blob: b5ca8ca436f57990e5aa290b64e7732c57d595e3 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
/*
* (C) Copyright 2017 Rockchip Electronics Co., Ltd.
*/
#include <common.h>
#include <clk.h>
#include <debug_uart.h>
#include <dm.h>
#include <dt-structs.h>
#include <init.h>
#include <log.h>
#include <ram.h>
#include <regmap.h>
#include <syscon.h>
#include <asm/io.h>
#include <asm/arch-rockchip/clock.h>
#include <asm/arch-rockchip/cru_rk3328.h>
#include <asm/arch-rockchip/grf_rk3328.h>
#include <asm/arch-rockchip/sdram.h>
#include <asm/arch-rockchip/sdram_rk3328.h>
#include <asm/arch-rockchip/uart.h>
#include <linux/delay.h>
struct dram_info {
#ifdef CONFIG_TPL_BUILD
struct ddr_pctl_regs *pctl;
struct ddr_phy_regs *phy;
struct clk ddr_clk;
struct rk3328_cru *cru;
struct msch_regs *msch;
struct rk3328_ddr_grf_regs *ddr_grf;
#endif
struct ram_info info;
struct rk3328_grf_regs *grf;
};
#ifdef CONFIG_TPL_BUILD
struct rk3328_sdram_channel sdram_ch;
struct rockchip_dmc_plat {
#if CONFIG_IS_ENABLED(OF_PLATDATA)
struct dtd_rockchip_rk3328_dmc dtplat;
#else
struct rk3328_sdram_params sdram_params;
#endif
struct regmap *map;
};
#if CONFIG_IS_ENABLED(OF_PLATDATA)
static int conv_of_plat(struct udevice *dev)
{
struct rockchip_dmc_plat *plat = dev_get_plat(dev);
struct dtd_rockchip_rk3328_dmc *dtplat = &plat->dtplat;
int ret;
ret = regmap_init_mem_plat(dev, dtplat->reg, sizeof(dtplat->reg[0]),
ARRAY_SIZE(dtplat->reg) / 2, &plat->map);
if (ret)
return ret;
return 0;
}
#endif
static void rkclk_ddr_reset(struct dram_info *dram,
u32 ctl_srstn, u32 ctl_psrstn,
u32 phy_srstn, u32 phy_psrstn)
{
writel(ddrctrl_srstn_req(ctl_srstn) | ddrctrl_psrstn_req(ctl_psrstn) |
ddrphy_srstn_req(phy_srstn) | ddrphy_psrstn_req(phy_psrstn),
&dram->cru->softrst_con[5]);
writel(ddrctrl_asrstn_req(ctl_srstn), &dram->cru->softrst_con[9]);
}
static void rkclk_set_dpll(struct dram_info *dram, unsigned int hz)
{
unsigned int refdiv, postdiv1, postdiv2, fbdiv;
int delay = 1000;
u32 mhz = hz / MHZ;
refdiv = 1;
if (mhz <= 300) {
postdiv1 = 4;
postdiv2 = 2;
} else if (mhz <= 400) {
postdiv1 = 6;
postdiv2 = 1;
} else if (mhz <= 600) {
postdiv1 = 4;
postdiv2 = 1;
} else if (mhz <= 800) {
postdiv1 = 3;
postdiv2 = 1;
} else if (mhz <= 1600) {
postdiv1 = 2;
postdiv2 = 1;
} else {
postdiv1 = 1;
postdiv2 = 1;
}
fbdiv = (mhz * refdiv * postdiv1 * postdiv2) / 24;
writel(((0x1 << 4) << 16) | (0 << 4), &dram->cru->mode_con);
writel(POSTDIV1(postdiv1) | FBDIV(fbdiv), &dram->cru->dpll_con[0]);
writel(DSMPD(1) | POSTDIV2(postdiv2) | REFDIV(refdiv),
&dram->cru->dpll_con[1]);
while (delay > 0) {
udelay(1);
if (LOCK(readl(&dram->cru->dpll_con[1])))
break;
delay--;
}
writel(((0x1 << 4) << 16) | (1 << 4), &dram->cru->mode_con);
}
static void rkclk_configure_ddr(struct dram_info *dram,
struct rk3328_sdram_params *sdram_params)
{
void __iomem *phy_base = dram->phy;
/* choose DPLL for ddr clk source */
clrbits_le32(PHY_REG(phy_base, 0xef), 1 << 7);
/* for inno ddr phy need 2*freq */
rkclk_set_dpll(dram, sdram_params->base.ddr_freq * MHZ * 2);
}
/* return ddrconfig value
* (-1), find ddrconfig fail
* other, the ddrconfig value
* only support cs0_row >= cs1_row
*/
static u32 calculate_ddrconfig(struct rk3328_sdram_params *sdram_params)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
u32 cs, bw, die_bw, col, row, bank;
u32 cs1_row;
u32 i, tmp;
u32 ddrconf = -1;
cs = cap_info->rank;
bw = cap_info->bw;
die_bw = cap_info->dbw;
col = cap_info->col;
row = cap_info->cs0_row;
cs1_row = cap_info->cs1_row;
bank = cap_info->bk;
if (sdram_params->base.dramtype == DDR4) {
/* when DDR_TEST, CS always at MSB position for easy test */
if (cs == 2 && row == cs1_row) {
/* include 2cs cap both 2^n or both (2^n - 2^(n-2)) */
tmp = ((row - 13) << 3) | (1 << 2) | (bw & 0x2) |
die_bw;
for (i = 17; i < 21; i++) {
if (((tmp & 0x7) ==
(ddr4_cfg_2_rbc[i - 10] & 0x7)) &&
((tmp & 0x3c) <=
(ddr4_cfg_2_rbc[i - 10] & 0x3c))) {
ddrconf = i;
goto out;
}
}
}
tmp = ((cs - 1) << 6) | ((row - 13) << 3) | (bw & 0x2) | die_bw;
for (i = 10; i < 17; i++) {
if (((tmp & 0x7) == (ddr4_cfg_2_rbc[i - 10] & 0x7)) &&
((tmp & 0x3c) <= (ddr4_cfg_2_rbc[i - 10] & 0x3c)) &&
((tmp & 0x40) <= (ddr4_cfg_2_rbc[i - 10] & 0x40))) {
ddrconf = i;
goto out;
}
}
} else {
if (bank == 2) {
ddrconf = 8;
goto out;
}
/* when DDR_TEST, CS always at MSB position for easy test */
if (cs == 2 && row == cs1_row) {
/* include 2cs cap both 2^n or both (2^n - 2^(n-2)) */
for (i = 5; i < 8; i++) {
if ((bw + col - 11) == (ddr_cfg_2_rbc[i] &
0x3)) {
ddrconf = i;
goto out;
}
}
}
tmp = ((row - 13) << 4) | (1 << 2) | ((bw + col - 11) << 0);
for (i = 0; i < 5; i++)
if (((tmp & 0xf) == (ddr_cfg_2_rbc[i] & 0xf)) &&
((tmp & 0x30) <= (ddr_cfg_2_rbc[i] & 0x30))) {
ddrconf = i;
goto out;
}
}
out:
if (ddrconf > 20)
printf("calculate ddrconfig error\n");
return ddrconf;
}
/*******
* calculate controller dram address map, and setting to register.
* argument sdram_ch.ddrconf must be right value before
* call this function.
*******/
static void set_ctl_address_map(struct dram_info *dram,
struct rk3328_sdram_params *sdram_params)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
void __iomem *pctl_base = dram->pctl;
sdram_copy_to_reg((u32 *)(pctl_base + DDR_PCTL2_ADDRMAP0),
&addrmap[cap_info->ddrconfig][0], 9 * 4);
if (sdram_params->base.dramtype == LPDDR3 && cap_info->row_3_4)
setbits_le32(pctl_base + DDR_PCTL2_ADDRMAP6, 1 << 31);
if (sdram_params->base.dramtype == DDR4 && cap_info->bw == 0x1)
setbits_le32(pctl_base + DDR_PCTL2_PCCFG, 1 << 8);
if (cap_info->rank == 1)
clrsetbits_le32(pctl_base + DDR_PCTL2_ADDRMAP0, 0x1f, 0x1f);
}
static int data_training(struct dram_info *dram, u32 cs, u32 dramtype)
{
void __iomem *pctl_base = dram->pctl;
u32 dis_auto_zq = 0;
u32 pwrctl;
u32 ret;
/* disable auto low-power */
pwrctl = readl(pctl_base + DDR_PCTL2_PWRCTL);
writel(0, pctl_base + DDR_PCTL2_PWRCTL);
dis_auto_zq = pctl_dis_zqcs_aref(dram->pctl);
ret = phy_data_training(dram->phy, cs, dramtype);
pctl_rest_zqcs_aref(dram->pctl, dis_auto_zq);
/* restore auto low-power */
writel(pwrctl, pctl_base + DDR_PCTL2_PWRCTL);
return ret;
}
static void rx_deskew_switch_adjust(struct dram_info *dram)
{
u32 i, deskew_val;
u32 gate_val = 0;
void __iomem *phy_base = dram->phy;
for (i = 0; i < 4; i++)
gate_val = MAX(readl(PHY_REG(phy_base, 0xfb + i)), gate_val);
deskew_val = (gate_val >> 3) + 1;
deskew_val = (deskew_val > 0x1f) ? 0x1f : deskew_val;
clrsetbits_le32(PHY_REG(phy_base, 0x6e), 0xc, (deskew_val & 0x3) << 2);
clrsetbits_le32(PHY_REG(phy_base, 0x6f), 0x7 << 4,
(deskew_val & 0x1c) << 2);
}
static void tx_deskew_switch_adjust(struct dram_info *dram)
{
void __iomem *phy_base = dram->phy;
clrsetbits_le32(PHY_REG(phy_base, 0x6e), 0x3, 1);
}
static void set_ddrconfig(struct dram_info *dram, u32 ddrconfig)
{
writel(ddrconfig, &dram->msch->ddrconf);
}
static void sdram_msch_config(struct msch_regs *msch,
struct sdram_msch_timings *noc_timings)
{
writel(noc_timings->ddrtiming.d32, &msch->ddrtiming);
writel(noc_timings->ddrmode.d32, &msch->ddrmode);
writel(noc_timings->readlatency, &msch->readlatency);
writel(noc_timings->activate.d32, &msch->activate);
writel(noc_timings->devtodev.d32, &msch->devtodev);
writel(noc_timings->ddr4timing.d32, &msch->ddr4_timing);
writel(noc_timings->agingx0, &msch->aging0);
writel(noc_timings->agingx0, &msch->aging1);
writel(noc_timings->agingx0, &msch->aging2);
writel(noc_timings->agingx0, &msch->aging3);
writel(noc_timings->agingx0, &msch->aging4);
writel(noc_timings->agingx0, &msch->aging5);
}
static void dram_all_config(struct dram_info *dram,
struct rk3328_sdram_params *sdram_params)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
u32 sys_reg2 = 0;
u32 sys_reg3 = 0;
set_ddrconfig(dram, cap_info->ddrconfig);
sdram_org_config(cap_info, &sdram_params->base, &sys_reg2,
&sys_reg3, 0);
writel(sys_reg2, &dram->grf->os_reg[2]);
writel(sys_reg3, &dram->grf->os_reg[3]);
sdram_msch_config(dram->msch, &sdram_ch.noc_timings);
}
static void enable_low_power(struct dram_info *dram,
struct rk3328_sdram_params *sdram_params)
{
void __iomem *pctl_base = dram->pctl;
/* enable upctl2 axi clock auto gating */
writel(0x00800000, &dram->ddr_grf->ddr_grf_con[0]);
writel(0x20012001, &dram->ddr_grf->ddr_grf_con[2]);
/* enable upctl2 core clock auto gating */
writel(0x001e001a, &dram->ddr_grf->ddr_grf_con[2]);
/* enable sr, pd */
if (PD_IDLE == 0)
clrbits_le32(pctl_base + DDR_PCTL2_PWRCTL, (1 << 1));
else
setbits_le32(pctl_base + DDR_PCTL2_PWRCTL, (1 << 1));
if (SR_IDLE == 0)
clrbits_le32(pctl_base + DDR_PCTL2_PWRCTL, 1);
else
setbits_le32(pctl_base + DDR_PCTL2_PWRCTL, 1);
setbits_le32(pctl_base + DDR_PCTL2_PWRCTL, (1 << 3));
}
static int sdram_init(struct dram_info *dram,
struct rk3328_sdram_params *sdram_params, u32 pre_init)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
void __iomem *pctl_base = dram->pctl;
rkclk_ddr_reset(dram, 1, 1, 1, 1);
udelay(10);
/*
* dereset ddr phy psrstn to config pll,
* if using phy pll psrstn must be dereset
* before config pll
*/
rkclk_ddr_reset(dram, 1, 1, 1, 0);
rkclk_configure_ddr(dram, sdram_params);
/* release phy srst to provide clk to ctrl */
rkclk_ddr_reset(dram, 1, 1, 0, 0);
udelay(10);
phy_soft_reset(dram->phy);
/* release ctrl presetn, and config ctl registers */
rkclk_ddr_reset(dram, 1, 0, 0, 0);
pctl_cfg(dram->pctl, &sdram_params->pctl_regs, SR_IDLE, PD_IDLE);
cap_info->ddrconfig = calculate_ddrconfig(sdram_params);
set_ctl_address_map(dram, sdram_params);
phy_cfg(dram->phy, &sdram_params->phy_regs, &sdram_params->skew,
&sdram_params->base, cap_info->bw);
/* enable dfi_init_start to init phy after ctl srstn deassert */
setbits_le32(pctl_base + DDR_PCTL2_DFIMISC, (1 << 5) | (1 << 4));
rkclk_ddr_reset(dram, 0, 0, 0, 0);
/* wait for dfi_init_done and dram init complete */
while ((readl(pctl_base + DDR_PCTL2_STAT) & 0x7) == 0)
continue;
/* do ddr gate training */
if (data_training(dram, 0, sdram_params->base.dramtype) != 0) {
printf("data training error\n");
return -1;
}
if (sdram_params->base.dramtype == DDR4)
pctl_write_vrefdq(dram->pctl, 0x3, 5670,
sdram_params->base.dramtype);
if (pre_init != 0) {
rx_deskew_switch_adjust(dram);
tx_deskew_switch_adjust(dram);
}
dram_all_config(dram, sdram_params);
enable_low_power(dram, sdram_params);
return 0;
}
static u64 dram_detect_cap(struct dram_info *dram,
struct rk3328_sdram_params *sdram_params,
unsigned char channel)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
/*
* for ddr3: ddrconf = 3
* for ddr4: ddrconf = 12
* for lpddr3: ddrconf = 3
* default bw = 1
*/
u32 bk, bktmp;
u32 col, coltmp;
u32 rowtmp;
u32 cs;
u32 bw = 1;
u32 dram_type = sdram_params->base.dramtype;
if (dram_type != DDR4) {
/* detect col and bk for ddr3/lpddr3 */
coltmp = 12;
bktmp = 3;
rowtmp = 16;
if (sdram_detect_col(cap_info, coltmp) != 0)
goto cap_err;
sdram_detect_bank(cap_info, coltmp, bktmp);
sdram_detect_dbw(cap_info, dram_type);
} else {
/* detect bg for ddr4 */
coltmp = 10;
bktmp = 4;
rowtmp = 17;
col = 10;
bk = 2;
cap_info->col = col;
cap_info->bk = bk;
sdram_detect_bg(cap_info, coltmp);
}
/* detect row */
if (sdram_detect_row(cap_info, coltmp, bktmp, rowtmp) != 0)
goto cap_err;
/* detect row_3_4 */
sdram_detect_row_3_4(cap_info, coltmp, bktmp);
/* bw and cs detect using data training */
if (data_training(dram, 1, dram_type) == 0)
cs = 1;
else
cs = 0;
cap_info->rank = cs + 1;
bw = 2;
cap_info->bw = bw;
cap_info->cs0_high16bit_row = cap_info->cs0_row;
if (cs) {
cap_info->cs1_row = cap_info->cs0_row;
cap_info->cs1_high16bit_row = cap_info->cs0_row;
} else {
cap_info->cs1_row = 0;
cap_info->cs1_high16bit_row = 0;
}
return 0;
cap_err:
return -1;
}
static int sdram_init_detect(struct dram_info *dram,
struct rk3328_sdram_params *sdram_params)
{
u32 sys_reg = 0;
u32 sys_reg3 = 0;
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
debug("Starting SDRAM initialization...\n");
memcpy(&sdram_ch, &sdram_params->ch,
sizeof(struct rk3328_sdram_channel));
sdram_init(dram, sdram_params, 0);
dram_detect_cap(dram, sdram_params, 0);
/* modify bw, cs related timing */
pctl_remodify_sdram_params(&sdram_params->pctl_regs, cap_info,
sdram_params->base.dramtype);
if (cap_info->bw == 2)
sdram_ch.noc_timings.ddrtiming.b.bwratio = 0;
else
sdram_ch.noc_timings.ddrtiming.b.bwratio = 1;
/* reinit sdram by real dram cap */
sdram_init(dram, sdram_params, 1);
/* redetect cs1 row */
sdram_detect_cs1_row(cap_info, sdram_params->base.dramtype);
if (cap_info->cs1_row) {
sys_reg = readl(&dram->grf->os_reg[2]);
sys_reg3 = readl(&dram->grf->os_reg[3]);
SYS_REG_ENC_CS1_ROW(cap_info->cs1_row,
sys_reg, sys_reg3, 0);
writel(sys_reg, &dram->grf->os_reg[2]);
writel(sys_reg3, &dram->grf->os_reg[3]);
}
sdram_print_ddr_info(&sdram_params->ch.cap_info, &sdram_params->base, 0);
return 0;
}
static int rk3328_dmc_init(struct udevice *dev)
{
struct dram_info *priv = dev_get_priv(dev);
struct rockchip_dmc_plat *plat = dev_get_plat(dev);
int ret;
#if CONFIG_IS_ENABLED(OF_REAL)
struct rk3328_sdram_params *params = &plat->sdram_params;
#else
struct dtd_rockchip_rk3328_dmc *dtplat = &plat->dtplat;
struct rk3328_sdram_params *params =
(void *)dtplat->rockchip_sdram_params;
ret = conv_of_plat(dev);
if (ret)
return ret;
#endif
priv->phy = regmap_get_range(plat->map, 0);
priv->pctl = regmap_get_range(plat->map, 1);
priv->grf = regmap_get_range(plat->map, 2);
priv->cru = regmap_get_range(plat->map, 3);
priv->msch = regmap_get_range(plat->map, 4);
priv->ddr_grf = regmap_get_range(plat->map, 5);
debug("%s phy %p pctrl %p grf %p cru %p msch %p ddr_grf %p\n",
__func__, priv->phy, priv->pctl, priv->grf, priv->cru,
priv->msch, priv->ddr_grf);
ret = sdram_init_detect(priv, params);
if (ret < 0) {
printf("%s DRAM init failed%d\n", __func__, ret);
return ret;
}
return 0;
}
static int rk3328_dmc_of_to_plat(struct udevice *dev)
{
#if CONFIG_IS_ENABLED(OF_REAL)
struct rockchip_dmc_plat *plat = dev_get_plat(dev);
int ret;
ret = dev_read_u32_array(dev, "rockchip,sdram-params",
(u32 *)&plat->sdram_params,
sizeof(plat->sdram_params) / sizeof(u32));
if (ret) {
printf("%s: Cannot read rockchip,sdram-params %d\n",
__func__, ret);
return ret;
}
ret = regmap_init_mem(dev, &plat->map);
if (ret)
printf("%s: regmap failed %d\n", __func__, ret);
#endif
return 0;
}
#endif
static int rk3328_dmc_probe(struct udevice *dev)
{
#ifdef CONFIG_TPL_BUILD
if (rk3328_dmc_init(dev))
return 0;
#else
struct dram_info *priv = dev_get_priv(dev);
priv->grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF);
debug("%s: grf=%p\n", __func__, priv->grf);
priv->info.base = CFG_SYS_SDRAM_BASE;
priv->info.size = rockchip_sdram_size(
(phys_addr_t)&priv->grf->os_reg[2]);
#endif
return 0;
}
static int rk3328_dmc_get_info(struct udevice *dev, struct ram_info *info)
{
struct dram_info *priv = dev_get_priv(dev);
*info = priv->info;
return 0;
}
static struct ram_ops rk3328_dmc_ops = {
.get_info = rk3328_dmc_get_info,
};
static const struct udevice_id rk3328_dmc_ids[] = {
{ .compatible = "rockchip,rk3328-dmc" },
{ }
};
U_BOOT_DRIVER(rockchip_rk3328_dmc) = {
.name = "rockchip_rk3328_dmc",
.id = UCLASS_RAM,
.of_match = rk3328_dmc_ids,
.ops = &rk3328_dmc_ops,
#ifdef CONFIG_TPL_BUILD
.of_to_plat = rk3328_dmc_of_to_plat,
#endif
.probe = rk3328_dmc_probe,
.priv_auto = sizeof(struct dram_info),
#ifdef CONFIG_TPL_BUILD
.plat_auto = sizeof(struct rockchip_dmc_plat),
#endif
};