
| eeprom->delay_usec = 50; |
| if (eecd & E1000_EECD_ADDR_BITS) { |
| eeprom->word_size = 256; |
| eeprom->address_bits = 8; |
| } else { |
| eeprom->word_size = 64; |
| eeprom->address_bits = 6; |
| } |
| } |
| eeprom->use_eerd = false; |
| eeprom->use_eewr = false; |
| break; |
| case e1000_82571: |
| case e1000_82572: |
| eeprom->type = e1000_eeprom_spi; |
| eeprom->opcode_bits = 8; |
| eeprom->delay_usec = 1; |
| if (eecd & E1000_EECD_ADDR_BITS) { |
| eeprom->page_size = 32; |
| eeprom->address_bits = 16; |
| } else { |
| eeprom->page_size = 8; |
| eeprom->address_bits = 8; |
| } |
| eeprom->use_eerd = false; |
| eeprom->use_eewr = false; |
| break; |
| case e1000_82573: |
| case e1000_82574: |
| eeprom->type = e1000_eeprom_spi; |
| eeprom->opcode_bits = 8; |
| eeprom->delay_usec = 1; |
| if (eecd & E1000_EECD_ADDR_BITS) { |
| eeprom->page_size = 32; |
| eeprom->address_bits = 16; |
| } else { |
| eeprom->page_size = 8; |
| eeprom->address_bits = 8; |
| } |
| if (e1000_is_onboard_nvm_eeprom(hw) == false) { |
| eeprom->use_eerd = true; |
| eeprom->use_eewr = true; |
| |
| eeprom->type = e1000_eeprom_flash; |
| eeprom->word_size = 2048; |
| |
| /* Ensure that the Autonomous FLASH update bit is cleared due to |
| * Flash update issue on parts which use a FLASH for NVM. */ |
| eecd &= ~E1000_EECD_AUPDEN; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| } |
| break; |
| case e1000_80003es2lan: |
| eeprom->type = e1000_eeprom_spi; |
| eeprom->opcode_bits = 8; |
| eeprom->delay_usec = 1; |
| if (eecd & E1000_EECD_ADDR_BITS) { |
| eeprom->page_size = 32; |
| eeprom->address_bits = 16; |
| } else { |
| eeprom->page_size = 8; |
| eeprom->address_bits = 8; |
| } |
| eeprom->use_eerd = true; |
| eeprom->use_eewr = false; |
| break; |
| case e1000_igb: |
| /* i210 has 4k of iNVM mapped as EEPROM */ |
| eeprom->type = e1000_eeprom_invm; |
| eeprom->opcode_bits = 8; |
| eeprom->delay_usec = 1; |
| eeprom->page_size = 32; |
| eeprom->address_bits = 16; |
| eeprom->use_eerd = true; |
| eeprom->use_eewr = false; |
| break; |
| |
| /* ich8lan does not support currently. if needed, please |
| * add corresponding code and functions. |
| */ |
| #if 0 |
| case e1000_ich8lan: |
| { |
| int32_t i = 0; |
| |
| eeprom->type = e1000_eeprom_ich8; |
| eeprom->use_eerd = false; |
| eeprom->use_eewr = false; |
| eeprom->word_size = E1000_SHADOW_RAM_WORDS; |
| uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw, |
| ICH_FLASH_GFPREG); |
| /* Zero the shadow RAM structure. But don't load it from NVM |
| * so as to save time for driver init */ |
| if (hw->eeprom_shadow_ram != NULL) { |
| for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { |
| hw->eeprom_shadow_ram[i].modified = false; |
| hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; |
| } |
| } |
| |
| hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) * |
| ICH_FLASH_SECTOR_SIZE; |
| |
| hw->flash_bank_size = ((flash_size >> 16) |
| & ICH_GFPREG_BASE_MASK) + 1; |
| hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK); |
| |
| hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE; |
| |
| hw->flash_bank_size /= 2 * sizeof(uint16_t); |
| break; |
| } |
| #endif |
| default: |
| break; |
| } |
| |
| if (eeprom->type == e1000_eeprom_spi || |
| eeprom->type == e1000_eeprom_invm) { |
| /* eeprom_size will be an enum [0..8] that maps |
| * to eeprom sizes 128B to |
| * 32KB (incremented by powers of 2). |
| */ |
| if (hw->mac_type <= e1000_82547_rev_2) { |
| /* Set to default value for initial eeprom read. */ |
| eeprom->word_size = 64; |
| ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, |
| &eeprom_size); |
| if (ret_val) |
| return ret_val; |
| eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) |
| >> EEPROM_SIZE_SHIFT; |
| /* 256B eeprom size was not supported in earlier |
| * hardware, so we bump eeprom_size up one to |
| * ensure that "1" (which maps to 256B) is never |
| * the result used in the shifting logic below. */ |
| if (eeprom_size) |
| eeprom_size++; |
| } else { |
| eeprom_size = (uint16_t)((eecd & |
| E1000_EECD_SIZE_EX_MASK) >> |
| E1000_EECD_SIZE_EX_SHIFT); |
| } |
| |
| eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); |
| } |
| return ret_val; |
| } |
| |
| /****************************************************************************** |
| * Polls the status bit (bit 1) of the EERD to determine when the read is done. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static int32_t |
| e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd) |
| { |
| uint32_t attempts = 100000; |
| uint32_t i, reg = 0; |
| int32_t done = E1000_ERR_EEPROM; |
| |
| for (i = 0; i < attempts; i++) { |
| if (eerd == E1000_EEPROM_POLL_READ) { |
| if (hw->mac_type == e1000_igb) |
| reg = E1000_READ_REG(hw, I210_EERD); |
| else |
| reg = E1000_READ_REG(hw, EERD); |
| } else { |
| if (hw->mac_type == e1000_igb) |
| reg = E1000_READ_REG(hw, I210_EEWR); |
| else |
| reg = E1000_READ_REG(hw, EEWR); |
| } |
| |
| if (reg & E1000_EEPROM_RW_REG_DONE) { |
| done = E1000_SUCCESS; |
| break; |
| } |
| udelay(5); |
| } |
| |
| return done; |
| } |
| |
| /****************************************************************************** |
| * Reads a 16 bit word from the EEPROM using the EERD register. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * offset - offset of word in the EEPROM to read |
| * data - word read from the EEPROM |
| * words - number of words to read |
| *****************************************************************************/ |
| static int32_t |
| e1000_read_eeprom_eerd(struct e1000_hw *hw, |
| uint16_t offset, |
| uint16_t words, |
| uint16_t *data) |
| { |
| uint32_t i, eerd = 0; |
| int32_t error = 0; |
| |
| for (i = 0; i < words; i++) { |
| eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) + |
| E1000_EEPROM_RW_REG_START; |
| |
| if (hw->mac_type == e1000_igb) |
| E1000_WRITE_REG(hw, I210_EERD, eerd); |
| else |
| E1000_WRITE_REG(hw, EERD, eerd); |
| |
| error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); |
| |
| if (error) |
| break; |
| |
| if (hw->mac_type == e1000_igb) { |
| data[i] = (E1000_READ_REG(hw, I210_EERD) >> |
| E1000_EEPROM_RW_REG_DATA); |
| } else { |
| data[i] = (E1000_READ_REG(hw, EERD) >> |
| E1000_EEPROM_RW_REG_DATA); |
| } |
| |
| } |
| |
| return error; |
| } |
| |
| void e1000_release_eeprom(struct e1000_hw *hw) |
| { |
| uint32_t eecd; |
| |
| DEBUGFUNC(); |
| |
| eecd = E1000_READ_REG(hw, EECD); |
| |
| if (hw->eeprom.type == e1000_eeprom_spi) { |
| eecd |= E1000_EECD_CS; /* Pull CS high */ |
| eecd &= ~E1000_EECD_SK; /* Lower SCK */ |
| |
| E1000_WRITE_REG(hw, EECD, eecd); |
| |
| udelay(hw->eeprom.delay_usec); |
| } else if (hw->eeprom.type == e1000_eeprom_microwire) { |
| /* cleanup eeprom */ |
| |
| /* CS on Microwire is active-high */ |
| eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); |
| |
| E1000_WRITE_REG(hw, EECD, eecd); |
| |
| /* Rising edge of clock */ |
| eecd |= E1000_EECD_SK; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(hw->eeprom.delay_usec); |
| |
| /* Falling edge of clock */ |
| eecd &= ~E1000_EECD_SK; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(hw->eeprom.delay_usec); |
| } |
| |
| /* Stop requesting EEPROM access */ |
| if (hw->mac_type > e1000_82544) { |
| eecd &= ~E1000_EECD_REQ; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| } |
| } |
| /****************************************************************************** |
| * Reads a 16 bit word from the EEPROM. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static int32_t |
| e1000_spi_eeprom_ready(struct e1000_hw *hw) |
| { |
| uint16_t retry_count = 0; |
| uint8_t spi_stat_reg; |
| |
| DEBUGFUNC(); |
| |
| /* Read "Status Register" repeatedly until the LSB is cleared. The |
| * EEPROM will signal that the command has been completed by clearing |
| * bit 0 of the internal status register. If it's not cleared within |
| * 5 milliseconds, then error out. |
| */ |
| retry_count = 0; |
| do { |
| e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, |
| hw->eeprom.opcode_bits); |
| spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8); |
| if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) |
| break; |
| |
| udelay(5); |
| retry_count += 5; |
| |
| e1000_standby_eeprom(hw); |
| } while (retry_count < EEPROM_MAX_RETRY_SPI); |
| |
| /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and |
| * only 0-5mSec on 5V devices) |
| */ |
| if (retry_count >= EEPROM_MAX_RETRY_SPI) { |
| DEBUGOUT("SPI EEPROM Status error\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Reads a 16 bit word from the EEPROM. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * offset - offset of word in the EEPROM to read |
| * data - word read from the EEPROM |
| *****************************************************************************/ |
| static int32_t |
| e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, |
| uint16_t words, uint16_t *data) |
| { |
| struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| uint32_t i = 0; |
| |
| DEBUGFUNC(); |
| |
| /* If eeprom is not yet detected, do so now */ |
| if (eeprom->word_size == 0) |
| e1000_init_eeprom_params(hw); |
| |
| /* A check for invalid values: offset too large, too many words, |
| * and not enough words. |
| */ |
| if ((offset >= eeprom->word_size) || |
| (words > eeprom->word_size - offset) || |
| (words == 0)) { |
| DEBUGOUT("\"words\" parameter out of bounds." |
| "Words = %d, size = %d\n", offset, eeprom->word_size); |
| return -E1000_ERR_EEPROM; |
| } |
| |
| /* EEPROM's that don't use EERD to read require us to bit-bang the SPI |
| * directly. In this case, we need to acquire the EEPROM so that |
| * FW or other port software does not interrupt. |
| */ |
| if (e1000_is_onboard_nvm_eeprom(hw) == true && |
| hw->eeprom.use_eerd == false) { |
| |
| /* Prepare the EEPROM for bit-bang reading */ |
| if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
| return -E1000_ERR_EEPROM; |
| } |
| |
| /* Eerd register EEPROM access requires no eeprom aquire/release */ |
| if (eeprom->use_eerd == true) |
| return e1000_read_eeprom_eerd(hw, offset, words, data); |
| |
| /* ich8lan does not support currently. if needed, please |
| * add corresponding code and functions. |
| */ |
| #if 0 |
| /* ICH EEPROM access is done via the ICH flash controller */ |
| if (eeprom->type == e1000_eeprom_ich8) |
| return e1000_read_eeprom_ich8(hw, offset, words, data); |
| #endif |
| /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have |
| * acquired the EEPROM at this point, so any returns should relase it */ |
| if (eeprom->type == e1000_eeprom_spi) { |
| uint16_t word_in; |
| uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; |
| |
| if (e1000_spi_eeprom_ready(hw)) { |
| e1000_release_eeprom(hw); |
| return -E1000_ERR_EEPROM; |
| } |
| |
| e1000_standby_eeprom(hw); |
| |
| /* Some SPI eeproms use the 8th address bit embedded in |
| * the opcode */ |
| if ((eeprom->address_bits == 8) && (offset >= 128)) |
| read_opcode |= EEPROM_A8_OPCODE_SPI; |
| |
| /* Send the READ command (opcode + addr) */ |
| e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); |
| e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), |
| eeprom->address_bits); |
| |
| /* Read the data. The address of the eeprom internally |
| * increments with each byte (spi) being read, saving on the |
| * overhead of eeprom setup and tear-down. The address |
| * counter will roll over if reading beyond the size of |
| * the eeprom, thus allowing the entire memory to be read |
| * starting from any offset. */ |
| for (i = 0; i < words; i++) { |
| word_in = e1000_shift_in_ee_bits(hw, 16); |
| data[i] = (word_in >> 8) | (word_in << 8); |
| } |
| } else if (eeprom->type == e1000_eeprom_microwire) { |
| for (i = 0; i < words; i++) { |
| /* Send the READ command (opcode + addr) */ |
| e1000_shift_out_ee_bits(hw, |
| EEPROM_READ_OPCODE_MICROWIRE, |
| eeprom->opcode_bits); |
| e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i), |
| eeprom->address_bits); |
| |
| /* Read the data. For microwire, each word requires |
| * the overhead of eeprom setup and tear-down. */ |
| data[i] = e1000_shift_in_ee_bits(hw, 16); |
| e1000_standby_eeprom(hw); |
| } |
| } |
| |
| /* End this read operation */ |
| e1000_release_eeprom(hw); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Verifies that the EEPROM has a valid checksum |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Reads the first 64 16 bit words of the EEPROM and sums the values read. |
| * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is |
| * valid. |
| *****************************************************************************/ |
| static int e1000_validate_eeprom_checksum(struct e1000_hw *hw) |
| { |
| uint16_t i, checksum, checksum_reg, *buf; |
| |
| DEBUGFUNC(); |
| |
| /* Allocate a temporary buffer */ |
| buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1)); |
| if (!buf) { |
| E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| |
| /* Read the EEPROM */ |
| if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) { |
| E1000_ERR(hw->nic, "Unable to read EEPROM!\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| |
| /* Compute the checksum */ |
| checksum = 0; |
| for (i = 0; i < EEPROM_CHECKSUM_REG; i++) |
| checksum += buf[i]; |
| checksum = ((uint16_t)EEPROM_SUM) - checksum; |
| checksum_reg = buf[i]; |
| |
| /* Verify it! */ |
| if (checksum == checksum_reg) |
| return 0; |
| |
| /* Hrm, verification failed, print an error */ |
| E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n"); |
| E1000_ERR(hw->nic, " ...register was 0x%04hx, calculated 0x%04hx\n", |
| checksum_reg, checksum); |
| |
| return -E1000_ERR_EEPROM; |
| } |
| #endif /* CONFIG_E1000_NO_NVM */ |
| |
| /***************************************************************************** |
| * Set PHY to class A mode |
| * Assumes the following operations will follow to enable the new class mode. |
| * 1. Do a PHY soft reset |
| * 2. Restart auto-negotiation or force link. |
| * |
| * hw - Struct containing variables accessed by shared code |
| ****************************************************************************/ |
| static int32_t |
| e1000_set_phy_mode(struct e1000_hw *hw) |
| { |
| #ifndef CONFIG_E1000_NO_NVM |
| int32_t ret_val; |
| uint16_t eeprom_data; |
| |
| DEBUGFUNC(); |
| |
| if ((hw->mac_type == e1000_82545_rev_3) && |
| (hw->media_type == e1000_media_type_copper)) { |
| ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, |
| 1, &eeprom_data); |
| if (ret_val) |
| return ret_val; |
| |
| if ((eeprom_data != EEPROM_RESERVED_WORD) && |
| (eeprom_data & EEPROM_PHY_CLASS_A)) { |
| ret_val = e1000_write_phy_reg(hw, |
| M88E1000_PHY_PAGE_SELECT, 0x000B); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000_write_phy_reg(hw, |
| M88E1000_PHY_GEN_CONTROL, 0x8104); |
| if (ret_val) |
| return ret_val; |
| |
| hw->phy_reset_disable = false; |
| } |
| } |
| #endif |
| return E1000_SUCCESS; |
| } |
| |
| #ifndef CONFIG_E1000_NO_NVM |
| /*************************************************************************** |
| * |
| * Obtaining software semaphore bit (SMBI) before resetting PHY. |
| * |
| * hw: Struct containing variables accessed by shared code |
| * |
| * returns: - E1000_ERR_RESET if fail to obtain semaphore. |
| * E1000_SUCCESS at any other case. |
| * |
| ***************************************************************************/ |
| static int32_t |
| e1000_get_software_semaphore(struct e1000_hw *hw) |
| { |
| int32_t timeout = hw->eeprom.word_size + 1; |
| uint32_t swsm; |
| |
| DEBUGFUNC(); |
| |
| swsm = E1000_READ_REG(hw, SWSM); |
| swsm &= ~E1000_SWSM_SMBI; |
| E1000_WRITE_REG(hw, SWSM, swsm); |
| |
| if (hw->mac_type != e1000_80003es2lan) |
| return E1000_SUCCESS; |
| |
| while (timeout) { |
| swsm = E1000_READ_REG(hw, SWSM); |
| /* If SMBI bit cleared, it is now set and we hold |
| * the semaphore */ |
| if (!(swsm & E1000_SWSM_SMBI)) |
| break; |
| mdelay(1); |
| timeout--; |
| } |
| |
| if (!timeout) { |
| DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); |
| return -E1000_ERR_RESET; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| #endif |
| |
| /*************************************************************************** |
| * This function clears HW semaphore bits. |
| * |
| * hw: Struct containing variables accessed by shared code |
| * |
| * returns: - None. |
| * |
| ***************************************************************************/ |
| static void |
| e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw) |
| { |
| #ifndef CONFIG_E1000_NO_NVM |
| uint32_t swsm; |
| |
| DEBUGFUNC(); |
| |
| if (!hw->eeprom_semaphore_present) |
| return; |
| |
| swsm = E1000_READ_REG(hw, SWSM); |
| if (hw->mac_type == e1000_80003es2lan) { |
| /* Release both semaphores. */ |
| swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); |
| } else |
| swsm &= ~(E1000_SWSM_SWESMBI); |
| E1000_WRITE_REG(hw, SWSM, swsm); |
| #endif |
| } |
| |
| /*************************************************************************** |
| * |
| * Using the combination of SMBI and SWESMBI semaphore bits when resetting |
| * adapter or Eeprom access. |
| * |
| * hw: Struct containing variables accessed by shared code |
| * |
| * returns: - E1000_ERR_EEPROM if fail to access EEPROM. |
| * E1000_SUCCESS at any other case. |
| * |
| ***************************************************************************/ |
| static int32_t |
| e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw) |
| { |
| #ifndef CONFIG_E1000_NO_NVM |
| int32_t timeout; |
| uint32_t swsm; |
| |
| DEBUGFUNC(); |
| |
| if (!hw->eeprom_semaphore_present) |
| return E1000_SUCCESS; |
| |
| if (hw->mac_type == e1000_80003es2lan) { |
| /* Get the SW semaphore. */ |
| if (e1000_get_software_semaphore(hw) != E1000_SUCCESS) |
| return -E1000_ERR_EEPROM; |
| } |
| |
| /* Get the FW semaphore. */ |
| timeout = hw->eeprom.word_size + 1; |
| while (timeout) { |
| swsm = E1000_READ_REG(hw, SWSM); |
| swsm |= E1000_SWSM_SWESMBI; |
| E1000_WRITE_REG(hw, SWSM, swsm); |
| /* if we managed to set the bit we got the semaphore. */ |
| swsm = E1000_READ_REG(hw, SWSM); |
| if (swsm & E1000_SWSM_SWESMBI) |
| break; |
| |
| udelay(50); |
| timeout--; |
| } |
| |
| if (!timeout) { |
| /* Release semaphores */ |
| e1000_put_hw_eeprom_semaphore(hw); |
| DEBUGOUT("Driver can't access the Eeprom - " |
| "SWESMBI bit is set.\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| #endif |
| return E1000_SUCCESS; |
| } |
| |
| static int32_t |
| e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask) |
| { |
| uint32_t swfw_sync = 0; |
| uint32_t swmask = mask; |
| uint32_t fwmask = mask << 16; |
| int32_t timeout = 200; |
| |
| DEBUGFUNC(); |
| while (timeout) { |
| if (e1000_get_hw_eeprom_semaphore(hw)) |
| return -E1000_ERR_SWFW_SYNC; |
| |
| if (hw->mac_type == e1000_igb) |
| swfw_sync = E1000_READ_REG(hw, I210_SW_FW_SYNC); |
| else |
| swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC); |
| if (!(swfw_sync & (fwmask | swmask))) |
| break; |
| |
| /* firmware currently using resource (fwmask) */ |
| /* or other software thread currently using resource (swmask) */ |
| e1000_put_hw_eeprom_semaphore(hw); |
| mdelay(5); |
| timeout--; |
| } |
| |
| if (!timeout) { |
| DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); |
| return -E1000_ERR_SWFW_SYNC; |
| } |
| |
| swfw_sync |= swmask; |
| E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync); |
| |
| e1000_put_hw_eeprom_semaphore(hw); |
| return E1000_SUCCESS; |
| } |
| |
| static bool e1000_is_second_port(struct e1000_hw *hw) |
| { |
| switch (hw->mac_type) { |
| case e1000_80003es2lan: |
| case e1000_82546: |
| case e1000_82571: |
| if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) |
| return true; |
| /* Fallthrough */ |
| default: |
| return false; |
| } |
| } |
| |
| #ifndef CONFIG_E1000_NO_NVM |
| /****************************************************************************** |
| * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the |
| * second function of dual function devices |
| * |
| * nic - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static int |
| e1000_read_mac_addr(struct eth_device *nic) |
| { |
| struct e1000_hw *hw = nic->priv; |
| uint16_t offset; |
| uint16_t eeprom_data; |
| uint32_t reg_data = 0; |
| int i; |
| |
| DEBUGFUNC(); |
| |
| for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { |
| offset = i >> 1; |
| if (hw->mac_type == e1000_igb) { |
| /* i210 preloads MAC address into RAL/RAH registers */ |
| if (offset == 0) |
| reg_data = E1000_READ_REG_ARRAY(hw, RA, 0); |
| else if (offset == 1) |
| reg_data >>= 16; |
| else if (offset == 2) |
| reg_data = E1000_READ_REG_ARRAY(hw, RA, 1); |
| eeprom_data = reg_data & 0xffff; |
| } else if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { |
| DEBUGOUT("EEPROM Read Error\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| nic->enetaddr[i] = eeprom_data & 0xff; |
| nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff; |
| } |
| |
| /* Invert the last bit if this is the second device */ |
| if (e1000_is_second_port(hw)) |
| nic->enetaddr[5] ^= 1; |
| |
| #ifdef CONFIG_E1000_FALLBACK_MAC |
| if (!is_valid_ethaddr(nic->enetaddr)) { |
| unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC; |
| |
| memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE); |
| } |
| #endif |
| return 0; |
| } |
| #endif |
| |
| /****************************************************************************** |
| * Initializes receive address filters. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Places the MAC address in receive address register 0 and clears the rest |
| * of the receive addresss registers. Clears the multicast table. Assumes |
| * the receiver is in reset when the routine is called. |
| *****************************************************************************/ |
| static void |
| e1000_init_rx_addrs(struct eth_device *nic) |
| { |
| struct e1000_hw *hw = nic->priv; |
| uint32_t i; |
| uint32_t addr_low; |
| uint32_t addr_high; |
| |
| DEBUGFUNC(); |
| |
| /* Setup the receive address. */ |
| DEBUGOUT("Programming MAC Address into RAR[0]\n"); |
| addr_low = (nic->enetaddr[0] | |
| (nic->enetaddr[1] << 8) | |
| (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24)); |
| |
| addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV); |
| |
| E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low); |
| E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high); |
| |
| /* Zero out the other 15 receive addresses. */ |
| DEBUGOUT("Clearing RAR[1-15]\n"); |
| for (i = 1; i < E1000_RAR_ENTRIES; i++) { |
| E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
| E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
| } |
| } |
| |
| /****************************************************************************** |
| * Clears the VLAN filer table |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static void |
| e1000_clear_vfta(struct e1000_hw *hw) |
| { |
| uint32_t offset; |
| |
| for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) |
| E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0); |
| } |
| |
| /****************************************************************************** |
| * Set the mac type member in the hw struct. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| int32_t |
| e1000_set_mac_type(struct e1000_hw *hw) |
| { |
| DEBUGFUNC(); |
| |
| switch (hw->device_id) { |
| case E1000_DEV_ID_82542: |
| switch (hw->revision_id) { |
| case E1000_82542_2_0_REV_ID: |
| hw->mac_type = e1000_82542_rev2_0; |
| break; |
| case E1000_82542_2_1_REV_ID: |
| hw->mac_type = e1000_82542_rev2_1; |
| break; |
| default: |
| /* Invalid 82542 revision ID */ |
| return -E1000_ERR_MAC_TYPE; |
| } |
| break; |
| case E1000_DEV_ID_82543GC_FIBER: |
| case E1000_DEV_ID_82543GC_COPPER: |
| hw->mac_type = e1000_82543; |
| break; |
| case E1000_DEV_ID_82544EI_COPPER: |
| case E1000_DEV_ID_82544EI_FIBER: |
| case E1000_DEV_ID_82544GC_COPPER: |
| case E1000_DEV_ID_82544GC_LOM: |
| hw->mac_type = e1000_82544; |
| break; |
| case E1000_DEV_ID_82540EM: |
| case E1000_DEV_ID_82540EM_LOM: |
| case E1000_DEV_ID_82540EP: |
| case E1000_DEV_ID_82540EP_LOM: |
| case E1000_DEV_ID_82540EP_LP: |
| hw->mac_type = e1000_82540; |
| break; |
| case E1000_DEV_ID_82545EM_COPPER: |
| case E1000_DEV_ID_82545EM_FIBER: |
| hw->mac_type = e1000_82545; |
| break; |
| case E1000_DEV_ID_82545GM_COPPER: |
| case E1000_DEV_ID_82545GM_FIBER: |
| case E1000_DEV_ID_82545GM_SERDES: |
| hw->mac_type = e1000_82545_rev_3; |
| break; |
| case E1000_DEV_ID_82546EB_COPPER: |
| case E1000_DEV_ID_82546EB_FIBER: |
| case E1000_DEV_ID_82546EB_QUAD_COPPER: |
| hw->mac_type = e1000_82546; |
| break; |
| case E1000_DEV_ID_82546GB_COPPER: |
| case E1000_DEV_ID_82546GB_FIBER: |
| case E1000_DEV_ID_82546GB_SERDES: |
| case E1000_DEV_ID_82546GB_PCIE: |
| case E1000_DEV_ID_82546GB_QUAD_COPPER: |
| case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: |
| hw->mac_type = e1000_82546_rev_3; |
| break; |
| case E1000_DEV_ID_82541EI: |
| case E1000_DEV_ID_82541EI_MOBILE: |
| case E1000_DEV_ID_82541ER_LOM: |
| hw->mac_type = e1000_82541; |
| break; |
| case E1000_DEV_ID_82541ER: |
| case E1000_DEV_ID_82541GI: |
| case E1000_DEV_ID_82541GI_LF: |
| case E1000_DEV_ID_82541GI_MOBILE: |
| hw->mac_type = e1000_82541_rev_2; |
| break; |
| case E1000_DEV_ID_82547EI: |
| case E1000_DEV_ID_82547EI_MOBILE: |
| hw->mac_type = e1000_82547; |
| break; |
| case E1000_DEV_ID_82547GI: |
| hw->mac_type = e1000_82547_rev_2; |
| break; |
| case E1000_DEV_ID_82571EB_COPPER: |
| case E1000_DEV_ID_82571EB_FIBER: |
| case E1000_DEV_ID_82571EB_SERDES: |
| case E1000_DEV_ID_82571EB_SERDES_DUAL: |
| case E1000_DEV_ID_82571EB_SERDES_QUAD: |
| case E1000_DEV_ID_82571EB_QUAD_COPPER: |
| case E1000_DEV_ID_82571PT_QUAD_COPPER: |
| case E1000_DEV_ID_82571EB_QUAD_FIBER: |
| case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE: |
| hw->mac_type = e1000_82571; |
| break; |
| case E1000_DEV_ID_82572EI_COPPER: |
| case E1000_DEV_ID_82572EI_FIBER: |
| case E1000_DEV_ID_82572EI_SERDES: |
| case E1000_DEV_ID_82572EI: |
| hw->mac_type = e1000_82572; |
| break; |
| case E1000_DEV_ID_82573E: |
| case E1000_DEV_ID_82573E_IAMT: |
| case E1000_DEV_ID_82573L: |
| hw->mac_type = e1000_82573; |
| break; |
| case E1000_DEV_ID_82574L: |
| hw->mac_type = e1000_82574; |
| break; |
| case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: |
| case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: |
| case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: |
| case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: |
| hw->mac_type = e1000_80003es2lan; |
| break; |
| case E1000_DEV_ID_ICH8_IGP_M_AMT: |
| case E1000_DEV_ID_ICH8_IGP_AMT: |
| case E1000_DEV_ID_ICH8_IGP_C: |
| case E1000_DEV_ID_ICH8_IFE: |
| case E1000_DEV_ID_ICH8_IFE_GT: |
| case E1000_DEV_ID_ICH8_IFE_G: |
| case E1000_DEV_ID_ICH8_IGP_M: |
| hw->mac_type = e1000_ich8lan; |
| break; |
| case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED: |
| case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED: |
| case PCI_DEVICE_ID_INTEL_I210_COPPER: |
| case PCI_DEVICE_ID_INTEL_I211_COPPER: |
| case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS: |
| case PCI_DEVICE_ID_INTEL_I210_SERDES: |
| case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS: |
| case PCI_DEVICE_ID_INTEL_I210_1000BASEKX: |
| hw->mac_type = e1000_igb; |
| break; |
| default: |
| /* Should never have loaded on this device */ |
| return -E1000_ERR_MAC_TYPE; |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Reset the transmit and receive units; mask and clear all interrupts. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| void |
| e1000_reset_hw(struct e1000_hw *hw) |
| { |
| uint32_t ctrl; |
| uint32_t ctrl_ext; |
| uint32_t manc; |
| uint32_t pba = 0; |
| uint32_t reg; |
| |
| DEBUGFUNC(); |
| |
| /* get the correct pba value for both PCI and PCIe*/ |
| if (hw->mac_type < e1000_82571) |
| pba = E1000_DEFAULT_PCI_PBA; |
| else |
| pba = E1000_DEFAULT_PCIE_PBA; |
| |
| /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ |
| if (hw->mac_type == e1000_82542_rev2_0) { |
| DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); |
| pci_write_config_word(hw->pdev, PCI_COMMAND, |
| hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE); |
| } |
| |
| /* Clear interrupt mask to stop board from generating interrupts */ |
| DEBUGOUT("Masking off all interrupts\n"); |
| if (hw->mac_type == e1000_igb) |
| E1000_WRITE_REG(hw, I210_IAM, 0); |
| E1000_WRITE_REG(hw, IMC, 0xffffffff); |
| |
| /* Disable the Transmit and Receive units. Then delay to allow |
| * any pending transactions to complete before we hit the MAC with |
| * the global reset. |
| */ |
| E1000_WRITE_REG(hw, RCTL, 0); |
| E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); |
| E1000_WRITE_FLUSH(hw); |
| |
| /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ |
| hw->tbi_compatibility_on = false; |
| |
| /* Delay to allow any outstanding PCI transactions to complete before |
| * resetting the device |
| */ |
| mdelay(10); |
| |
| /* Issue a global reset to the MAC. This will reset the chip's |
| * transmit, receive, DMA, and link units. It will not effect |
| * the current PCI configuration. The global reset bit is self- |
| * clearing, and should clear within a microsecond. |
| */ |
| DEBUGOUT("Issuing a global reset to MAC\n"); |
| ctrl = E1000_READ_REG(hw, CTRL); |
| |
| E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); |
| |
| /* Force a reload from the EEPROM if necessary */ |
| if (hw->mac_type == e1000_igb) { |
| mdelay(20); |
| reg = E1000_READ_REG(hw, STATUS); |
| if (reg & E1000_STATUS_PF_RST_DONE) |
| DEBUGOUT("PF OK\n"); |
| reg = E1000_READ_REG(hw, I210_EECD); |
| if (reg & E1000_EECD_AUTO_RD) |
| DEBUGOUT("EEC OK\n"); |
| } else if (hw->mac_type < e1000_82540) { |
| /* Wait for reset to complete */ |
| udelay(10); |
| ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
| E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| E1000_WRITE_FLUSH(hw); |
| /* Wait for EEPROM reload */ |
| mdelay(2); |
| } else { |
| /* Wait for EEPROM reload (it happens automatically) */ |
| mdelay(4); |
| /* Dissable HW ARPs on ASF enabled adapters */ |
| manc = E1000_READ_REG(hw, MANC); |
| manc &= ~(E1000_MANC_ARP_EN); |
| E1000_WRITE_REG(hw, MANC, manc); |
| } |
| |
| /* Clear interrupt mask to stop board from generating interrupts */ |
| DEBUGOUT("Masking off all interrupts\n"); |
| if (hw->mac_type == e1000_igb) |
| E1000_WRITE_REG(hw, I210_IAM, 0); |
| E1000_WRITE_REG(hw, IMC, 0xffffffff); |
| |
| /* Clear any pending interrupt events. */ |
| E1000_READ_REG(hw, ICR); |
| |
| /* If MWI was previously enabled, reenable it. */ |
| if (hw->mac_type == e1000_82542_rev2_0) { |
| pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); |
| } |
| if (hw->mac_type != e1000_igb) |
| E1000_WRITE_REG(hw, PBA, pba); |
| } |
| |
| /****************************************************************************** |
| * |
| * Initialize a number of hardware-dependent bits |
| * |
| * hw: Struct containing variables accessed by shared code |
| * |
| * This function contains hardware limitation workarounds for PCI-E adapters |
| * |
| *****************************************************************************/ |
| static void |
| e1000_initialize_hardware_bits(struct e1000_hw *hw) |
| { |
| if ((hw->mac_type >= e1000_82571) && |
| (!hw->initialize_hw_bits_disable)) { |
| /* Settings common to all PCI-express silicon */ |
| uint32_t reg_ctrl, reg_ctrl_ext; |
| uint32_t reg_tarc0, reg_tarc1; |
| uint32_t reg_tctl; |
| uint32_t reg_txdctl, reg_txdctl1; |
| |
| /* link autonegotiation/sync workarounds */ |
| reg_tarc0 = E1000_READ_REG(hw, TARC0); |
| reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27)); |
| |
| /* Enable not-done TX descriptor counting */ |
| reg_txdctl = E1000_READ_REG(hw, TXDCTL); |
| reg_txdctl |= E1000_TXDCTL_COUNT_DESC; |
| E1000_WRITE_REG(hw, TXDCTL, reg_txdctl); |
| |
| reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1); |
| reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC; |
| E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1); |
| |
| /* IGB is cool */ |
| if (hw->mac_type == e1000_igb) |
| return; |
| |
| switch (hw->mac_type) { |
| case e1000_82571: |
| case e1000_82572: |
| /* Clear PHY TX compatible mode bits */ |
| reg_tarc1 = E1000_READ_REG(hw, TARC1); |
| reg_tarc1 &= ~((1 << 30)|(1 << 29)); |
| |
| /* link autonegotiation/sync workarounds */ |
| reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23)); |
| |
| /* TX ring control fixes */ |
| reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24)); |
| |
| /* Multiple read bit is reversed polarity */ |
| reg_tctl = E1000_READ_REG(hw, TCTL); |
| if (reg_tctl & E1000_TCTL_MULR) |
| reg_tarc1 &= ~(1 << 28); |
| else |
| reg_tarc1 |= (1 << 28); |
| |
| E1000_WRITE_REG(hw, TARC1, reg_tarc1); |
| break; |
| case e1000_82573: |
| case e1000_82574: |
| reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| reg_ctrl_ext &= ~(1 << 23); |
| reg_ctrl_ext |= (1 << 22); |
| |
| /* TX byte count fix */ |
| reg_ctrl = E1000_READ_REG(hw, CTRL); |
| reg_ctrl &= ~(1 << 29); |
| |
| E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); |
| E1000_WRITE_REG(hw, CTRL, reg_ctrl); |
| break; |
| case e1000_80003es2lan: |
| /* improve small packet performace for fiber/serdes */ |
| if ((hw->media_type == e1000_media_type_fiber) |
| || (hw->media_type == |
| e1000_media_type_internal_serdes)) { |
| reg_tarc0 &= ~(1 << 20); |
| } |
| |
| /* Multiple read bit is reversed polarity */ |
| reg_tctl = E1000_READ_REG(hw, TCTL); |
| reg_tarc1 = E1000_READ_REG(hw, TARC1); |
| if (reg_tctl & E1000_TCTL_MULR) |
| reg_tarc1 &= ~(1 << 28); |
| else |
| reg_tarc1 |= (1 << 28); |
| |
| E1000_WRITE_REG(hw, TARC1, reg_tarc1); |
| break; |
| case e1000_ich8lan: |
| /* Reduce concurrent DMA requests to 3 from 4 */ |
| if ((hw->revision_id < 3) || |
| ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && |
| (hw->device_id != E1000_DEV_ID_ICH8_IGP_M))) |
| reg_tarc0 |= ((1 << 29)|(1 << 28)); |
| |
| reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| reg_ctrl_ext |= (1 << 22); |
| E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); |
| |
| /* workaround TX hang with TSO=on */ |
| reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23)); |
| |
| /* Multiple read bit is reversed polarity */ |
| reg_tctl = E1000_READ_REG(hw, TCTL); |
| reg_tarc1 = E1000_READ_REG(hw, TARC1); |
| if (reg_tctl & E1000_TCTL_MULR) |
| reg_tarc1 &= ~(1 << 28); |
| else |
| reg_tarc1 |= (1 << 28); |
| |
| /* workaround TX hang with TSO=on */ |
| reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24)); |
| |
| E1000_WRITE_REG(hw, TARC1, reg_tarc1); |
| break; |
| default: |
| break; |
| } |
| |
| E1000_WRITE_REG(hw, TARC0, reg_tarc0); |
| } |
| } |
| |
| /****************************************************************************** |
| * Performs basic configuration of the adapter. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Assumes that the controller has previously been reset and is in a |
| * post-reset uninitialized state. Initializes the receive address registers, |
| * multicast table, and VLAN filter table. Calls routines to setup link |
| * configuration and flow control settings. Clears all on-chip counters. Leaves |
| * the transmit and receive units disabled and uninitialized. |
| *****************************************************************************/ |
| static int |
| e1000_init_hw(struct eth_device *nic) |
| { |
| struct e1000_hw *hw = nic->priv; |
| uint32_t ctrl; |
| uint32_t i; |
| int32_t ret_val; |
| uint16_t pcix_cmd_word; |
| uint16_t pcix_stat_hi_word; |
| uint16_t cmd_mmrbc; |
| uint16_t stat_mmrbc; |
| uint32_t mta_size; |
| uint32_t reg_data; |
| uint32_t ctrl_ext; |
| DEBUGFUNC(); |
| /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */ |
| if ((hw->mac_type == e1000_ich8lan) && |
| ((hw->revision_id < 3) || |
| ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && |
| (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) { |
| reg_data = E1000_READ_REG(hw, STATUS); |
| reg_data &= ~0x80000000; |
| E1000_WRITE_REG(hw, STATUS, reg_data); |
| } |
| /* Do not need initialize Identification LED */ |
| |
| /* Set the media type and TBI compatibility */ |
| e1000_set_media_type(hw); |
| |
| /* Must be called after e1000_set_media_type |
| * because media_type is used */ |
| e1000_initialize_hardware_bits(hw); |
| |
| /* Disabling VLAN filtering. */ |
| DEBUGOUT("Initializing the IEEE VLAN\n"); |
| /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */ |
| if (hw->mac_type != e1000_ich8lan) { |
| if (hw->mac_type < e1000_82545_rev_3) |
| E1000_WRITE_REG(hw, VET, 0); |
| e1000_clear_vfta(hw); |
| } |
| |
| /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ |
| if (hw->mac_type == e1000_82542_rev2_0) { |
| DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); |
| pci_write_config_word(hw->pdev, PCI_COMMAND, |
| hw-> |
| pci_cmd_word & ~PCI_COMMAND_INVALIDATE); |
| E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); |
| E1000_WRITE_FLUSH(hw); |
| mdelay(5); |
| } |
| |
| /* Setup the receive address. This involves initializing all of the Receive |
| * Address Registers (RARs 0 - 15). |
| */ |
| e1000_init_rx_addrs(nic); |
| |
| /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ |
| if (hw->mac_type == e1000_82542_rev2_0) { |
| E1000_WRITE_REG(hw, RCTL, 0); |
| E1000_WRITE_FLUSH(hw); |
| mdelay(1); |
| pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); |
| } |
| |
| /* Zero out the Multicast HASH table */ |
| DEBUGOUT("Zeroing the MTA\n"); |
| mta_size = E1000_MC_TBL_SIZE; |
| if (hw->mac_type == e1000_ich8lan) |
| mta_size = E1000_MC_TBL_SIZE_ICH8LAN; |
| for (i = 0; i < mta_size; i++) { |
| E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
| /* use write flush to prevent Memory Write Block (MWB) from |
| * occuring when accessing our register space */ |
| E1000_WRITE_FLUSH(hw); |
| } |
| #if 0 |
| /* Set the PCI priority bit correctly in the CTRL register. This |
| * determines if the adapter gives priority to receives, or if it |
| * gives equal priority to transmits and receives. Valid only on |
| * 82542 and 82543 silicon. |
| */ |
| if (hw->dma_fairness && hw->mac_type <= e1000_82543) { |
| ctrl = E1000_READ_REG(hw, CTRL); |
| E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); |
| } |
| #endif |
| switch (hw->mac_type) { |
| case e1000_82545_rev_3: |
| case e1000_82546_rev_3: |
| case e1000_igb: |
| break; |
| default: |
| /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ |
| if (hw->bus_type == e1000_bus_type_pcix) { |
| pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER, |
| &pcix_cmd_word); |
| pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI, |
| &pcix_stat_hi_word); |
| cmd_mmrbc = |
| (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >> |
| PCIX_COMMAND_MMRBC_SHIFT; |
| stat_mmrbc = |
| (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> |
| PCIX_STATUS_HI_MMRBC_SHIFT; |
| if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) |
| stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; |
| if (cmd_mmrbc > stat_mmrbc) { |
| pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; |
| pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; |
| pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER, |
| pcix_cmd_word); |
| } |
| } |
| break; |
| } |
| |
| /* More time needed for PHY to initialize */ |
| if (hw->mac_type == e1000_ich8lan) |
| mdelay(15); |
| if (hw->mac_type == e1000_igb) |
| mdelay(15); |
| |
| /* Call a subroutine to configure the link and setup flow control. */ |
| ret_val = e1000_setup_link(nic); |
| |
| /* Set the transmit descriptor write-back policy */ |
| if (hw->mac_type > e1000_82544) { |
| ctrl = E1000_READ_REG(hw, TXDCTL); |
| ctrl = |
| (ctrl & ~E1000_TXDCTL_WTHRESH) | |
| E1000_TXDCTL_FULL_TX_DESC_WB; |
| E1000_WRITE_REG(hw, TXDCTL, ctrl); |
| } |
| |
| /* Set the receive descriptor write back policy */ |
| if (hw->mac_type >= e1000_82571) { |
| ctrl = E1000_READ_REG(hw, RXDCTL); |
| ctrl = |
| (ctrl & ~E1000_RXDCTL_WTHRESH) | |
| E1000_RXDCTL_FULL_RX_DESC_WB; |
| E1000_WRITE_REG(hw, RXDCTL, ctrl); |
| } |
| |
| switch (hw->mac_type) { |
| default: |
| break; |
| case e1000_80003es2lan: |
| /* Enable retransmit on late collisions */ |
| reg_data = E1000_READ_REG(hw, TCTL); |
| reg_data |= E1000_TCTL_RTLC; |
| E1000_WRITE_REG(hw, TCTL, reg_data); |
| |
| /* Configure Gigabit Carry Extend Padding */ |
| reg_data = E1000_READ_REG(hw, TCTL_EXT); |
| reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; |
| reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX; |
| E1000_WRITE_REG(hw, TCTL_EXT, reg_data); |
| |
| /* Configure Transmit Inter-Packet Gap */ |
| reg_data = E1000_READ_REG(hw, TIPG); |
| reg_data &= ~E1000_TIPG_IPGT_MASK; |
| reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; |
| E1000_WRITE_REG(hw, TIPG, reg_data); |
| |
| reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001); |
| reg_data &= ~0x00100000; |
| E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data); |
| /* Fall through */ |
| case e1000_82571: |
| case e1000_82572: |
| case e1000_ich8lan: |
| ctrl = E1000_READ_REG(hw, TXDCTL1); |
| ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) |
| | E1000_TXDCTL_FULL_TX_DESC_WB; |
| E1000_WRITE_REG(hw, TXDCTL1, ctrl); |
| break; |
| case e1000_82573: |
| case e1000_82574: |
| reg_data = E1000_READ_REG(hw, GCR); |
| reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; |
| E1000_WRITE_REG(hw, GCR, reg_data); |
| case e1000_igb: |
| break; |
| } |
| |
| #if 0 |
| /* Clear all of the statistics registers (clear on read). It is |
| * important that we do this after we have tried to establish link |
| * because the symbol error count will increment wildly if there |
| * is no link. |
| */ |
| e1000_clear_hw_cntrs(hw); |
| |
| /* ICH8 No-snoop bits are opposite polarity. |
| * Set to snoop by default after reset. */ |
| if (hw->mac_type == e1000_ich8lan) |
| e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL); |
| #endif |
| |
| if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || |
| hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { |
| ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| /* Relaxed ordering must be disabled to avoid a parity |
| * error crash in a PCI slot. */ |
| ctrl_ext |= E1000_CTRL_EXT_RO_DIS; |
| E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| } |
| |
| return ret_val; |
| } |
| |
| /****************************************************************************** |
| * Configures flow control and link settings. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Determines which flow control settings to use. Calls the apropriate media- |
| * specific link configuration function. Configures the flow control settings. |
| * Assuming the adapter has a valid link partner, a valid link should be |
| * established. Assumes the hardware has previously been reset and the |
| * transmitter and receiver are not enabled. |
| *****************************************************************************/ |
| static int |
| e1000_setup_link(struct eth_device *nic) |
| { |
| struct e1000_hw *hw = nic->priv; |
| int32_t ret_val; |
| #ifndef CONFIG_E1000_NO_NVM |
| uint32_t ctrl_ext; |
| uint16_t eeprom_data; |
| #endif |
| |
| DEBUGFUNC(); |
| |
| /* In the case of the phy reset being blocked, we already have a link. |
| * We do not have to set it up again. */ |
| if (e1000_check_phy_reset_block(hw)) |
| return E1000_SUCCESS; |
| |
| #ifndef CONFIG_E1000_NO_NVM |
| /* Read and store word 0x0F of the EEPROM. This word contains bits |
| * that determine the hardware's default PAUSE (flow control) mode, |
| * a bit that determines whether the HW defaults to enabling or |
| * disabling auto-negotiation, and the direction of the |
| * SW defined pins. If there is no SW over-ride of the flow |
| * control setting, then the variable hw->fc will |
| * be initialized based on a value in the EEPROM. |
| */ |
| if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, |
| &eeprom_data) < 0) { |
| DEBUGOUT("EEPROM Read Error\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| #endif |
| if (hw->fc == e1000_fc_default) { |
| switch (hw->mac_type) { |
| case e1000_ich8lan: |
| case e1000_82573: |
| case e1000_82574: |
| case e1000_igb: |
| hw->fc = e1000_fc_full; |
| break; |
| default: |
| #ifndef CONFIG_E1000_NO_NVM |
| ret_val = e1000_read_eeprom(hw, |
| EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); |
| if (ret_val) { |
| DEBUGOUT("EEPROM Read Error\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) |
| hw->fc = e1000_fc_none; |
| else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == |
| EEPROM_WORD0F_ASM_DIR) |
| hw->fc = e1000_fc_tx_pause; |
| else |
| #endif |
| hw->fc = e1000_fc_full; |
| break; |
| } |
| } |
| |
| /* We want to save off the original Flow Control configuration just |
| * in case we get disconnected and then reconnected into a different |
| * hub or switch with different Flow Control capabilities. |
| */ |
| if (hw->mac_type == e1000_82542_rev2_0) |
| hw->fc &= (~e1000_fc_tx_pause); |
| |
| if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) |
| hw->fc &= (~e1000_fc_rx_pause); |
| |
| hw->original_fc = hw->fc; |
| |
| DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc); |
| |
| #ifndef CONFIG_E1000_NO_NVM |
| /* Take the 4 bits from EEPROM word 0x0F that determine the initial |
| * polarity value for the SW controlled pins, and setup the |
| * Extended Device Control reg with that info. |
| * This is needed because one of the SW controlled pins is used for |
| * signal detection. So this should be done before e1000_setup_pcs_link() |
| * or e1000_phy_setup() is called. |
| */ |
| if (hw->mac_type == e1000_82543) { |
| ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << |
| SWDPIO__EXT_SHIFT); |
| E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| } |
| #endif |
| |
| /* Call the necessary subroutine to configure the link. */ |
| ret_val = (hw->media_type == e1000_media_type_fiber) ? |
| e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic); |
| if (ret_val < 0) { |
| return ret_val; |
| } |
| |
| /* Initialize the flow control address, type, and PAUSE timer |
| * registers to their default values. This is done even if flow |
| * control is disabled, because it does not hurt anything to |
| * initialize these registers. |
| */ |
| DEBUGOUT("Initializing the Flow Control address, type" |
| "and timer regs\n"); |
| |
| /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */ |
| if (hw->mac_type != e1000_ich8lan) { |
| E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); |
| E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); |
| E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); |
| } |
| |
| E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); |
| |
| /* Set the flow control receive threshold registers. Normally, |
| * these registers will be set to a default threshold that may be |
| * adjusted later by the driver's runtime code. However, if the |
| * ability to transmit pause frames in not enabled, then these |
| * registers will be set to 0. |
| */ |
| if (!(hw->fc & e1000_fc_tx_pause)) { |
| E1000_WRITE_REG(hw, FCRTL, 0); |
| E1000_WRITE_REG(hw, FCRTH, 0); |
| } else { |
| /* We need to set up the Receive Threshold high and low water marks |
| * as well as (optionally) enabling the transmission of XON frames. |
| */ |
| if (hw->fc_send_xon) { |
| E1000_WRITE_REG(hw, FCRTL, |
| (hw->fc_low_water | E1000_FCRTL_XONE)); |
| E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); |
| } else { |
| E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); |
| E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); |
| } |
| } |
| return ret_val; |
| } |
| |
| /****************************************************************************** |
| * Sets up link for a fiber based adapter |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Manipulates Physical Coding Sublayer functions in order to configure |
| * link. Assumes the hardware has been previously reset and the transmitter |
| * and receiver are not enabled. |
| *****************************************************************************/ |
| static int |
| e1000_setup_fiber_link(struct eth_device *nic) |
| { |
| struct e1000_hw *hw = nic->priv; |
| uint32_t ctrl; |
| uint32_t status; |
| uint32_t txcw = 0; |
| uint32_t i; |
| uint32_t signal; |
| int32_t ret_val; |
| |
| DEBUGFUNC(); |
| /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be |
| * set when the optics detect a signal. On older adapters, it will be |
| * cleared when there is a signal |
| */ |
| ctrl = E1000_READ_REG(hw, CTRL); |
| if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS)) |
| signal = E1000_CTRL_SWDPIN1; |
| else |
| signal = 0; |
| |
| printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal, |
| ctrl); |
| /* Take the link out of reset */ |
| ctrl &= ~(E1000_CTRL_LRST); |
| |
| e1000_config_collision_dist(hw); |
| |
| /* Check for a software override of the flow control settings, and setup |
| * the device accordingly. If auto-negotiation is enabled, then software |
| * will have to set the "PAUSE" bits to the correct value in the Tranmsit |
| * Config Word Register (TXCW) and re-start auto-negotiation. However, if |
| * auto-negotiation is disabled, then software will have to manually |
| * configure the two flow control enable bits in the CTRL register. |
| * |
| * The possible values of the "fc" parameter are: |
| * 0: Flow control is completely disabled |
| * 1: Rx flow control is enabled (we can receive pause frames, but |
| * not send pause frames). |
| * 2: Tx flow control is enabled (we can send pause frames but we do |
| * not support receiving pause frames). |
| * 3: Both Rx and TX flow control (symmetric) are enabled. |
| */ |
| switch (hw->fc) { |
| case e1000_fc_none: |
| /* Flow control is completely disabled by a software over-ride. */ |
| txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); |
| break; |
| case e1000_fc_rx_pause: |
| /* RX Flow control is enabled and TX Flow control is disabled by a |
| * software over-ride. Since there really isn't a way to advertise |
| * that we are capable of RX Pause ONLY, we will advertise that we |
| * support both symmetric and asymmetric RX PAUSE. Later, we will |
| * disable the adapter's ability to send PAUSE frames. |
| */ |
| txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
| break; |
| case e1000_fc_tx_pause: |
| /* TX Flow control is enabled, and RX Flow control is disabled, by a |
| * software over-ride. |
| */ |
| txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); |
| break; |
| case e1000_fc_full: |
| /* Flow control (both RX and TX) is enabled by a software over-ride. */ |
| txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
| break; |
| default: |
| DEBUGOUT("Flow control param set incorrectly\n"); |
| return -E1000_ERR_CONFIG; |
| break; |
| } |
| |
| /* Since auto-negotiation is enabled, take the link out of reset (the link |
| * will be in reset, because we previously reset the chip). This will |
| * restart auto-negotiation. If auto-neogtiation is successful then the |
| * link-up status bit will be set and the flow control enable bits (RFCE |
| * and TFCE) will be set according to their negotiated value. |
| */ |
| DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw); |
| |
| E1000_WRITE_REG(hw, TXCW, txcw); |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| E1000_WRITE_FLUSH(hw); |
| |
| hw->txcw = txcw; |
| mdelay(1); |
| |
| /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" |
| * indication in the Device Status Register. Time-out if a link isn't |
| * seen in 500 milliseconds seconds (Auto-negotiation should complete in |
| * less than 500 milliseconds even if the other end is doing it in SW). |
| */ |
| if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { |
| DEBUGOUT("Looking for Link\n"); |
| for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { |
| mdelay(10); |
| status = E1000_READ_REG(hw, STATUS); |
| if (status & E1000_STATUS_LU) |
| break; |
| } |
| if (i == (LINK_UP_TIMEOUT / 10)) { |
| /* AutoNeg failed to achieve a link, so we'll call |
| * e1000_check_for_link. This routine will force the link up if we |
| * detect a signal. This will allow us to communicate with |
| * non-autonegotiating link partners. |
| */ |
| DEBUGOUT("Never got a valid link from auto-neg!!!\n"); |
| hw->autoneg_failed = 1; |
| ret_val = e1000_check_for_link(nic); |
| if (ret_val < 0) { |
| DEBUGOUT("Error while checking for link\n"); |
| return ret_val; |
| } |
| hw->autoneg_failed = 0; |
| } else { |
| hw->autoneg_failed = 0; |
| DEBUGOUT("Valid Link Found\n"); |
| } |
| } else { |
| DEBUGOUT("No Signal Detected\n"); |
| return -E1000_ERR_NOLINK; |
| } |
| return 0; |
| } |
| |
| /****************************************************************************** |
| * Make sure we have a valid PHY and change PHY mode before link setup. |
| * |
| * hw - Struct containing variables accessed by shared code |
| ******************************************************************************/ |
| static int32_t |
| e1000_copper_link_preconfig(struct e1000_hw *hw) |
| { |
| uint32_t ctrl; |
| int32_t ret_val; |
| uint16_t phy_data; |
| |
| DEBUGFUNC(); |
| |
| ctrl = E1000_READ_REG(hw, CTRL); |
| /* With 82543, we need to force speed and duplex on the MAC equal to what |
| * the PHY speed and duplex configuration is. In addition, we need to |
| * perform a hardware reset on the PHY to take it out of reset. |
| */ |
| if (hw->mac_type > e1000_82543) { |
| ctrl |= E1000_CTRL_SLU; |
| ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| } else { |
| ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
| | E1000_CTRL_SLU); |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| ret_val = e1000_phy_hw_reset(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Make sure we have a valid PHY */ |
| ret_val = e1000_detect_gig_phy(hw); |
| if (ret_val) { |
| DEBUGOUT("Error, did not detect valid phy.\n"); |
| return ret_val; |
| } |
| DEBUGOUT("Phy ID = %x \n", hw->phy_id); |
| |
| /* Set PHY to class A mode (if necessary) */ |
| ret_val = e1000_set_phy_mode(hw); |
| if (ret_val) |
| return ret_val; |
| if ((hw->mac_type == e1000_82545_rev_3) || |
| (hw->mac_type == e1000_82546_rev_3)) { |
| ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, |
| &phy_data); |
| phy_data |= 0x00000008; |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, |
| phy_data); |
| } |
| |
| if (hw->mac_type <= e1000_82543 || |
| hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || |
| hw->mac_type == e1000_82541_rev_2 |
| || hw->mac_type == e1000_82547_rev_2) |
| hw->phy_reset_disable = false; |
| |
| return E1000_SUCCESS; |
| } |
| |
| /***************************************************************************** |
| * |
| * This function sets the lplu state according to the active flag. When |
| * activating lplu this function also disables smart speed and vise versa. |
| * lplu will not be activated unless the device autonegotiation advertisment |
| * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. |
| * hw: Struct containing variables accessed by shared code |
| * active - true to enable lplu false to disable lplu. |
| * |
| * returns: - E1000_ERR_PHY if fail to read/write the PHY |
| * E1000_SUCCESS at any other case. |
| * |
| ****************************************************************************/ |
| |
| static int32_t |
| e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) |
| { |
| uint32_t phy_ctrl = 0; |
| int32_t ret_val; |
| uint16_t phy_data; |
| DEBUGFUNC(); |
| |
| if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2 |
| && hw->phy_type != e1000_phy_igp_3) |
| return E1000_SUCCESS; |
| |
| /* During driver activity LPLU should not be used or it will attain link |
| * from the lowest speeds starting from 10Mbps. The capability is used |
| * for Dx transitions and states */ |
| if (hw->mac_type == e1000_82541_rev_2 |
| || hw->mac_type == e1000_82547_rev_2) { |
| ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| } else if (hw->mac_type == e1000_ich8lan) { |
| /* MAC writes into PHY register based on the state transition |
| * and start auto-negotiation. SW driver can overwrite the |
| * settings in CSR PHY power control E1000_PHY_CTRL register. */ |
| phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); |
| } else { |
| ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| if (!active) { |
| if (hw->mac_type == e1000_82541_rev_2 || |
| hw->mac_type == e1000_82547_rev_2) { |
| phy_data &= ~IGP01E1000_GMII_FLEX_SPD; |
| ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| } else { |
| if (hw->mac_type == e1000_ich8lan) { |
| phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; |
| E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); |
| } else { |
| phy_data &= ~IGP02E1000_PM_D3_LPLU; |
| ret_val = e1000_write_phy_reg(hw, |
| IGP02E1000_PHY_POWER_MGMT, phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| } |
| |
| /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
| * Dx states where the power conservation is most important. During |
| * driver activity we should enable SmartSpeed, so performance is |
| * maintained. */ |
| if (hw->smart_speed == e1000_smart_speed_on) { |
| ret_val = e1000_read_phy_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1000_write_phy_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, phy_data); |
| if (ret_val) |
| return ret_val; |
| } else if (hw->smart_speed == e1000_smart_speed_off) { |
| ret_val = e1000_read_phy_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1000_write_phy_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) |
| || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) || |
| (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { |
| |
| if (hw->mac_type == e1000_82541_rev_2 || |
| hw->mac_type == e1000_82547_rev_2) { |
| phy_data |= IGP01E1000_GMII_FLEX_SPD; |
| ret_val = e1000_write_phy_reg(hw, |
| IGP01E1000_GMII_FIFO, phy_data); |
| if (ret_val) |
| return ret_val; |
| } else { |
| if (hw->mac_type == e1000_ich8lan) { |
| phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; |
| E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); |
| } else { |
| phy_data |= IGP02E1000_PM_D3_LPLU; |
| ret_val = e1000_write_phy_reg(hw, |
| IGP02E1000_PHY_POWER_MGMT, phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| } |
| |
| /* When LPLU is enabled we should disable SmartSpeed */ |
| ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /***************************************************************************** |
| * |
| * This function sets the lplu d0 state according to the active flag. When |
| * activating lplu this function also disables smart speed and vise versa. |
| * lplu will not be activated unless the device autonegotiation advertisment |
| * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. |
| * hw: Struct containing variables accessed by shared code |
| * active - true to enable lplu false to disable lplu. |
| * |
| * returns: - E1000_ERR_PHY if fail to read/write the PHY |
| * E1000_SUCCESS at any other case. |
| * |
| ****************************************************************************/ |
| |
| static int32_t |
| e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) |
| { |
| uint32_t phy_ctrl = 0; |
| int32_t ret_val; |
| uint16_t phy_data; |
| DEBUGFUNC(); |
| |
| if (hw->mac_type <= e1000_82547_rev_2) |
| return E1000_SUCCESS; |
| |
| if (hw->mac_type == e1000_ich8lan) { |
| phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); |
| } else if (hw->mac_type == e1000_igb) { |
| phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL); |
| } else { |
| ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| if (!active) { |
| if (hw->mac_type == e1000_ich8lan) { |
| phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; |
| E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); |
| } else if (hw->mac_type == e1000_igb) { |
| phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; |
| E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl); |
| } else { |
| phy_data &= ~IGP02E1000_PM_D0_LPLU; |
| ret_val = e1000_write_phy_reg(hw, |
| IGP02E1000_PHY_POWER_MGMT, phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| if (hw->mac_type == e1000_igb) |
| return E1000_SUCCESS; |
| |
| /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
| * Dx states where the power conservation is most important. During |
| * driver activity we should enable SmartSpeed, so performance is |
| * maintained. */ |
| if (hw->smart_speed == e1000_smart_speed_on) { |
| ret_val = e1000_read_phy_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1000_write_phy_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, phy_data); |
| if (ret_val) |
| return ret_val; |
| } else if (hw->smart_speed == e1000_smart_speed_off) { |
| ret_val = e1000_read_phy_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1000_write_phy_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| |
| } else { |
| |
| if (hw->mac_type == e1000_ich8lan) { |
| phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; |
| E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); |
| } else if (hw->mac_type == e1000_igb) { |
| phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; |
| E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl); |
| } else { |
| phy_data |= IGP02E1000_PM_D0_LPLU; |
| ret_val = e1000_write_phy_reg(hw, |
| IGP02E1000_PHY_POWER_MGMT, phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| if (hw->mac_type == e1000_igb) |
| return E1000_SUCCESS; |
| |
| /* When LPLU is enabled we should disable SmartSpeed */ |
| ret_val = e1000_read_phy_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1000_write_phy_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /******************************************************************** |
| * Copper link setup for e1000_phy_igp series. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *********************************************************************/ |
| static int32_t |
| e1000_copper_link_igp_setup(struct e1000_hw *hw) |
| { |
| uint32_t led_ctrl; |
| int32_t ret_val; |
| uint16_t phy_data; |
| |
| DEBUGFUNC(); |
| |
| if (hw->phy_reset_disable) |
| return E1000_SUCCESS; |
| |
| ret_val = e1000_phy_reset(hw); |
| if (ret_val) { |
| DEBUGOUT("Error Resetting the PHY\n"); |
| return ret_val; |
| } |
| |
| /* Wait 15ms for MAC to configure PHY from eeprom settings */ |
| mdelay(15); |
| if (hw->mac_type != e1000_ich8lan) { |
| /* Configure activity LED after PHY reset */ |
| led_ctrl = E1000_READ_REG(hw, LEDCTL); |
| led_ctrl &= IGP_ACTIVITY_LED_MASK; |
| led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
| E1000_WRITE_REG(hw, LEDCTL, led_ctrl); |
| } |
| |
| /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ |
| if (hw->phy_type == e1000_phy_igp) { |
| /* disable lplu d3 during driver init */ |
| ret_val = e1000_set_d3_lplu_state(hw, false); |
| if (ret_val) { |
| DEBUGOUT("Error Disabling LPLU D3\n"); |
| return ret_val; |
| } |
| } |
| |
| /* disable lplu d0 during driver init */ |
| ret_val = e1000_set_d0_lplu_state(hw, false); |
| if (ret_val) { |
| DEBUGOUT("Error Disabling LPLU D0\n"); |
| return ret_val; |
| } |
| /* Configure mdi-mdix settings */ |
| ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
| hw->dsp_config_state = e1000_dsp_config_disabled; |
| /* Force MDI for earlier revs of the IGP PHY */ |
| phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX |
| | IGP01E1000_PSCR_FORCE_MDI_MDIX); |
| hw->mdix = 1; |
| |
| } else { |
| hw->dsp_config_state = e1000_dsp_config_enabled; |
| phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; |
| |
| switch (hw->mdix) { |
| case 1: |
| phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
| break; |
| case 2: |
| phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; |
| break; |
| case 0: |
| default: |
| phy_data |= IGP01E1000_PSCR_AUTO_MDIX; |
| break; |
| } |
| } |
| ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* set auto-master slave resolution settings */ |
| if (hw->autoneg) { |
| e1000_ms_type phy_ms_setting = hw->master_slave; |
| |
| if (hw->ffe_config_state == e1000_ffe_config_active) |
| hw->ffe_config_state = e1000_ffe_config_enabled; |
| |
| if (hw->dsp_config_state == e1000_dsp_config_activated) |
| hw->dsp_config_state = e1000_dsp_config_enabled; |
| |
| /* when autonegotiation advertisment is only 1000Mbps then we |
| * should disable SmartSpeed and enable Auto MasterSlave |
| * resolution as hardware default. */ |
| if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { |
| /* Disable SmartSpeed */ |
| ret_val = e1000_read_phy_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
| if (ret_val) |
| return ret_val; |
| phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1000_write_phy_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, phy_data); |
| if (ret_val) |
| return ret_val; |
| /* Set auto Master/Slave resolution process */ |
| ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| phy_data &= ~CR_1000T_MS_ENABLE; |
| ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* load defaults for future use */ |
| hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? |
| ((phy_data & CR_1000T_MS_VALUE) ? |
| e1000_ms_force_master : |
| e1000_ms_force_slave) : |
| e1000_ms_auto; |
| |
| switch (phy_ms_setting) { |
| case e1000_ms_force_master: |
| phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); |
| break; |
| case e1000_ms_force_slave: |
| phy_data |= CR_1000T_MS_ENABLE; |
| phy_data &= ~(CR_1000T_MS_VALUE); |
| break; |
| case e1000_ms_auto: |
| phy_data &= ~CR_1000T_MS_ENABLE; |
| default: |
| break; |
| } |
| ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /***************************************************************************** |
| * This function checks the mode of the firmware. |
| * |
| * returns - true when the mode is IAMT or false. |
| ****************************************************************************/ |
| bool |
| e1000_check_mng_mode(struct e1000_hw *hw) |
| { |
| uint32_t fwsm; |
| DEBUGFUNC(); |
| |
| fwsm = E1000_READ_REG(hw, FWSM); |
| |
| if (hw->mac_type == e1000_ich8lan) { |
| if ((fwsm & E1000_FWSM_MODE_MASK) == |
| (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) |
| return true; |
| } else if ((fwsm & E1000_FWSM_MODE_MASK) == |
| (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) |
| return true; |
| |
| return false; |
| } |
| |
| static int32_t |
| e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data) |
| { |
| uint16_t swfw = E1000_SWFW_PHY0_SM; |
| uint32_t reg_val; |
| DEBUGFUNC(); |
| |
| if (e1000_is_second_port(hw)) |
| swfw = E1000_SWFW_PHY1_SM; |
| |
| if (e1000_swfw_sync_acquire(hw, swfw)) |
| return -E1000_ERR_SWFW_SYNC; |
| |
| reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) |
| & E1000_KUMCTRLSTA_OFFSET) | data; |
| E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); |
| udelay(2); |
| |
| return E1000_SUCCESS; |
| } |
| |
| static int32_t |
| e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data) |
| { |
| uint16_t swfw = E1000_SWFW_PHY0_SM; |
| uint32_t reg_val; |
| DEBUGFUNC(); |
| |
| if (e1000_is_second_port(hw)) |
| swfw = E1000_SWFW_PHY1_SM; |
| |
| if (e1000_swfw_sync_acquire(hw, swfw)) { |
| debug("%s[%i]\n", __func__, __LINE__); |
| return -E1000_ERR_SWFW_SYNC; |
| } |
| |
| /* Write register address */ |
| reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & |
| E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN; |
| E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); |
| udelay(2); |
| |
| /* Read the data returned */ |
| reg_val = E1000_READ_REG(hw, KUMCTRLSTA); |
| *data = (uint16_t)reg_val; |
| |
| return E1000_SUCCESS; |
| } |
| |
| /******************************************************************** |
| * Copper link setup for e1000_phy_gg82563 series. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *********************************************************************/ |
| static int32_t |
| e1000_copper_link_ggp_setup(struct e1000_hw *hw) |
| { |
| int32_t ret_val; |
| uint16_t phy_data; |
| uint32_t reg_data; |
| |
| DEBUGFUNC(); |
| |
| if (!hw->phy_reset_disable) { |
| /* Enable CRS on TX for half-duplex operation. */ |
| ret_val = e1000_read_phy_reg(hw, |
| GG82563_PHY_MAC_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; |
| /* Use 25MHz for both link down and 1000BASE-T for Tx clock */ |
| phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ; |
| |
| ret_val = e1000_write_phy_reg(hw, |
| GG82563_PHY_MAC_SPEC_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Options: |
| * MDI/MDI-X = 0 (default) |
| * 0 - Auto for all speeds |
| * 1 - MDI mode |
| * 2 - MDI-X mode |
| * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
| */ |
| ret_val = e1000_read_phy_reg(hw, |
| GG82563_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; |
| |
| switch (hw->mdix) { |
| case 1: |
| phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI; |
| break; |
| case 2: |
| phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; |
| break; |
| case 0: |
| default: |
| phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; |
| break; |
| } |
| |
| /* Options: |
| * disable_polarity_correction = 0 (default) |
| * Automatic Correction for Reversed Cable Polarity |
| * 0 - Disabled |
| * 1 - Enabled |
| */ |
| phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; |
| ret_val = e1000_write_phy_reg(hw, |
| GG82563_PHY_SPEC_CTRL, phy_data); |
| |
| if (ret_val) |
| return ret_val; |
| |
| /* SW Reset the PHY so all changes take effect */ |
| ret_val = e1000_phy_reset(hw); |
| if (ret_val) { |
| DEBUGOUT("Error Resetting the PHY\n"); |
| return ret_val; |
| } |
| } /* phy_reset_disable */ |
| |
| if (hw->mac_type == e1000_80003es2lan) { |
| /* Bypass RX and TX FIFO's */ |
| ret_val = e1000_write_kmrn_reg(hw, |
| E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL, |
| E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
| | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_read_phy_reg(hw, |
| GG82563_PHY_SPEC_CTRL_2, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; |
| ret_val = e1000_write_phy_reg(hw, |
| GG82563_PHY_SPEC_CTRL_2, phy_data); |
| |
| if (ret_val) |
| return ret_val; |
| |
| reg_data = E1000_READ_REG(hw, CTRL_EXT); |
| reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); |
| E1000_WRITE_REG(hw, CTRL_EXT, reg_data); |
| |
| ret_val = e1000_read_phy_reg(hw, |
| GG82563_PHY_PWR_MGMT_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Do not init these registers when the HW is in IAMT mode, since the |
| * firmware will have already initialized them. We only initialize |
| * them if the HW is not in IAMT mode. |
| */ |
| if (e1000_check_mng_mode(hw) == false) { |
| /* Enable Electrical Idle on the PHY */ |
| phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; |
| ret_val = e1000_write_phy_reg(hw, |
| GG82563_PHY_PWR_MGMT_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_read_phy_reg(hw, |
| GG82563_PHY_KMRN_MODE_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
| ret_val = e1000_write_phy_reg(hw, |
| GG82563_PHY_KMRN_MODE_CTRL, phy_data); |
| |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Workaround: Disable padding in Kumeran interface in the MAC |
| * and in the PHY to avoid CRC errors. |
| */ |
| ret_val = e1000_read_phy_reg(hw, |
| GG82563_PHY_INBAND_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| phy_data |= GG82563_ICR_DIS_PADDING; |
| ret_val = e1000_write_phy_reg(hw, |
| GG82563_PHY_INBAND_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /******************************************************************** |
| * Copper link setup for e1000_phy_m88 series. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *********************************************************************/ |
| static int32_t |
| e1000_copper_link_mgp_setup(struct e1000_hw *hw) |
| { |
| int32_t ret_val; |
| uint16_t phy_data; |
| |
| DEBUGFUNC(); |
| |
| if (hw->phy_reset_disable) |
| return E1000_SUCCESS; |
| |
| /* Enable CRS on TX. This must be set for half-duplex operation. */ |
| ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
| |
| /* Options: |
| * MDI/MDI-X = 0 (default) |
| * 0 - Auto for all speeds |
| * 1 - MDI mode |
| * 2 - MDI-X mode |
| * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
| */ |
| phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
| |
| switch (hw->mdix) { |
| case 1: |
| phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; |
| break; |
| case 2: |
| phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; |
| break; |
| case 3: |
| phy_data |= M88E1000_PSCR_AUTO_X_1000T; |
| break; |
| case 0: |
| default: |
| phy_data |= M88E1000_PSCR_AUTO_X_MODE; |
| break; |
| } |
| |
| /* Options: |
| * disable_polarity_correction = 0 (default) |
| * Automatic Correction for Reversed Cable Polarity |
| * 0 - Disabled |
| * 1 - Enabled |
| */ |
| phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| if (hw->phy_revision < M88E1011_I_REV_4) { |
| /* Force TX_CLK in the Extended PHY Specific Control Register |
| * to 25MHz clock. |
| */ |
| ret_val = e1000_read_phy_reg(hw, |
| M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= M88E1000_EPSCR_TX_CLK_25; |
| |
| if ((hw->phy_revision == E1000_REVISION_2) && |
| (hw->phy_id == M88E1111_I_PHY_ID)) { |
| /* Vidalia Phy, set the downshift counter to 5x */ |
| phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); |
| phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; |
| ret_val = e1000_write_phy_reg(hw, |
| M88E1000_EXT_PHY_SPEC_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| } else { |
| /* Configure Master and Slave downshift values */ |
| phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
| | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); |
| phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
| | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); |
| ret_val = e1000_write_phy_reg(hw, |
| M88E1000_EXT_PHY_SPEC_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| } |
| |
| /* SW Reset the PHY so all changes take effect */ |
| ret_val = e1000_phy_reset(hw); |
| if (ret_val) { |
| DEBUGOUT("Error Resetting the PHY\n"); |
| return ret_val; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /******************************************************************** |
| * Setup auto-negotiation and flow control advertisements, |
| * and then perform auto-negotiation. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *********************************************************************/ |
| static int32_t |
| e1000_copper_link_autoneg(struct e1000_hw *hw) |
| { |
| int32_t ret_val; |
| uint16_t phy_data; |
| |
| DEBUGFUNC(); |
| |
| /* Perform some bounds checking on the hw->autoneg_advertised |
| * parameter. If this variable is zero, then set it to the default. |
| */ |
| hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| |
| /* If autoneg_advertised is zero, we assume it was not defaulted |
| * by the calling code so we set to advertise full capability. |
| */ |
| if (hw->autoneg_advertised == 0) |
| hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| |
| /* IFE phy only supports 10/100 */ |
| if (hw->phy_type == e1000_phy_ife) |
| hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; |
| |
| DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); |
| ret_val = e1000_phy_setup_autoneg(hw); |
| if (ret_val) { |
| DEBUGOUT("Error Setting up Auto-Negotiation\n"); |
| return ret_val; |
| } |
| DEBUGOUT("Restarting Auto-Neg\n"); |
| |
| /* Restart auto-negotiation by setting the Auto Neg Enable bit and |
| * the Auto Neg Restart bit in the PHY control register. |
| */ |
| ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); |
| ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Does the user want to wait for Auto-Neg to complete here, or |
| * check at a later time (for example, callback routine). |
| */ |
| /* If we do not wait for autonegtation to complete I |
| * do not see a valid link status. |
| * wait_autoneg_complete = 1 . |
| */ |
| if (hw->wait_autoneg_complete) { |
| ret_val = e1000_wait_autoneg(hw); |
| if (ret_val) { |
| DEBUGOUT("Error while waiting for autoneg" |
| "to complete\n"); |
| return ret_val; |
| } |
| } |
| |
| hw->get_link_status = true; |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Config the MAC and the PHY after link is up. |
| * 1) Set up the MAC to the current PHY speed/duplex |
| * if we are on 82543. If we |
| * are on newer silicon, we only need to configure |
| * collision distance in the Transmit Control Register. |
| * 2) Set up flow control on the MAC to that established with |
| * the link partner. |
| * 3) Config DSP to improve Gigabit link quality for some PHY revisions. |
| * |
| * hw - Struct containing variables accessed by shared code |
| ******************************************************************************/ |
| static int32_t |
| e1000_copper_link_postconfig(struct e1000_hw *hw) |
| { |
| int32_t ret_val; |
| DEBUGFUNC(); |
| |
| if (hw->mac_type >= e1000_82544) { |
| e1000_config_collision_dist(hw); |
| } else { |
| ret_val = e1000_config_mac_to_phy(hw); |
| if (ret_val) { |
| DEBUGOUT("Error configuring MAC to PHY settings\n"); |
| return ret_val; |
| } |
| } |
| ret_val = e1000_config_fc_after_link_up(hw); |
| if (ret_val) { |
| DEBUGOUT("Error Configuring Flow Control\n"); |
| return ret_val; |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Detects which PHY is present and setup the speed and duplex |
| * |
| * hw - Struct containing variables accessed by shared code |
| ******************************************************************************/ |
| static int |
| e1000_setup_copper_link(struct eth_device *nic) |
| { |
| struct e1000_hw *hw = nic->priv; |
| int32_t ret_val; |
| uint16_t i; |
| uint16_t phy_data; |
| uint16_t reg_data; |
| |
| DEBUGFUNC(); |
| |
| switch (hw->mac_type) { |
| case e1000_80003es2lan: |
| case e1000_ich8lan: |
| /* Set the mac to wait the maximum time between each |
| * iteration and increase the max iterations when |
| * polling the phy; this fixes erroneous timeouts at 10Mbps. */ |
| ret_val = e1000_write_kmrn_reg(hw, |
| GG82563_REG(0x34, 4), 0xFFFF); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000_read_kmrn_reg(hw, |
| GG82563_REG(0x34, 9), ®_data); |
| if (ret_val) |
| return ret_val; |
| reg_data |= 0x3F; |
| ret_val = e1000_write_kmrn_reg(hw, |
| GG82563_REG(0x34, 9), reg_data); |
| if (ret_val) |
| return ret_val; |
| default: |
| break; |
| } |
| |
| /* Check if it is a valid PHY and set PHY mode if necessary. */ |
| ret_val = e1000_copper_link_preconfig(hw); |
| if (ret_val) |
| return ret_val; |
| switch (hw->mac_type) { |
| case e1000_80003es2lan: |
| /* Kumeran registers are written-only */ |
| reg_data = |
| E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT; |
| reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; |
| ret_val = e1000_write_kmrn_reg(hw, |
| E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data); |
| if (ret_val) |
| return ret_val; |
| break; |
| default: |
| break; |
| } |
| |
| if (hw->phy_type == e1000_phy_igp || |
| hw->phy_type == e1000_phy_igp_3 || |
| hw->phy_type == e1000_phy_igp_2) { |
| ret_val = e1000_copper_link_igp_setup(hw); |
| if (ret_val) |
| return ret_val; |
| } else if (hw->phy_type == e1000_phy_m88 || |
| hw->phy_type == e1000_phy_igb) { |
| ret_val = e1000_copper_link_mgp_setup(hw); |
| if (ret_val) |
| return ret_val; |
| } else if (hw->phy_type == e1000_phy_gg82563) { |
| ret_val = e1000_copper_link_ggp_setup(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* always auto */ |
| /* Setup autoneg and flow control advertisement |
| * and perform autonegotiation */ |
| ret_val = e1000_copper_link_autoneg(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* Check link status. Wait up to 100 microseconds for link to become |
| * valid. |
| */ |
| for (i = 0; i < 10; i++) { |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| if (phy_data & MII_SR_LINK_STATUS) { |
| /* Config the MAC and PHY after link is up */ |
| ret_val = e1000_copper_link_postconfig(hw); |
| if (ret_val) |
| return ret_val; |
| |
| DEBUGOUT("Valid link established!!!\n"); |
| return E1000_SUCCESS; |
| } |
| udelay(10); |
| } |
| |
| DEBUGOUT("Unable to establish link!!!\n"); |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Configures PHY autoneg and flow control advertisement settings |
| * |
| * hw - Struct containing variables accessed by shared code |
| ******************************************************************************/ |
| int32_t |
| e1000_phy_setup_autoneg(struct e1000_hw *hw) |
| { |
| int32_t ret_val; |
| uint16_t mii_autoneg_adv_reg; |
| uint16_t mii_1000t_ctrl_reg; |
| |
| DEBUGFUNC(); |
| |
| /* Read the MII Auto-Neg Advertisement Register (Address 4). */ |
| ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); |
| if (ret_val) |
| return ret_val; |
| |
| if (hw->phy_type != e1000_phy_ife) { |
| /* Read the MII 1000Base-T Control Register (Address 9). */ |
| ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, |
| &mii_1000t_ctrl_reg); |
| if (ret_val) |
| return ret_val; |
| } else |
| mii_1000t_ctrl_reg = 0; |
| |
| /* Need to parse both autoneg_advertised and fc and set up |
| * the appropriate PHY registers. First we will parse for |
| * autoneg_advertised software override. Since we can advertise |
| * a plethora of combinations, we need to check each bit |
| * individually. |
| */ |
| |
| /* First we clear all the 10/100 mb speed bits in the Auto-Neg |
| * Advertisement Register (Address 4) and the 1000 mb speed bits in |
| * the 1000Base-T Control Register (Address 9). |
| */ |
| mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; |
| mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; |
| |
| DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised); |
| |
| /* Do we want to advertise 10 Mb Half Duplex? */ |
| if (hw->autoneg_advertised & ADVERTISE_10_HALF) { |
| DEBUGOUT("Advertise 10mb Half duplex\n"); |
| mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; |
| } |
| |
| /* Do we want to advertise 10 Mb Full Duplex? */ |
| if (hw->autoneg_advertised & ADVERTISE_10_FULL) { |
| DEBUGOUT("Advertise 10mb Full duplex\n"); |
| mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; |
| } |
| |
| /* Do we want to advertise 100 Mb Half Duplex? */ |
| if (hw->autoneg_advertised & ADVERTISE_100_HALF) { |
| DEBUGOUT("Advertise 100mb Half duplex\n"); |
| mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; |
| } |
| |
| /* Do we want to advertise 100 Mb Full Duplex? */ |
| if (hw->autoneg_advertised & ADVERTISE_100_FULL) { |
| DEBUGOUT("Advertise 100mb Full duplex\n"); |
| mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; |
| } |
| |
| /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ |
| if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { |
| DEBUGOUT |
| ("Advertise 1000mb Half duplex requested, request denied!\n"); |
| } |
| |
| /* Do we want to advertise 1000 Mb Full Duplex? */ |
| if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { |
| DEBUGOUT("Advertise 1000mb Full duplex\n"); |
| mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; |
| } |
| |
| /* Check for a software override of the flow control settings, and |
| * setup the PHY advertisement registers accordingly. If |
| * auto-negotiation is enabled, then software will have to set the |
| * "PAUSE" bits to the correct value in the Auto-Negotiation |
| * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. |
| * |
| * The possible values of the "fc" parameter are: |
| * 0: Flow control is completely disabled |
| * 1: Rx flow control is enabled (we can receive pause frames |
| * but not send pause frames). |
| * 2: Tx flow control is enabled (we can send pause frames |
| * but we do not support receiving pause frames). |
| * 3: Both Rx and TX flow control (symmetric) are enabled. |
| * other: No software override. The flow control configuration |
| * in the EEPROM is used. |
| */ |
| switch (hw->fc) { |
| case e1000_fc_none: /* 0 */ |
| /* Flow control (RX & TX) is completely disabled by a |
| * software over-ride. |
| */ |
| mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| break; |
| case e1000_fc_rx_pause: /* 1 */ |
| /* RX Flow control is enabled, and TX Flow control is |
| * disabled, by a software over-ride. |
| */ |
| /* Since there really isn't a way to advertise that we are |
| * capable of RX Pause ONLY, we will advertise that we |
| * support both symmetric and asymmetric RX PAUSE. Later |
| * (in e1000_config_fc_after_link_up) we will disable the |
| *hw's ability to send PAUSE frames. |
| */ |
| mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| break; |
| case e1000_fc_tx_pause: /* 2 */ |
| /* TX Flow control is enabled, and RX Flow control is |
| * disabled, by a software over-ride. |
| */ |
| mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; |
| mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; |
| break; |
| case e1000_fc_full: /* 3 */ |
| /* Flow control (both RX and TX) is enabled by a software |
| * over-ride. |
| */ |
| mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| break; |
| default: |
| DEBUGOUT("Flow control param set incorrectly\n"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); |
| if (ret_val) |
| return ret_val; |
| |
| DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); |
| |
| if (hw->phy_type != e1000_phy_ife) { |
| ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, |
| mii_1000t_ctrl_reg); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Sets the collision distance in the Transmit Control register |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Link should have been established previously. Reads the speed and duplex |
| * information from the Device Status register. |
| ******************************************************************************/ |
| static void |
| e1000_config_collision_dist(struct e1000_hw *hw) |
| { |
| uint32_t tctl, coll_dist; |
| |
| DEBUGFUNC(); |
| |
| if (hw->mac_type < e1000_82543) |
| coll_dist = E1000_COLLISION_DISTANCE_82542; |
| else |
| coll_dist = E1000_COLLISION_DISTANCE; |
| |
| tctl = E1000_READ_REG(hw, TCTL); |
| |
| tctl &= ~E1000_TCTL_COLD; |
| tctl |= coll_dist << E1000_COLD_SHIFT; |
| |
| E1000_WRITE_REG(hw, TCTL, tctl); |
| E1000_WRITE_FLUSH(hw); |
| } |
| |
| /****************************************************************************** |
| * Sets MAC speed and duplex settings to reflect the those in the PHY |
| * |
| * hw - Struct containing variables accessed by shared code |
| * mii_reg - data to write to the MII control register |
| * |
| * The contents of the PHY register containing the needed information need to |
| * be passed in. |
| ******************************************************************************/ |
| static int |
| e1000_config_mac_to_phy(struct e1000_hw *hw) |
| { |
| uint32_t ctrl; |
| uint16_t phy_data; |
| |
| DEBUGFUNC(); |
| |
| /* Read the Device Control Register and set the bits to Force Speed |
| * and Duplex. |
| */ |
| ctrl = E1000_READ_REG(hw, CTRL); |
| ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| ctrl &= ~(E1000_CTRL_ILOS); |
| ctrl |= (E1000_CTRL_SPD_SEL); |
| |
| /* Set up duplex in the Device Control and Transmit Control |
| * registers depending on negotiated values. |
| */ |
| if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| if (phy_data & M88E1000_PSSR_DPLX) |
| ctrl |= E1000_CTRL_FD; |
| else |
| ctrl &= ~E1000_CTRL_FD; |
| |
| e1000_config_collision_dist(hw); |
| |
| /* Set up speed in the Device Control register depending on |
| * negotiated values. |
| */ |
| if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) |
| ctrl |= E1000_CTRL_SPD_1000; |
| else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) |
| ctrl |= E1000_CTRL_SPD_100; |
| /* Write the configured values back to the Device Control Reg. */ |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| return 0; |
| } |
| |
| /****************************************************************************** |
| * Forces the MAC's flow control settings. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Sets the TFCE and RFCE bits in the device control register to reflect |
| * the adapter settings. TFCE and RFCE need to be explicitly set by |
| * software when a Copper PHY is used because autonegotiation is managed |
| * by the PHY rather than the MAC. Software must also configure these |
| * bits when link is forced on a fiber connection. |
| *****************************************************************************/ |
| static int |
| e1000_force_mac_fc(struct e1000_hw *hw) |
| { |
| uint32_t ctrl; |
| |
| DEBUGFUNC(); |
| |
| /* Get the current configuration of the Device Control Register */ |
| ctrl = E1000_READ_REG(hw, CTRL); |
| |
| /* Because we didn't get link via the internal auto-negotiation |
| * mechanism (we either forced link or we got link via PHY |
| * auto-neg), we have to manually enable/disable transmit an |
| * receive flow control. |
| * |
| * The "Case" statement below enables/disable flow control |
| * according to the "hw->fc" parameter. |
| * |
| * The possible values of the "fc" parameter are: |
| * 0: Flow control is completely disabled |
| * 1: Rx flow control is enabled (we can receive pause |
| * frames but not send pause frames). |
| * 2: Tx flow control is enabled (we can send pause frames |
| * frames but we do not receive pause frames). |
| * 3: Both Rx and TX flow control (symmetric) is enabled. |
| * other: No other values should be possible at this point. |
| */ |
| |
| switch (hw->fc) { |
| case e1000_fc_none: |
| ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); |
| break; |
| case e1000_fc_rx_pause: |
| ctrl &= (~E1000_CTRL_TFCE); |
| ctrl |= E1000_CTRL_RFCE; |
| break; |
| case e1000_fc_tx_pause: |
| ctrl &= (~E1000_CTRL_RFCE); |
| ctrl |= E1000_CTRL_TFCE; |
| break; |
| case e1000_fc_full: |
| ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); |
| break; |
| default: |
| DEBUGOUT("Flow control param set incorrectly\n"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| /* Disable TX Flow Control for 82542 (rev 2.0) */ |
| if (hw->mac_type == e1000_82542_rev2_0) |
| ctrl &= (~E1000_CTRL_TFCE); |
| |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| return 0; |
| } |
| |
| /****************************************************************************** |
| * Configures flow control settings after link is established |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Should be called immediately after a valid link has been established. |
| * Forces MAC flow control settings if link was forced. When in MII/GMII mode |
| * and autonegotiation is enabled, the MAC flow control settings will be set |
| * based on the flow control negotiated by the PHY. In TBI mode, the TFCE |
| * and RFCE bits will be automaticaly set to the negotiated flow control mode. |
| *****************************************************************************/ |
| static int32_t |
| e1000_config_fc_after_link_up(struct e1000_hw *hw) |
| { |
| int32_t ret_val; |
| uint16_t mii_status_reg; |
| uint16_t mii_nway_adv_reg; |
| uint16_t mii_nway_lp_ability_reg; |
| uint16_t speed; |
| uint16_t duplex; |
| |
| DEBUGFUNC(); |
| |
| /* Check for the case where we have fiber media and auto-neg failed |
| * so we had to force link. In this case, we need to force the |
| * configuration of the MAC to match the "fc" parameter. |
| */ |
| if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) |
| || ((hw->media_type == e1000_media_type_internal_serdes) |
| && (hw->autoneg_failed)) |
| || ((hw->media_type == e1000_media_type_copper) |
| && (!hw->autoneg))) { |
| ret_val = e1000_force_mac_fc(hw); |
| if (ret_val < 0) { |
| DEBUGOUT("Error forcing flow control settings\n"); |
| return ret_val; |
| } |
| } |
| |
| /* Check for the case where we have copper media and auto-neg is |
| * enabled. In this case, we need to check and see if Auto-Neg |
| * has completed, and if so, how the PHY and link partner has |
| * flow control configured. |
| */ |
| if (hw->media_type == e1000_media_type_copper) { |
| /* Read the MII Status Register and check to see if AutoNeg |
| * has completed. We read this twice because this reg has |
| * some "sticky" (latched) bits. |
| */ |
| if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { |
| DEBUGOUT("PHY Read Error \n"); |
| return -E1000_ERR_PHY; |
| } |
| if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { |
| DEBUGOUT("PHY Read Error \n"); |
| return -E1000_ERR_PHY; |
| } |
| |
| if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { |
| /* The AutoNeg process has completed, so we now need to |
| * read both the Auto Negotiation Advertisement Register |
| * (Address 4) and the Auto_Negotiation Base Page Ability |
| * Register (Address 5) to determine how flow control was |
| * negotiated. |
| */ |
| if (e1000_read_phy_reg |
| (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| if (e1000_read_phy_reg |
| (hw, PHY_LP_ABILITY, |
| &mii_nway_lp_ability_reg) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| |
| /* Two bits in the Auto Negotiation Advertisement Register |
| * (Address 4) and two bits in the Auto Negotiation Base |
| * Page Ability Register (Address 5) determine flow control |
| * for both the PHY and the link partner. The following |
| * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, |
| * 1999, describes these PAUSE resolution bits and how flow |
| * control is determined based upon these settings. |
| * NOTE: DC = Don't Care |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution |
| *-------|---------|-------|---------|-------------------- |
| * 0 | 0 | DC | DC | e1000_fc_none |
| * 0 | 1 | 0 | DC | e1000_fc_none |
| * 0 | 1 | 1 | 0 | e1000_fc_none |
| * 0 | 1 | 1 | 1 | e1000_fc_tx_pause |
| * 1 | 0 | 0 | DC | e1000_fc_none |
| * 1 | DC | 1 | DC | e1000_fc_full |
| * 1 | 1 | 0 | 0 | e1000_fc_none |
| * 1 | 1 | 0 | 1 | e1000_fc_rx_pause |
| * |
| */ |
| /* Are both PAUSE bits set to 1? If so, this implies |
| * Symmetric Flow Control is enabled at both ends. The |
| * ASM_DIR bits are irrelevant per the spec. |
| * |
| * For Symmetric Flow Control: |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| *-------|---------|-------|---------|-------------------- |
| * 1 | DC | 1 | DC | e1000_fc_full |
| * |
| */ |
| if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { |
| /* Now we need to check if the user selected RX ONLY |
| * of pause frames. In this case, we had to advertise |
| * FULL flow control because we could not advertise RX |
| * ONLY. Hence, we must now check to see if we need to |
| * turn OFF the TRANSMISSION of PAUSE frames. |
| */ |
| if (hw->original_fc == e1000_fc_full) { |
| hw->fc = e1000_fc_full; |
| DEBUGOUT("Flow Control = FULL.\r\n"); |
| } else { |
| hw->fc = e1000_fc_rx_pause; |
| DEBUGOUT |
| ("Flow Control = RX PAUSE frames only.\r\n"); |
| } |
| } |
| /* For receiving PAUSE frames ONLY. |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| *-------|---------|-------|---------|-------------------- |
| * 0 | 1 | 1 | 1 | e1000_fc_tx_pause |
| * |
| */ |
| else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) |
| { |
| hw->fc = e1000_fc_tx_pause; |
| DEBUGOUT |
| ("Flow Control = TX PAUSE frames only.\r\n"); |
| } |
| /* For transmitting PAUSE frames ONLY. |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| *-------|---------|-------|---------|-------------------- |
| * 1 | 1 | 0 | 1 | e1000_fc_rx_pause |
| * |
| */ |
| else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
| !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) |
| { |
| hw->fc = e1000_fc_rx_pause; |
| DEBUGOUT |
| ("Flow Control = RX PAUSE frames only.\r\n"); |
| } |
| /* Per the IEEE spec, at this point flow control should be |
| * disabled. However, we want to consider that we could |
| * be connected to a legacy switch that doesn't advertise |
| * desired flow control, but can be forced on the link |
| * partner. So if we advertised no flow control, that is |
| * what we will resolve to. If we advertised some kind of |
| * receive capability (Rx Pause Only or Full Flow Control) |
| * and the link partner advertised none, we will configure |
| * ourselves to enable Rx Flow Control only. We can do |
| * this safely for two reasons: If the link partner really |
| * didn't want flow control enabled, and we enable Rx, no |
| * harm done since we won't be receiving any PAUSE frames |
| * anyway. If the intent on the link partner was to have |
| * flow control enabled, then by us enabling RX only, we |
| * can at least receive pause frames and process them. |
| * This is a good idea because in most cases, since we are |
| * predominantly a server NIC, more times than not we will |
| * be asked to delay transmission of packets than asking |
| * our link partner to pause transmission of frames. |
| */ |
| else if (hw->original_fc == e1000_fc_none || |
| hw->original_fc == e1000_fc_tx_pause) { |
| hw->fc = e1000_fc_none; |
| DEBUGOUT("Flow Control = NONE.\r\n"); |
| } else { |
| hw->fc = e1000_fc_rx_pause; |
| DEBUGOUT |
| ("Flow Control = RX PAUSE frames only.\r\n"); |
| } |
| |
| /* Now we need to do one last check... If we auto- |
| * negotiated to HALF DUPLEX, flow control should not be |
| * enabled per IEEE 802.3 spec. |
| */ |
| e1000_get_speed_and_duplex(hw, &speed, &duplex); |
| |
| if (duplex == HALF_DUPLEX) |
| hw->fc = e1000_fc_none; |
| |
| /* Now we call a subroutine to actually force the MAC |
| * controller to use the correct flow control settings. |
| */ |
| ret_val = e1000_force_mac_fc(hw); |
| if (ret_val < 0) { |
| DEBUGOUT |
| ("Error forcing flow control settings\n"); |
| return ret_val; |
| } |
| } else { |
| DEBUGOUT |
| ("Copper PHY and Auto Neg has not completed.\r\n"); |
| } |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Checks to see if the link status of the hardware has changed. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Called by any function that needs to check the link status of the adapter. |
| *****************************************************************************/ |
| static int |
| e1000_check_for_link(struct eth_device *nic) |
| { |
| struct e1000_hw *hw = nic->priv; |
| uint32_t rxcw; |
| uint32_t ctrl; |
| uint32_t status; |
| uint32_t rctl; |
| uint32_t signal; |
| int32_t ret_val; |
| uint16_t phy_data; |
| uint16_t lp_capability; |
| |
| DEBUGFUNC(); |
| |
| /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be |
| * set when the optics detect a signal. On older adapters, it will be |
| * cleared when there is a signal |
| */ |
| ctrl = E1000_READ_REG(hw, CTRL); |
| if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS)) |
| signal = E1000_CTRL_SWDPIN1; |
| else |
| signal = 0; |
| |
| status = E1000_READ_REG(hw, STATUS); |
| rxcw = E1000_READ_REG(hw, RXCW); |
| DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw); |
| |
| /* If we have a copper PHY then we only want to go out to the PHY |
| * registers to see if Auto-Neg has completed and/or if our link |
| * status has changed. The get_link_status flag will be set if we |
| * receive a Link Status Change interrupt or we have Rx Sequence |
| * Errors. |
| */ |
| if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { |
| /* First we want to see if the MII Status Register reports |
| * link. If so, then we want to get the current speed/duplex |
| * of the PHY. |
| * Read the register twice since the link bit is sticky. |
| */ |
| if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| |
| if (phy_data & MII_SR_LINK_STATUS) { |
| hw->get_link_status = false; |
| } else { |
| /* No link detected */ |
| return -E1000_ERR_NOLINK; |
| } |
| |
| /* We have a M88E1000 PHY and Auto-Neg is enabled. If we |
| * have Si on board that is 82544 or newer, Auto |
| * Speed Detection takes care of MAC speed/duplex |
| * configuration. So we only need to configure Collision |
| * Distance in the MAC. Otherwise, we need to force |
| * speed/duplex on the MAC to the current PHY speed/duplex |
| * settings. |
| */ |
| if (hw->mac_type >= e1000_82544) |
| e1000_config_collision_dist(hw); |
| else { |
| ret_val = e1000_config_mac_to_phy(hw); |
| if (ret_val < 0) { |
| DEBUGOUT |
| ("Error configuring MAC to PHY settings\n"); |
| return ret_val; |
| } |
| } |
| |
| /* Configure Flow Control now that Auto-Neg has completed. First, we |
| * need to restore the desired flow control settings because we may |
| * have had to re-autoneg with a different link partner. |
| */ |
| ret_val = e1000_config_fc_after_link_up(hw); |
| if (ret_val < 0) { |
| DEBUGOUT("Error configuring flow control\n"); |
| return ret_val; |
| } |
| |
| /* At this point we know that we are on copper and we have |
| * auto-negotiated link. These are conditions for checking the link |
| * parter capability register. We use the link partner capability to |
| * determine if TBI Compatibility needs to be turned on or off. If |
| * the link partner advertises any speed in addition to Gigabit, then |
| * we assume that they are GMII-based, and TBI compatibility is not |
| * needed. If no other speeds are advertised, we assume the link |
| * partner is TBI-based, and we turn on TBI Compatibility. |
| */ |
| if (hw->tbi_compatibility_en) { |
| if (e1000_read_phy_reg |
| (hw, PHY_LP_ABILITY, &lp_capability) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| if (lp_capability & (NWAY_LPAR_10T_HD_CAPS | |
| NWAY_LPAR_10T_FD_CAPS | |
| NWAY_LPAR_100TX_HD_CAPS | |
| NWAY_LPAR_100TX_FD_CAPS | |
| NWAY_LPAR_100T4_CAPS)) { |
| /* If our link partner advertises anything in addition to |
| * gigabit, we do not need to enable TBI compatibility. |
| */ |
| if (hw->tbi_compatibility_on) { |
| /* If we previously were in the mode, turn it off. */ |
| rctl = E1000_READ_REG(hw, RCTL); |
| rctl &= ~E1000_RCTL_SBP; |
| E1000_WRITE_REG(hw, RCTL, rctl); |
| hw->tbi_compatibility_on = false; |
| } |
| } else { |
| /* If TBI compatibility is was previously off, turn it on. For |
| * compatibility with a TBI link partner, we will store bad |
| * packets. Some frames have an additional byte on the end and |
| * will look like CRC errors to to the hardware. |
| */ |
| if (!hw->tbi_compatibility_on) { |
| hw->tbi_compatibility_on = true; |
| rctl = E1000_READ_REG(hw, RCTL); |
| rctl |= E1000_RCTL_SBP; |
| E1000_WRITE_REG(hw, RCTL, rctl); |
| } |
| } |
| } |
| } |
| /* If we don't have link (auto-negotiation failed or link partner cannot |
| * auto-negotiate), the cable is plugged in (we have signal), and our |
| * link partner is not trying to auto-negotiate with us (we are receiving |
| * idles or data), we need to force link up. We also need to give |
| * auto-negotiation time to complete, in case the cable was just plugged |
| * in. The autoneg_failed flag does this. |
| */ |
| else if ((hw->media_type == e1000_media_type_fiber) && |
| (!(status & E1000_STATUS_LU)) && |
| ((ctrl & E1000_CTRL_SWDPIN1) == signal) && |
| (!(rxcw & E1000_RXCW_C))) { |
| if (hw->autoneg_failed == 0) { |
| hw->autoneg_failed = 1; |
| return 0; |
| } |
| DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n"); |
| |
| /* Disable auto-negotiation in the TXCW register */ |
| E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); |
| |
| /* Force link-up and also force full-duplex. */ |
| ctrl = E1000_READ_REG(hw, CTRL); |
| ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| |
| /* Configure Flow Control after forcing link up. */ |
| ret_val = e1000_config_fc_after_link_up(hw); |
| if (ret_val < 0) { |
| DEBUGOUT("Error configuring flow control\n"); |
| return ret_val; |
| } |
| } |
| /* If we are forcing link and we are receiving /C/ ordered sets, re-enable |
| * auto-negotiation in the TXCW register and disable forced link in the |
| * Device Control register in an attempt to auto-negotiate with our link |
| * partner. |
| */ |
| else if ((hw->media_type == e1000_media_type_fiber) && |
| (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { |
| DEBUGOUT |
| ("RXing /C/, enable AutoNeg and stop forcing link.\r\n"); |
| E1000_WRITE_REG(hw, TXCW, hw->txcw); |
| E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); |
| } |
| return 0; |
| } |
| |
| /****************************************************************************** |
| * Configure the MAC-to-PHY interface for 10/100Mbps |
| * |
| * hw - Struct containing variables accessed by shared code |
| ******************************************************************************/ |
| static int32_t |
| e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex) |
| { |
| int32_t ret_val = E1000_SUCCESS; |
| uint32_t tipg; |
| uint16_t reg_data; |
| |
| DEBUGFUNC(); |
| |
| reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT; |
| ret_val = e1000_write_kmrn_reg(hw, |
| E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Configure Transmit Inter-Packet Gap */ |
| tipg = E1000_READ_REG(hw, TIPG); |
| tipg &= ~E1000_TIPG_IPGT_MASK; |
| tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; |
| E1000_WRITE_REG(hw, TIPG, tipg); |
| |
| ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); |
| |
| if (ret_val) |
| return ret_val; |
| |
| if (duplex == HALF_DUPLEX) |
| reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; |
| else |
| reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
| |
| ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); |
| |
| return ret_val; |
| } |
| |
| static int32_t |
| e1000_configure_kmrn_for_1000(struct e1000_hw *hw) |
| { |
| int32_t ret_val = E1000_SUCCESS; |
| uint16_t reg_data; |
| uint32_t tipg; |
| |
| DEBUGFUNC(); |
| |
| reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT; |
| ret_val = e1000_write_kmrn_reg(hw, |
| E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Configure Transmit Inter-Packet Gap */ |
| tipg = E1000_READ_REG(hw, TIPG); |
| tipg &= ~E1000_TIPG_IPGT_MASK; |
| tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; |
| E1000_WRITE_REG(hw, TIPG, tipg); |
| |
| ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); |
| |
| if (ret_val) |
| return ret_val; |
| |
| reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
| ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); |
| |
| return ret_val; |
| } |
| |
| /****************************************************************************** |
| * Detects the current speed and duplex settings of the hardware. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * speed - Speed of the connection |
| * duplex - Duplex setting of the connection |
| *****************************************************************************/ |
| static int |
| e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed, |
| uint16_t *duplex) |
| { |
| uint32_t status; |
| int32_t ret_val; |
| uint16_t phy_data; |
| |
| DEBUGFUNC(); |
| |
| if (hw->mac_type >= e1000_82543) { |
| status = E1000_READ_REG(hw, STATUS); |
| if (status & E1000_STATUS_SPEED_1000) { |
| *speed = SPEED_1000; |
| DEBUGOUT("1000 Mbs, "); |
| } else if (status & E1000_STATUS_SPEED_100) { |
| *speed = SPEED_100; |
| DEBUGOUT("100 Mbs, "); |
| } else { |
| *speed = SPEED_10; |
| DEBUGOUT("10 Mbs, "); |
| } |
| |
| if (status & E1000_STATUS_FD) { |
| *duplex = FULL_DUPLEX; |
| DEBUGOUT("Full Duplex\r\n"); |
| } else { |
| *duplex = HALF_DUPLEX; |
| DEBUGOUT(" Half Duplex\r\n"); |
| } |
| } else { |
| DEBUGOUT("1000 Mbs, Full Duplex\r\n"); |
| *speed = SPEED_1000; |
| *duplex = FULL_DUPLEX; |
| } |
| |
| /* IGP01 PHY may advertise full duplex operation after speed downgrade |
| * even if it is operating at half duplex. Here we set the duplex |
| * settings to match the duplex in the link partner's capabilities. |
| */ |
| if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { |
| ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) |
| *duplex = HALF_DUPLEX; |
| else { |
| ret_val = e1000_read_phy_reg(hw, |
| PHY_LP_ABILITY, &phy_data); |
| if (ret_val) |
| return ret_val; |
| if ((*speed == SPEED_100 && |
| !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) |
| || (*speed == SPEED_10 |
| && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) |
| *duplex = HALF_DUPLEX; |
| } |
| } |
| |
| if ((hw->mac_type == e1000_80003es2lan) && |
| (hw->media_type == e1000_media_type_copper)) { |
| if (*speed == SPEED_1000) |
| ret_val = e1000_configure_kmrn_for_1000(hw); |
| else |
| ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex); |
| if (ret_val) |
| return ret_val; |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Blocks until autoneg completes or times out (~4.5 seconds) |
| * |
| * hw - Struct containing variables accessed by shared code |
| ******************************************************************************/ |
| static int |
| e1000_wait_autoneg(struct e1000_hw *hw) |
| { |
| uint16_t i; |
| uint16_t phy_data; |
| |
| DEBUGFUNC(); |
| DEBUGOUT("Waiting for Auto-Neg to complete.\n"); |
| |
| /* We will wait for autoneg to complete or 4.5 seconds to expire. */ |
| for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { |
| /* Read the MII Status Register and wait for Auto-Neg |
| * Complete bit to be set. |
| */ |
| if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| if (phy_data & MII_SR_AUTONEG_COMPLETE) { |
| DEBUGOUT("Auto-Neg complete.\n"); |
| return 0; |
| } |
| mdelay(100); |
| } |
| DEBUGOUT("Auto-Neg timedout.\n"); |
| return -E1000_ERR_TIMEOUT; |
| } |
| |
| /****************************************************************************** |
| * Raises the Management Data Clock |
| * |
| * hw - Struct containing variables accessed by shared code |
| * ctrl - Device control register's current value |
| ******************************************************************************/ |
| static void |
| e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) |
| { |
| /* Raise the clock input to the Management Data Clock (by setting the MDC |
| * bit), and then delay 2 microseconds. |
| */ |
| E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); |
| E1000_WRITE_FLUSH(hw); |
| udelay(2); |
| } |
| |
| /****************************************************************************** |
| * Lowers the Management Data Clock |
| * |
| * hw - Struct containing variables accessed by shared code |
| * ctrl - Device control register's current value |
| ******************************************************************************/ |
| static void |
| e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) |
| { |
| /* Lower the clock input to the Management Data Clock (by clearing the MDC |
| * bit), and then delay 2 microseconds. |
| */ |
| E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); |
| E1000_WRITE_FLUSH(hw); |
| udelay(2); |
| } |
| |
| /****************************************************************************** |
| * Shifts data bits out to the PHY |
| * |
| * hw - Struct containing variables accessed by shared code |
| * data - Data to send out to the PHY |
| * count - Number of bits to shift out |
| * |
| * Bits are shifted out in MSB to LSB order. |
| ******************************************************************************/ |
| static void |
| e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count) |
| { |
| uint32_t ctrl; |
| uint32_t mask; |
| |
| /* We need to shift "count" number of bits out to the PHY. So, the value |
| * in the "data" parameter will be shifted out to the PHY one bit at a |
| * time. In order to do this, "data" must be broken down into bits. |
| */ |
| mask = 0x01; |
| mask <<= (count - 1); |
| |
| ctrl = E1000_READ_REG(hw, CTRL); |
| |
| /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ |
| ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); |
| |
| while (mask) { |
| /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and |
| * then raising and lowering the Management Data Clock. A "0" is |
| * shifted out to the PHY by setting the MDIO bit to "0" and then |
| * raising and lowering the clock. |
| */ |
| if (data & mask) |
| ctrl |= E1000_CTRL_MDIO; |
| else |
| ctrl &= ~E1000_CTRL_MDIO; |
| |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| E1000_WRITE_FLUSH(hw); |
| |
| udelay(2); |
| |
| e1000_raise_mdi_clk(hw, &ctrl); |
| e1000_lower_mdi_clk(hw, &ctrl); |
| |
| mask = mask >> 1; |
| } |
| } |
| |
| /****************************************************************************** |
| * Shifts data bits in from the PHY |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Bits are shifted in in MSB to LSB order. |
| ******************************************************************************/ |
| static uint16_t |
| e1000_shift_in_mdi_bits(struct e1000_hw *hw) |
| { |
| uint32_t ctrl; |
| uint16_t data = 0; |
| uint8_t i; |
| |
| /* In order to read a register from the PHY, we need to shift in a total |
| * of 18 bits from the PHY. The first two bit (turnaround) times are used |
| * to avoid contention on the MDIO pin when a read operation is performed. |
| * These two bits are ignored by us and thrown away. Bits are "shifted in" |
| * by raising the input to the Management Data Clock (setting the MDC bit), |
| * and then reading the value of the MDIO bit. |
| */ |
| ctrl = E1000_READ_REG(hw, CTRL); |
| |
| /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ |
| ctrl &= ~E1000_CTRL_MDIO_DIR; |
| ctrl &= ~E1000_CTRL_MDIO; |
| |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| E1000_WRITE_FLUSH(hw); |
| |
| /* Raise and Lower the clock before reading in the data. This accounts for |
| * the turnaround bits. The first clock occurred when we clocked out the |
| * last bit of the Register Address. |
| */ |
| e1000_raise_mdi_clk(hw, &ctrl); |
| e1000_lower_mdi_clk(hw, &ctrl); |
| |
| for (data = 0, i = 0; i < 16; i++) { |
| data = data << 1; |
| e1000_raise_mdi_clk(hw, &ctrl); |
| ctrl = E1000_READ_REG(hw, CTRL); |
| /* Check to see if we shifted in a "1". */ |
| if (ctrl & E1000_CTRL_MDIO) |
| data |= 1; |
| e1000_lower_mdi_clk(hw, &ctrl); |
| } |
| |
| e1000_raise_mdi_clk(hw, &ctrl); |
| e1000_lower_mdi_clk(hw, &ctrl); |
| |
| return data; |
| } |
| |
| /***************************************************************************** |
| * Reads the value from a PHY register |
| * |
| * hw - Struct containing variables accessed by shared code |
| * reg_addr - address of the PHY register to read |
| ******************************************************************************/ |
| static int |
| e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data) |
| { |
| uint32_t i; |
| uint32_t mdic = 0; |
| const uint32_t phy_addr = 1; |
| |
| if (reg_addr > MAX_PHY_REG_ADDRESS) { |
| DEBUGOUT("PHY Address %d is out of range\n", reg_addr); |
| return -E1000_ERR_PARAM; |
| } |
| |
| if (hw->mac_type > e1000_82543) { |
| /* Set up Op-code, Phy Address, and register address in the MDI |
| * Control register. The MAC will take care of interfacing with the |
| * PHY to retrieve the desired data. |
| */ |
| mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | |
| (phy_addr << E1000_MDIC_PHY_SHIFT) | |
| (E1000_MDIC_OP_READ)); |
| |
| E1000_WRITE_REG(hw, MDIC, mdic); |
| |
| /* Poll the ready bit to see if the MDI read completed */ |
| for (i = 0; i < 64; i++) { |
| udelay(10); |
| mdic = E1000_READ_REG(hw, MDIC); |
| if (mdic & E1000_MDIC_READY) |
| break; |
| } |
| if (!(mdic & E1000_MDIC_READY)) { |
| DEBUGOUT("MDI Read did not complete\n"); |
| return -E1000_ERR_PHY; |
| } |
| if (mdic & E1000_MDIC_ERROR) { |
| DEBUGOUT("MDI Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| *phy_data = (uint16_t) mdic; |
| } else { |
| /* We must first send a preamble through the MDIO pin to signal the |
| * beginning of an MII instruction. This is done by sending 32 |
| * consecutive "1" bits. |
| */ |
| e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); |
| |
| /* Now combine the next few fields that are required for a read |
| * operation. We use this method instead of calling the |
| * e1000_shift_out_mdi_bits routine five different times. The format of |
| * a MII read instruction consists of a shift out of 14 bits and is |
| * defined as follows: |
| * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> |
| * followed by a shift in of 18 bits. This first two bits shifted in |
| * are TurnAround bits used to avoid contention on the MDIO pin when a |
| * READ operation is performed. These two bits are thrown away |
| * followed by a shift in of 16 bits which contains the desired data. |
| */ |
| mdic = ((reg_addr) | (phy_addr << 5) | |
| (PHY_OP_READ << 10) | (PHY_SOF << 12)); |
| |
| e1000_shift_out_mdi_bits(hw, mdic, 14); |
| |
| /* Now that we've shifted out the read command to the MII, we need to |
| * "shift in" the 16-bit value (18 total bits) of the requested PHY |
| * register address. |
| */ |
| *phy_data = e1000_shift_in_mdi_bits(hw); |
| } |
| return 0; |
| } |
| |
| /****************************************************************************** |
| * Writes a value to a PHY register |
| * |
| * hw - Struct containing variables accessed by shared code |
| * reg_addr - address of the PHY register to write |
| * data - data to write to the PHY |
| ******************************************************************************/ |
| static int |
| e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data) |
| { |
| uint32_t i; |
| uint32_t mdic = 0; |
| const uint32_t phy_addr = 1; |
| |
| if (reg_addr > MAX_PHY_REG_ADDRESS) { |
| DEBUGOUT("PHY Address %d is out of range\n", reg_addr); |
| return -E1000_ERR_PARAM; |
| } |
| |
| if (hw->mac_type > e1000_82543) { |
| /* Set up Op-code, Phy Address, register address, and data intended |
| * for the PHY register in the MDI Control register. The MAC will take |
| * care of interfacing with the PHY to send the desired data. |
| */ |
| mdic = (((uint32_t) phy_data) | |
| (reg_addr << E1000_MDIC_REG_SHIFT) | |
| (phy_addr << E1000_MDIC_PHY_SHIFT) | |
| (E1000_MDIC_OP_WRITE)); |
| |
| E1000_WRITE_REG(hw, MDIC, mdic); |
| |
| /* Poll the ready bit to see if the MDI read completed */ |
| for (i = 0; i < 64; i++) { |
| udelay(10); |
| mdic = E1000_READ_REG(hw, MDIC); |
| if (mdic & E1000_MDIC_READY) |
| break; |
| } |
| if (!(mdic & E1000_MDIC_READY)) { |
| DEBUGOUT("MDI Write did not complete\n"); |
| return -E1000_ERR_PHY; |
| } |
| } else { |
| /* We'll need to use the SW defined pins to shift the write command |
| * out to the PHY. We first send a preamble to the PHY to signal the |
| * beginning of the MII instruction. This is done by sending 32 |
| * consecutive "1" bits. |
| */ |
| e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); |
| |
| /* Now combine the remaining required fields that will indicate a |
| * write operation. We use this method instead of calling the |
| * e1000_shift_out_mdi_bits routine for each field in the command. The |
| * format of a MII write instruction is as follows: |
| * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. |
| */ |
| mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | |
| (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); |
| mdic <<= 16; |
| mdic |= (uint32_t) phy_data; |
| |
| e1000_shift_out_mdi_bits(hw, mdic, 32); |
| } |
| return 0; |
| } |
| |
| /****************************************************************************** |
| * Checks if PHY reset is blocked due to SOL/IDER session, for example. |
| * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to |
| * the caller to figure out how to deal with it. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * returns: - E1000_BLK_PHY_RESET |
| * E1000_SUCCESS |
| * |
| *****************************************************************************/ |
| int32_t |
| e1000_check_phy_reset_block(struct e1000_hw *hw) |
| { |
| uint32_t manc = 0; |
| uint32_t fwsm = 0; |
| |
| if (hw->mac_type == e1000_ich8lan) { |
| fwsm = E1000_READ_REG(hw, FWSM); |
| return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS |
| : E1000_BLK_PHY_RESET; |
| } |
| |
| if (hw->mac_type > e1000_82547_rev_2) |
| manc = E1000_READ_REG(hw, MANC); |
| return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? |
| E1000_BLK_PHY_RESET : E1000_SUCCESS; |
| } |
| |
| /*************************************************************************** |
| * Checks if the PHY configuration is done |
| * |
| * hw: Struct containing variables accessed by shared code |
| * |
| * returns: - E1000_ERR_RESET if fail to reset MAC |
| * E1000_SUCCESS at any other case. |
| * |
| ***************************************************************************/ |
| static int32_t |
| e1000_get_phy_cfg_done(struct e1000_hw *hw) |
| { |
| int32_t timeout = PHY_CFG_TIMEOUT; |
| uint32_t cfg_mask = E1000_EEPROM_CFG_DONE; |
| |
| DEBUGFUNC(); |
| |
| switch (hw->mac_type) { |
| default: |
| mdelay(10); |
| break; |
| |
| case e1000_80003es2lan: |
| /* Separate *_CFG_DONE_* bit for each port */ |
| if (e1000_is_second_port(hw)) |
| cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1; |
| /* Fall Through */ |
| |
| case e1000_82571: |
| case e1000_82572: |
| case e1000_igb: |
| while (timeout) { |
| if (hw->mac_type == e1000_igb) { |
| if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask) |
| break; |
| } else { |
| if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask) |
| break; |
| } |
| mdelay(1); |
| timeout--; |
| } |
| if (!timeout) { |
| DEBUGOUT("MNG configuration cycle has not " |
| "completed.\n"); |
| return -E1000_ERR_RESET; |
| } |
| break; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Returns the PHY to the power-on reset state |
| * |
| * hw - Struct containing variables accessed by shared code |
| ******************************************************************************/ |
| int32_t |
| e1000_phy_hw_reset(struct e1000_hw *hw) |
| { |
| uint16_t swfw = E1000_SWFW_PHY0_SM; |
| uint32_t ctrl, ctrl_ext; |
| uint32_t led_ctrl; |
| int32_t ret_val; |
| |
| DEBUGFUNC(); |
| |
| /* In the case of the phy reset being blocked, it's not an error, we |
| * simply return success without performing the reset. */ |
| ret_val = e1000_check_phy_reset_block(hw); |
| if (ret_val) |
| return E1000_SUCCESS; |
| |
| DEBUGOUT("Resetting Phy...\n"); |
| |
| if (hw->mac_type > e1000_82543) { |
| if (e1000_is_second_port(hw)) |
| swfw = E1000_SWFW_PHY1_SM; |
| |
| if (e1000_swfw_sync_acquire(hw, swfw)) { |
| DEBUGOUT("Unable to acquire swfw sync\n"); |
| return -E1000_ERR_SWFW_SYNC; |
| } |
| |
| /* Read the device control register and assert the E1000_CTRL_PHY_RST |
| * bit. Then, take it out of reset. |
| */ |
| ctrl = E1000_READ_REG(hw, CTRL); |
| E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); |
| E1000_WRITE_FLUSH(hw); |
| |
| if (hw->mac_type < e1000_82571) |
| udelay(10); |
| else |
| udelay(100); |
| |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| E1000_WRITE_FLUSH(hw); |
| |
| if (hw->mac_type >= e1000_82571) |
| mdelay(10); |
| } else { |
| /* Read the Extended Device Control Register, assert the PHY_RESET_DIR |
| * bit to put the PHY into reset. Then, take it out of reset. |
| */ |
| ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; |
| ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; |
| E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| E1000_WRITE_FLUSH(hw); |
| mdelay(10); |
| ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; |
| E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| E1000_WRITE_FLUSH(hw); |
| } |
| udelay(150); |
| |
| if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
| /* Configure activity LED after PHY reset */ |
| led_ctrl = E1000_READ_REG(hw, LEDCTL); |
| led_ctrl &= IGP_ACTIVITY_LED_MASK; |
| led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
| E1000_WRITE_REG(hw, LEDCTL, led_ctrl); |
| } |
| |
| /* Wait for FW to finish PHY configuration. */ |
| ret_val = e1000_get_phy_cfg_done(hw); |
| if (ret_val != E1000_SUCCESS) |
| return ret_val; |
| |
| return ret_val; |
| } |
| |
| /****************************************************************************** |
| * IGP phy init script - initializes the GbE PHY |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static void |
| e1000_phy_init_script(struct e1000_hw *hw) |
| { |
| uint32_t ret_val; |
| uint16_t phy_saved_data; |
| DEBUGFUNC(); |
| |
| if (hw->phy_init_script) { |
| mdelay(20); |
| |
| /* Save off the current value of register 0x2F5B to be |
| * restored at the end of this routine. */ |
| ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); |
| |
| /* Disabled the PHY transmitter */ |
| e1000_write_phy_reg(hw, 0x2F5B, 0x0003); |
| |
| mdelay(20); |
| |
| e1000_write_phy_reg(hw, 0x0000, 0x0140); |
| |
| mdelay(5); |
| |
| switch (hw->mac_type) { |
| case e1000_82541: |
| case e1000_82547: |
| e1000_write_phy_reg(hw, 0x1F95, 0x0001); |
| |
| e1000_write_phy_reg(hw, 0x1F71, 0xBD21); |
| |
| e1000_write_phy_reg(hw, 0x1F79, 0x0018); |
| |
| e1000_write_phy_reg(hw, 0x1F30, 0x1600); |
| |
| e1000_write_phy_reg(hw, 0x1F31, 0x0014); |
| |
| e1000_write_phy_reg(hw, 0x1F32, 0x161C); |
| |
| e1000_write_phy_reg(hw, 0x1F94, 0x0003); |
| |
| e1000_write_phy_reg(hw, 0x1F96, 0x003F); |
| |
| e1000_write_phy_reg(hw, 0x2010, 0x0008); |
| break; |
| |
| case e1000_82541_rev_2: |
| case e1000_82547_rev_2: |
| e1000_write_phy_reg(hw, 0x1F73, 0x0099); |
| break; |
| default: |
| break; |
| } |
| |
| e1000_write_phy_reg(hw, 0x0000, 0x3300); |
| |
| mdelay(20); |
| |
| /* Now enable the transmitter */ |
| if (!ret_val) |
| e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
| |
| if (hw->mac_type == e1000_82547) { |
| uint16_t fused, fine, coarse; |
| |
| /* Move to analog registers page */ |
| e1000_read_phy_reg(hw, |
| IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); |
| |
| if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { |
| e1000_read_phy_reg(hw, |
| IGP01E1000_ANALOG_FUSE_STATUS, &fused); |
| |
| fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; |
| coarse = fused |
| & IGP01E1000_ANALOG_FUSE_COARSE_MASK; |
| |
| if (coarse > |
| IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { |
| coarse -= |
| IGP01E1000_ANALOG_FUSE_COARSE_10; |
| fine -= IGP01E1000_ANALOG_FUSE_FINE_1; |
| } else if (coarse |
| == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) |
| fine -= IGP01E1000_ANALOG_FUSE_FINE_10; |
| |
| fused = (fused |
| & IGP01E1000_ANALOG_FUSE_POLY_MASK) | |
| (fine |
| & IGP01E1000_ANALOG_FUSE_FINE_MASK) | |
| (coarse |
| & IGP01E1000_ANALOG_FUSE_COARSE_MASK); |
| |
| e1000_write_phy_reg(hw, |
| IGP01E1000_ANALOG_FUSE_CONTROL, fused); |
| e1000_write_phy_reg(hw, |
| IGP01E1000_ANALOG_FUSE_BYPASS, |
| IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); |
| } |
| } |
| } |
| } |
| |
| /****************************************************************************** |
| * Resets the PHY |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Sets bit 15 of the MII Control register |
| ******************************************************************************/ |
| int32_t |
| e1000_phy_reset(struct e1000_hw *hw) |
| { |
| int32_t ret_val; |
| uint16_t phy_data; |
| |
| DEBUGFUNC(); |
| |
| /* In the case of the phy reset being blocked, it's not an error, we |
| * simply return success without performing the reset. */ |
| ret_val = e1000_check_phy_reset_block(hw); |
| if (ret_val) |
| return E1000_SUCCESS; |
| |
| switch (hw->phy_type) { |
| case e1000_phy_igp: |
| case e1000_phy_igp_2: |
| case e1000_phy_igp_3: |
| case e1000_phy_ife: |
| case e1000_phy_igb: |
| ret_val = e1000_phy_hw_reset(hw); |
| if (ret_val) |
| return ret_val; |
| break; |
| default: |
| ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= MII_CR_RESET; |
| ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| udelay(1); |
| break; |
| } |
| |
| if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2) |
| e1000_phy_init_script(hw); |
| |
| return E1000_SUCCESS; |
| } |
| |
| static int e1000_set_phy_type (struct e1000_hw *hw) |
| { |
| DEBUGFUNC (); |
| |
| if (hw->mac_type == e1000_undefined) |
| return -E1000_ERR_PHY_TYPE; |
| |
| switch (hw->phy_id) { |
| case M88E1000_E_PHY_ID: |
| case M88E1000_I_PHY_ID: |
| case M88E1011_I_PHY_ID: |
| case M88E1111_I_PHY_ID: |
| hw->phy_type = e1000_phy_m88; |
| break; |
| case IGP01E1000_I_PHY_ID: |
| if (hw->mac_type == e1000_82541 || |
| hw->mac_type == e1000_82541_rev_2 || |
| hw->mac_type == e1000_82547 || |
| hw->mac_type == e1000_82547_rev_2) { |
| hw->phy_type = e1000_phy_igp; |
| break; |
| } |
| case IGP03E1000_E_PHY_ID: |
| hw->phy_type = e1000_phy_igp_3; |
| break; |
| case IFE_E_PHY_ID: |
| case IFE_PLUS_E_PHY_ID: |
| case IFE_C_E_PHY_ID: |
| hw->phy_type = e1000_phy_ife; |
| break; |
| case GG82563_E_PHY_ID: |
| if (hw->mac_type == e1000_80003es2lan) { |
| hw->phy_type = e1000_phy_gg82563; |
| break; |
| } |
| case BME1000_E_PHY_ID: |
| hw->phy_type = e1000_phy_bm; |
| break; |
| case I210_I_PHY_ID: |
| hw->phy_type = e1000_phy_igb; |
| break; |
| /* Fall Through */ |
| default: |
| /* Should never have loaded on this device */ |
| hw->phy_type = e1000_phy_undefined; |
| return -E1000_ERR_PHY_TYPE; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Probes the expected PHY address for known PHY IDs |
| * |
| * hw - Struct containing variables accessed by shared code |
| ******************************************************************************/ |
| static int32_t |
| e1000_detect_gig_phy(struct e1000_hw *hw) |
| { |
| int32_t phy_init_status, ret_val; |
| uint16_t phy_id_high, phy_id_low; |
| bool match = false; |
| |
| DEBUGFUNC(); |
| |
| /* The 82571 firmware may still be configuring the PHY. In this |
| * case, we cannot access the PHY until the configuration is done. So |
| * we explicitly set the PHY values. */ |
| if (hw->mac_type == e1000_82571 || |
| hw->mac_type == e1000_82572) { |
| hw->phy_id = IGP01E1000_I_PHY_ID; |
| hw->phy_type = e1000_phy_igp_2; |
| return E1000_SUCCESS; |
| } |
| |
| /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a |
| * work- around that forces PHY page 0 to be set or the reads fail. |
| * The rest of the code in this routine uses e1000_read_phy_reg to |
| * read the PHY ID. So for ESB-2 we need to have this set so our |
| * reads won't fail. If the attached PHY is not a e1000_phy_gg82563, |
| * the routines below will figure this out as well. */ |
| if (hw->mac_type == e1000_80003es2lan) |
| hw->phy_type = e1000_phy_gg82563; |
| |
| /* Read the PHY ID Registers to identify which PHY is onboard. */ |
| ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); |
| if (ret_val) |
| return ret_val; |
| |
| hw->phy_id = (uint32_t) (phy_id_high << 16); |
| udelay(20); |
| ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); |
| if (ret_val) |
| return ret_val; |
| |
| hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); |
| hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK; |
| |
| switch (hw->mac_type) { |
| case e1000_82543: |
| if (hw->phy_id == M88E1000_E_PHY_ID) |
| match = true; |
| break; |
| case e1000_82544: |
| if (hw->phy_id == M88E1000_I_PHY_ID) |
| match = true; |
| break; |
| case e1000_82540: |
| case e1000_82545: |
| case e1000_82545_rev_3: |
| case e1000_82546: |
| case e1000_82546_rev_3: |
| if (hw->phy_id == M88E1011_I_PHY_ID) |
| match = true; |
| break; |
| case e1000_82541: |
| case e1000_82541_rev_2: |
| case e1000_82547: |
| case e1000_82547_rev_2: |
| if(hw->phy_id == IGP01E1000_I_PHY_ID) |
| match = true; |
| |
| break; |
| case e1000_82573: |
| if (hw->phy_id == M88E1111_I_PHY_ID) |
| match = true; |
| break; |
| case e1000_82574: |
| if (hw->phy_id == BME1000_E_PHY_ID) |
| match = true; |
| break; |
| case e1000_80003es2lan: |
| if (hw->phy_id == GG82563_E_PHY_ID) |
| match = true; |
| break; |
| case e1000_ich8lan: |
| if (hw->phy_id == IGP03E1000_E_PHY_ID) |
| match = true; |
| if (hw->phy_id == IFE_E_PHY_ID) |
| match = true; |
| if (hw->phy_id == IFE_PLUS_E_PHY_ID) |
| match = true; |
| if (hw->phy_id == IFE_C_E_PHY_ID) |
| match = true; |
| break; |
| case e1000_igb: |
| if (hw->phy_id == I210_I_PHY_ID) |
| match = true; |
| break; |
| default: |
| DEBUGOUT("Invalid MAC type %d\n", hw->mac_type); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| phy_init_status = e1000_set_phy_type(hw); |
| |
| if ((match) && (phy_init_status == E1000_SUCCESS)) { |
| DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id); |
| return 0; |
| } |
| DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id); |
| return -E1000_ERR_PHY; |
| } |
| |
| /***************************************************************************** |
| * Set media type and TBI compatibility. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * **************************************************************************/ |
| void |
| e1000_set_media_type(struct e1000_hw *hw) |
| { |
| uint32_t status; |
| |
| DEBUGFUNC(); |
| |
| if (hw->mac_type != e1000_82543) { |
| /* tbi_compatibility is only valid on 82543 */ |
| hw->tbi_compatibility_en = false; |
| } |
| |
| switch (hw->device_id) { |
| case E1000_DEV_ID_82545GM_SERDES: |
| case E1000_DEV_ID_82546GB_SERDES: |
| case E1000_DEV_ID_82571EB_SERDES: |
| case E1000_DEV_ID_82571EB_SERDES_DUAL: |
| case E1000_DEV_ID_82571EB_SERDES_QUAD: |
| case E1000_DEV_ID_82572EI_SERDES: |
| case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: |
| hw->media_type = e1000_media_type_internal_serdes; |
| break; |
| default: |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| hw->media_type = e1000_media_type_fiber; |
| break; |
| case e1000_ich8lan: |
| case e1000_82573: |
| case e1000_82574: |
| case e1000_igb: |
| /* The STATUS_TBIMODE bit is reserved or reused |
| * for the this device. |
| */ |
| hw->media_type = e1000_media_type_copper; |
| break; |
| default: |
| status = E1000_READ_REG(hw, STATUS); |
| if (status & E1000_STATUS_TBIMODE) { |
| hw->media_type = e1000_media_type_fiber; |
| /* tbi_compatibility not valid on fiber */ |
| hw->tbi_compatibility_en = false; |
| } else { |
| hw->media_type = e1000_media_type_copper; |
| } |
| break; |
| } |
| } |
| } |
| |
| /** |
| * e1000_sw_init - Initialize general software structures (struct e1000_adapter) |
| * |
| * e1000_sw_init initializes the Adapter private data structure. |
| * Fields are initialized based on PCI device information and |
| * OS network device settings (MTU size). |
| **/ |
| |
| static int |
| e1000_sw_init(struct eth_device *nic) |
| { |
| struct e1000_hw *hw = (typeof(hw)) nic->priv; |
| int result; |
| |
| /* PCI config space info */ |
| pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id); |
| pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id); |
| pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID, |
| &hw->subsystem_vendor_id); |
| pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id); |
| |
| pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id); |
| pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word); |
| |
| /* identify the MAC */ |
| result = e1000_set_mac_type(hw); |
| if (result) { |
| E1000_ERR(hw->nic, "Unknown MAC Type\n"); |
| return result; |
| } |
| |
| switch (hw->mac_type) { |
| default: |
| break; |
| case e1000_82541: |
| case e1000_82547: |
| case e1000_82541_rev_2: |
| case e1000_82547_rev_2: |
| hw->phy_init_script = 1; |
| break; |
| } |
| |
| /* flow control settings */ |
| hw->fc_high_water = E1000_FC_HIGH_THRESH; |
| hw->fc_low_water = E1000_FC_LOW_THRESH; |
| hw->fc_pause_time = E1000_FC_PAUSE_TIME; |
| hw->fc_send_xon = 1; |
| |
| /* Media type - copper or fiber */ |
| hw->tbi_compatibility_en = true; |
| e1000_set_media_type(hw); |
| |
| if (hw->mac_type >= e1000_82543) { |
| uint32_t status = E1000_READ_REG(hw, STATUS); |
| |
| if (status & E1000_STATUS_TBIMODE) { |
| DEBUGOUT("fiber interface\n"); |
| hw->media_type = e1000_media_type_fiber; |
| } else { |
| DEBUGOUT("copper interface\n"); |
| hw->media_type = e1000_media_type_copper; |
| } |
| } else { |
| hw->media_type = e1000_media_type_fiber; |
| } |
| |
| hw->wait_autoneg_complete = true; |
| if (hw->mac_type < e1000_82543) |
| hw->report_tx_early = 0; |
| else |
| hw->report_tx_early = 1; |
| |
| return E1000_SUCCESS; |
| } |
| |
| void |
| fill_rx(struct e1000_hw *hw) |
| { |
| struct e1000_rx_desc *rd; |
| unsigned long flush_start, flush_end; |
| |
| rx_last = rx_tail; |
| rd = rx_base + rx_tail; |
| rx_tail = (rx_tail + 1) % 8; |
| memset(rd, 0, 16); |
| rd->buffer_addr = cpu_to_le64((unsigned long)packet); |
| |
| /* |
| * Make sure there are no stale data in WB over this area, which |
| * might get written into the memory while the e1000 also writes |
| * into the same memory area. |
| */ |
| invalidate_dcache_range((unsigned long)packet, |
| (unsigned long)packet + 4096); |
| /* Dump the DMA descriptor into RAM. */ |
| flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1); |
| flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN); |
| flush_dcache_range(flush_start, flush_end); |
| |
| E1000_WRITE_REG(hw, RDT, rx_tail); |
| } |
| |
| /** |
| * e1000_configure_tx - Configure 8254x Transmit Unit after Reset |
| * @adapter: board private structure |
| * |
| * Configure the Tx unit of the MAC after a reset. |
| **/ |
| |
| static void |
| e1000_configure_tx(struct e1000_hw *hw) |
| { |
| unsigned long tctl; |
| unsigned long tipg, tarc; |
| uint32_t ipgr1, ipgr2; |
| |
| E1000_WRITE_REG(hw, TDBAL, (unsigned long)tx_base); |
| E1000_WRITE_REG(hw, TDBAH, 0); |
| |
| E1000_WRITE_REG(hw, TDLEN, 128); |
| |
| /* Setup the HW Tx Head and Tail descriptor pointers */ |
| E1000_WRITE_REG(hw, TDH, 0); |
| E1000_WRITE_REG(hw, TDT, 0); |
| tx_tail = 0; |
| |
| /* Set the default values for the Tx Inter Packet Gap timer */ |
| if (hw->mac_type <= e1000_82547_rev_2 && |
| (hw->media_type == e1000_media_type_fiber || |
| hw->media_type == e1000_media_type_internal_serdes)) |
| tipg = DEFAULT_82543_TIPG_IPGT_FIBER; |
| else |
| tipg = DEFAULT_82543_TIPG_IPGT_COPPER; |
| |
| /* Set the default values for the Tx Inter Packet Gap timer */ |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| tipg = DEFAULT_82542_TIPG_IPGT; |
| ipgr1 = DEFAULT_82542_TIPG_IPGR1; |
| ipgr2 = DEFAULT_82542_TIPG_IPGR2; |
| break; |
| case e1000_80003es2lan: |
| ipgr1 = DEFAULT_82543_TIPG_IPGR1; |
| ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; |
| break; |
| default: |
| ipgr1 = DEFAULT_82543_TIPG_IPGR1; |
| ipgr2 = DEFAULT_82543_TIPG_IPGR2; |
| break; |
| } |
| tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; |
| tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; |
| E1000_WRITE_REG(hw, TIPG, tipg); |
| /* Program the Transmit Control Register */ |
| tctl = E1000_READ_REG(hw, TCTL); |
| tctl &= ~E1000_TCTL_CT; |
| tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | |
| (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); |
| |
| if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) { |
| tarc = E1000_READ_REG(hw, TARC0); |
| /* set the speed mode bit, we'll clear it if we're not at |
| * gigabit link later */ |
| /* git bit can be set to 1*/ |
| } else if (hw->mac_type == e1000_80003es2lan) { |
| tarc = E1000_READ_REG(hw, TARC0); |
| tarc |= 1; |
| E1000_WRITE_REG(hw, TARC0, tarc); |
| tarc = E1000_READ_REG(hw, TARC1); |
| tarc |= 1; |
| E1000_WRITE_REG(hw, TARC1, tarc); |
| } |
| |
| |
| e1000_config_collision_dist(hw); |
| /* Setup Transmit Descriptor Settings for eop descriptor */ |
| hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; |
| |
| /* Need to set up RS bit */ |
| if (hw->mac_type < e1000_82543) |
| hw->txd_cmd |= E1000_TXD_CMD_RPS; |
| else |
| hw->txd_cmd |= E1000_TXD_CMD_RS; |
| |
| |
| if (hw->mac_type == e1000_igb) { |
| E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10); |
| |
| uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL); |
| reg_txdctl |= 1 << 25; |
| E1000_WRITE_REG(hw, TXDCTL, reg_txdctl); |
| mdelay(20); |
| } |
| |
| |
| |
| E1000_WRITE_REG(hw, TCTL, tctl); |
| |
| |
| } |
| |
| /** |
| * e1000_setup_rctl - configure the receive control register |
| * @adapter: Board private structure |
| **/ |
| static void |
| e1000_setup_rctl(struct e1000_hw *hw) |
| { |
| uint32_t rctl; |
| |
| rctl = E1000_READ_REG(hw, RCTL); |
| |
| rctl &= ~(3 << E1000_RCTL_MO_SHIFT); |
| |
| rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
| | E1000_RCTL_RDMTS_HALF; /* | |
| (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */ |
| |
| if (hw->tbi_compatibility_on == 1) |
| rctl |= E1000_RCTL_SBP; |
| else |
| rctl &= ~E1000_RCTL_SBP; |
| |
| rctl &= ~(E1000_RCTL_SZ_4096); |
| rctl |= E1000_RCTL_SZ_2048; |
| rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE); |
| E1000_WRITE_REG(hw, RCTL, rctl); |
| } |
| |
| /** |
| * e1000_configure_rx - Configure 8254x Receive Unit after Reset |
| * @adapter: board private structure |
| * |
| * Configure the Rx unit of the MAC after a reset. |
| **/ |
| static void |
| e1000_configure_rx(struct e1000_hw *hw) |
| { |
| unsigned long rctl, ctrl_ext; |
| rx_tail = 0; |
| /* make sure receives are disabled while setting up the descriptors */ |
| rctl = E1000_READ_REG(hw, RCTL); |
| E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN); |
| if (hw->mac_type >= e1000_82540) { |
| /* Set the interrupt throttling rate. Value is calculated |
| * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */ |
| #define MAX_INTS_PER_SEC 8000 |
| #define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256) |
| E1000_WRITE_REG(hw, ITR, DEFAULT_ITR); |
| } |
| |
| if (hw->mac_type >= e1000_82571) { |
| ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| /* Reset delay timers after every interrupt */ |
| ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; |
| E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| E1000_WRITE_FLUSH(hw); |
| } |
| /* Setup the Base and Length of the Rx Descriptor Ring */ |
| E1000_WRITE_REG(hw, RDBAL, (unsigned long)rx_base); |
| E1000_WRITE_REG(hw, RDBAH, 0); |
| |
| E1000_WRITE_REG(hw, RDLEN, 128); |
| |
| /* Setup the HW Rx Head and Tail Descriptor Pointers */ |
| E1000_WRITE_REG(hw, RDH, 0); |
| E1000_WRITE_REG(hw, RDT, 0); |
| /* Enable Receives */ |
| |
| if (hw->mac_type == e1000_igb) { |
| |
| uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL); |
| reg_rxdctl |= 1 << 25; |
| E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl); |
| mdelay(20); |
| } |
| |
| E1000_WRITE_REG(hw, RCTL, rctl); |
| |
| fill_rx(hw); |
| } |
| |
| /************************************************************************** |
| POLL - Wait for a frame |
| ***************************************************************************/ |
| static int |
| e1000_poll(struct eth_device *nic) |
| { |
| struct e1000_hw *hw = nic->priv; |
| struct e1000_rx_desc *rd; |
| unsigned long inval_start, inval_end; |
| uint32_t len; |
| |
| /* return true if there's an ethernet packet ready to read */ |
| rd = rx_base + rx_last; |
| |
| /* Re-load the descriptor from RAM. */ |
| inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1); |
| inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN); |
| invalidate_dcache_range(inval_start, inval_end); |
| |
| if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD) |
| return 0; |
| /*DEBUGOUT("recv: packet len=%d \n", rd->length); */ |
| /* Packet received, make sure the data are re-loaded from RAM. */ |
| len = le32_to_cpu(rd->length); |
| invalidate_dcache_range((unsigned long)packet, |
| (unsigned long)packet + |
| roundup(len, ARCH_DMA_MINALIGN)); |
| net_process_received_packet((uchar *)packet, len); |
| fill_rx(hw); |
| return 1; |
| } |
| |
| /************************************************************************** |
| TRANSMIT - Transmit a frame |
| ***************************************************************************/ |
| static int e1000_transmit(struct eth_device *nic, void *txpacket, int length) |
| { |
| void *nv_packet = (void *)txpacket; |
| struct e1000_hw *hw = nic->priv; |
| struct e1000_tx_desc *txp; |
| int i = 0; |
| unsigned long flush_start, flush_end; |
| |
| txp = tx_base + tx_tail; |
| tx_tail = (tx_tail + 1) % 8; |
| |
| txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet)); |
| txp->lower.data = cpu_to_le32(hw->txd_cmd | length); |
| txp->upper.data = 0; |
| |
| /* Dump the packet into RAM so e1000 can pick them. */ |
| flush_dcache_range((unsigned long)nv_packet, |
| (unsigned long)nv_packet + |
| roundup(length, ARCH_DMA_MINALIGN)); |
| /* Dump the descriptor into RAM as well. */ |
| flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1); |
| flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN); |
| flush_dcache_range(flush_start, flush_end); |
| |
| E1000_WRITE_REG(hw, TDT, tx_tail); |
| |
| E1000_WRITE_FLUSH(hw); |
| while (1) { |
| invalidate_dcache_range(flush_start, flush_end); |
| if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD) |
| break; |
| if (i++ > TOUT_LOOP) { |
| DEBUGOUT("e1000: tx timeout\n"); |
| return 0; |
| } |
| udelay(10); /* give the nic a chance to write to the register */ |
| } |
| return 1; |
| } |
| |
| /*reset function*/ |
| static inline int |
| e1000_reset(struct eth_device *nic) |
| { |
| struct e1000_hw *hw = nic->priv; |
| |
| e1000_reset_hw(hw); |
| if (hw->mac_type >= e1000_82544) { |
| E1000_WRITE_REG(hw, WUC, 0); |
| } |
| return e1000_init_hw(nic); |
| } |
| |
| /************************************************************************** |
| DISABLE - Turn off ethernet interface |
| ***************************************************************************/ |
| static void |
| e1000_disable(struct eth_device *nic) |
| { |
| struct e1000_hw *hw = nic->priv; |
| |
| /* Turn off the ethernet interface */ |
| E1000_WRITE_REG(hw, RCTL, 0); |
| E1000_WRITE_REG(hw, TCTL, 0); |
| |
| /* Clear the transmit ring */ |
| E1000_WRITE_REG(hw, TDH, 0); |
| E1000_WRITE_REG(hw, TDT, 0); |
| |
| /* Clear the receive ring */ |
| E1000_WRITE_REG(hw, RDH, 0); |
| E1000_WRITE_REG(hw, RDT, 0); |
| |
| /* put the card in its initial state */ |
| #if 0 |
| E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST); |
| #endif |
| mdelay(10); |
| |
| } |
| |
| /************************************************************************** |
| INIT - set up ethernet interface(s) |
| ***************************************************************************/ |
| static int |
| e1000_init(struct eth_device *nic, bd_t * bis) |
| { |
| struct e1000_hw *hw = nic->priv; |
| int ret_val = 0; |
| |
| ret_val = e1000_reset(nic); |
| if (ret_val < 0) { |
| if ((ret_val == -E1000_ERR_NOLINK) || |
| (ret_val == -E1000_ERR_TIMEOUT)) { |
| E1000_ERR(hw->nic, "Valid Link not detected\n"); |
| } else { |
| E1000_ERR(hw->nic, "Hardware Initialization Failed\n"); |
| } |
| return 0; |
| } |
| e1000_configure_tx(hw); |
| e1000_setup_rctl(hw); |
| e1000_configure_rx(hw); |
| return 1; |
| } |
| |
| /****************************************************************************** |
| * Gets the current PCI bus type of hardware |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| void e1000_get_bus_type(struct e1000_hw *hw) |
| { |
| uint32_t status; |
| |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| hw->bus_type = e1000_bus_type_pci; |
| break; |
| case e1000_82571: |
| case e1000_82572: |
| case e1000_82573: |
| case e1000_82574: |
| case e1000_80003es2lan: |
| case e1000_ich8lan: |
| case e1000_igb: |
| hw->bus_type = e1000_bus_type_pci_express; |
| break; |
| default: |
| status = E1000_READ_REG(hw, STATUS); |
| hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? |
| e1000_bus_type_pcix : e1000_bus_type_pci; |
| break; |
| } |
| } |
| |
| /* A list of all registered e1000 devices */ |
| static LIST_HEAD(e1000_hw_list); |
| |
| /************************************************************************** |
| PROBE - Look for an adapter, this routine's visible to the outside |
| You should omit the last argument struct pci_device * for a non-PCI NIC |
| ***************************************************************************/ |
| int |
| e1000_initialize(bd_t * bis) |
| { |
| unsigned int i; |
| pci_dev_t devno; |
| |
| DEBUGFUNC(); |
| |
| /* Find and probe all the matching PCI devices */ |
| for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) { |
| u32 val; |
| |
| /* |
| * These will never get freed due to errors, this allows us to |
| * perform SPI EEPROM programming from U-boot, for example. |
| */ |
| struct eth_device *nic = malloc(sizeof(*nic)); |
| struct e1000_hw *hw = malloc(sizeof(*hw)); |
| if (!nic || !hw) { |
| printf("e1000#%u: Out of Memory!\n", i); |
| free(nic); |
| free(hw); |
| continue; |
| } |
| |
| /* Make sure all of the fields are initially zeroed */ |
| memset(nic, 0, sizeof(*nic)); |
| memset(hw, 0, sizeof(*hw)); |
| |
| /* Assign the passed-in values */ |
| hw->cardnum = i; |
| hw->pdev = devno; |
| hw->nic = nic; |
| nic->priv = hw; |
| |
| /* Generate a card name */ |
| sprintf(nic->name, "e1000#%u", hw->cardnum); |
| |
| /* Print a debug message with the IO base address */ |
| pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val); |
| E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0); |
| |
| /* Try to enable I/O accesses and bus-mastering */ |
| val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER; |
| pci_write_config_dword(devno, PCI_COMMAND, val); |
| |
| /* Make sure it worked */ |
| pci_read_config_dword(devno, PCI_COMMAND, &val); |
| if (!(val & PCI_COMMAND_MEMORY)) { |
| E1000_ERR(nic, "Can't enable I/O memory\n"); |
| continue; |
| } |
| if (!(val & PCI_COMMAND_MASTER)) { |
| E1000_ERR(nic, "Can't enable bus-mastering\n"); |
| continue; |
| } |
| |
| /* Are these variables needed? */ |
| hw->fc = e1000_fc_default; |
| hw->original_fc = e1000_fc_default; |
| hw->autoneg_failed = 0; |
| hw->autoneg = 1; |
| hw->get_link_status = true; |
| #ifndef CONFIG_E1000_NO_NVM |
| hw->eeprom_semaphore_present = true; |
| #endif |
| hw->hw_addr = pci_map_bar(devno, PCI_BASE_ADDRESS_0, |
| PCI_REGION_MEM); |
| hw->mac_type = e1000_undefined; |
| |
| /* MAC and Phy settings */ |
| if (e1000_sw_init(nic) < 0) { |
| E1000_ERR(nic, "Software init failed\n"); |
| continue; |
| } |
| if (e1000_check_phy_reset_block(hw)) |
| E1000_ERR(nic, "PHY Reset is blocked!\n"); |
| |
| /* Basic init was OK, reset the hardware and allow SPI access */ |
| e1000_reset_hw(hw); |
| list_add_tail(&hw->list_node, &e1000_hw_list); |
| |
| #ifndef CONFIG_E1000_NO_NVM |
| /* Validate the EEPROM and get chipset information */ |
| #if !defined(CONFIG_MVBC_1G) |
| if (e1000_init_eeprom_params(hw)) { |
| E1000_ERR(nic, "EEPROM is invalid!\n"); |
| continue; |
| } |
| if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) && |
| e1000_validate_eeprom_checksum(hw)) |
| continue; |
| #endif |
| e1000_read_mac_addr(nic); |
| #endif |
| e1000_get_bus_type(hw); |
| |
| #ifndef CONFIG_E1000_NO_NVM |
| printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n ", |
| nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2], |
| nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]); |
| #else |
| memset(nic->enetaddr, 0, 6); |
| printf("e1000: no NVM\n"); |
| #endif |
| |
| /* Set up the function pointers and register the device */ |
| nic->init = e1000_init; |
| nic->recv = e1000_poll; |
| nic->send = e1000_transmit; |
| nic->halt = e1000_disable; |
| eth_register(nic); |
| } |
| |
| return i; |
| } |
| |
| struct e1000_hw *e1000_find_card(unsigned int cardnum) |
| { |
| struct e1000_hw *hw; |
| |
| list_for_each_entry(hw, &e1000_hw_list, list_node) |
| if (hw->cardnum == cardnum) |
| return hw; |
| |
| return NULL; |
| } |
| |
| #ifdef CONFIG_CMD_E1000 |
| static int do_e1000(cmd_tbl_t *cmdtp, int flag, |
| int argc, char * const argv[]) |
| { |
| struct e1000_hw *hw; |
| |
| if (argc < 3) { |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| |
| /* Make sure we can find the requested e1000 card */ |
| hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10)); |
| if (!hw) { |
| printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]); |
| return 1; |
| } |
| |
| if (!strcmp(argv[2], "print-mac-address")) { |
| unsigned char *mac = hw->nic->enetaddr; |
| printf("%02x:%02x:%02x:%02x:%02x:%02x\n", |
| mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); |
| return 0; |
| } |
| |
| #ifdef CONFIG_E1000_SPI |
| /* Handle the "SPI" subcommand */ |
| if (!strcmp(argv[2], "spi")) |
| return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3); |
| #endif |
| |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| |
| U_BOOT_CMD( |
| e1000, 7, 0, do_e1000, |
| "Intel e1000 controller management", |
| /* */"<card#> print-mac-address\n" |
| #ifdef CONFIG_E1000_SPI |
| "e1000 <card#> spi show [<offset> [<length>]]\n" |
| "e1000 <card#> spi dump <addr> <offset> <length>\n" |
| "e1000 <card#> spi program <addr> <offset> <length>\n" |
| "e1000 <card#> spi checksum [update]\n" |
| #endif |
| " - Manage the Intel E1000 PCI device" |
| ); |
| #endif /* not CONFIG_CMD_E1000 */ |