blob: 282fe09fdfb4c9a0c521cfdfaec9277447dbd8d6 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2015 Google, Inc
* Copyright 2014 Rockchip Inc.
*/
#include <common.h>
#include <clk.h>
#include <display.h>
#include <dm.h>
#include <edid.h>
#include <log.h>
#include <malloc.h>
#include <panel.h>
#include <regmap.h>
#include <syscon.h>
#include <asm/gpio.h>
#include <asm/io.h>
#include <asm/arch-rockchip/clock.h>
#include <asm/arch-rockchip/edp_rk3288.h>
#include <asm/arch-rockchip/grf_rk3288.h>
#include <asm/arch-rockchip/hardware.h>
#include <dt-bindings/clock/rk3288-cru.h>
#include <linux/delay.h>
#define MAX_CR_LOOP 5
#define MAX_EQ_LOOP 5
#define DP_LINK_STATUS_SIZE 6
static const char * const voltage_names[] = {
"0.4V", "0.6V", "0.8V", "1.2V"
};
static const char * const pre_emph_names[] = {
"0dB", "3.5dB", "6dB", "9.5dB"
};
#define DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_1200
#define DP_PRE_EMPHASIS_MAX DP_TRAIN_PRE_EMPHASIS_9_5
struct rk_edp_priv {
struct rk3288_edp *regs;
struct rk3288_grf *grf;
struct udevice *panel;
struct link_train link_train;
u8 train_set[4];
};
static void rk_edp_init_refclk(struct rk3288_edp *regs)
{
writel(SEL_24M, &regs->analog_ctl_2);
writel(REF_CLK_24M, &regs->pll_reg_1);
writel(LDO_OUTPUT_V_SEL_145 | KVCO_DEFALUT | CHG_PUMP_CUR_SEL_5US |
V2L_CUR_SEL_1MA, &regs->pll_reg_2);
writel(LOCK_DET_CNT_SEL_256 | LOOP_FILTER_RESET | PALL_SSC_RESET |
LOCK_DET_BYPASS | PLL_LOCK_DET_MODE | PLL_LOCK_DET_FORCE,
&regs->pll_reg_3);
writel(REGULATOR_V_SEL_950MV | STANDBY_CUR_SEL |
CHG_PUMP_INOUT_CTRL_1200MV | CHG_PUMP_INPUT_CTRL_OP,
&regs->pll_reg_5);
writel(SSC_OFFSET | SSC_MODE | SSC_DEPTH, &regs->ssc_reg);
writel(TX_SWING_PRE_EMP_MODE | PRE_DRIVER_PW_CTRL1 |
LP_MODE_CLK_REGULATOR | RESISTOR_MSB_CTRL | RESISTOR_CTRL,
&regs->tx_common);
writel(DP_AUX_COMMON_MODE | DP_AUX_EN | AUX_TERM_50OHM,
&regs->dp_aux);
writel(DP_BG_OUT_SEL | DP_DB_CUR_CTRL | DP_BG_SEL | DP_RESISTOR_TUNE_BG,
&regs->dp_bias);
writel(CH1_CH3_SWING_EMP_CTRL | CH0_CH2_SWING_EMP_CTRL,
&regs->dp_reserv2);
}
static void rk_edp_init_interrupt(struct rk3288_edp *regs)
{
/* Set interrupt pin assertion polarity as high */
writel(INT_POL, &regs->int_ctl);
/* Clear pending registers */
writel(0xff, &regs->common_int_sta_1);
writel(0x4f, &regs->common_int_sta_2);
writel(0xff, &regs->common_int_sta_3);
writel(0x27, &regs->common_int_sta_4);
writel(0x7f, &regs->dp_int_sta);
/* 0:mask,1: unmask */
writel(0x00, &regs->common_int_mask_1);
writel(0x00, &regs->common_int_mask_2);
writel(0x00, &regs->common_int_mask_3);
writel(0x00, &regs->common_int_mask_4);
writel(0x00, &regs->int_sta_mask);
}
static void rk_edp_enable_sw_function(struct rk3288_edp *regs)
{
clrbits_le32(&regs->func_en_1, SW_FUNC_EN_N);
}
static bool rk_edp_get_pll_locked(struct rk3288_edp *regs)
{
u32 val;
val = readl(&regs->dp_debug_ctl);
return val & PLL_LOCK;
}
static int rk_edp_init_analog_func(struct rk3288_edp *regs)
{
ulong start;
writel(0x00, &regs->dp_pd);
writel(PLL_LOCK_CHG, &regs->common_int_sta_1);
clrbits_le32(&regs->dp_debug_ctl, F_PLL_LOCK | PLL_LOCK_CTRL);
start = get_timer(0);
while (!rk_edp_get_pll_locked(regs)) {
if (get_timer(start) > PLL_LOCK_TIMEOUT) {
printf("%s: PLL is not locked\n", __func__);
return -ETIMEDOUT;
}
}
/* Enable Serdes FIFO function and Link symbol clock domain module */
clrbits_le32(&regs->func_en_2, SERDES_FIFO_FUNC_EN_N |
LS_CLK_DOMAIN_FUNC_EN_N | AUX_FUNC_EN_N |
SSC_FUNC_EN_N);
return 0;
}
static void rk_edp_init_aux(struct rk3288_edp *regs)
{
/* Clear inerrupts related to AUX channel */
writel(AUX_FUNC_EN_N, &regs->dp_int_sta);
/* Disable AUX channel module */
setbits_le32(&regs->func_en_2, AUX_FUNC_EN_N);
/* Receive AUX Channel DEFER commands equal to DEFFER_COUNT*64 */
writel(DEFER_CTRL_EN | DEFER_COUNT(1), &regs->aux_ch_defer_dtl);
/* Enable AUX channel module */
clrbits_le32(&regs->func_en_2, AUX_FUNC_EN_N);
}
static int rk_edp_aux_enable(struct rk3288_edp *regs)
{
ulong start;
setbits_le32(&regs->aux_ch_ctl_2, AUX_EN);
start = get_timer(0);
do {
if (!(readl(&regs->aux_ch_ctl_2) & AUX_EN))
return 0;
} while (get_timer(start) < 20);
return -ETIMEDOUT;
}
static int rk_edp_is_aux_reply(struct rk3288_edp *regs)
{
ulong start;
start = get_timer(0);
while (!(readl(&regs->dp_int_sta) & RPLY_RECEIV)) {
if (get_timer(start) > 10)
return -ETIMEDOUT;
}
writel(RPLY_RECEIV, &regs->dp_int_sta);
return 0;
}
static int rk_edp_start_aux_transaction(struct rk3288_edp *regs)
{
int val, ret;
/* Enable AUX CH operation */
ret = rk_edp_aux_enable(regs);
if (ret) {
debug("AUX CH enable timeout!\n");
return ret;
}
/* Is AUX CH command reply received? */
if (rk_edp_is_aux_reply(regs)) {
debug("AUX CH command reply failed!\n");
return ret;
}
/* Clear interrupt source for AUX CH access error */
val = readl(&regs->dp_int_sta);
if (val & AUX_ERR) {
writel(AUX_ERR, &regs->dp_int_sta);
return -EIO;
}
/* Check AUX CH error access status */
val = readl(&regs->dp_int_sta);
if (val & AUX_STATUS_MASK) {
debug("AUX CH error happens: %d\n\n", val & AUX_STATUS_MASK);
return -EIO;
}
return 0;
}
static int rk_edp_dpcd_transfer(struct rk3288_edp *regs,
unsigned int val_addr, u8 *in_data,
unsigned int length,
enum dpcd_request request)
{
int val;
int i, try_times;
u8 *data;
int ret = 0;
u32 len = 0;
while (length) {
len = min(length, 16U);
for (try_times = 0; try_times < 10; try_times++) {
data = in_data;
/* Clear AUX CH data buffer */
writel(BUF_CLR, &regs->buf_data_ctl);
/* Select DPCD device address */
writel(AUX_ADDR_7_0(val_addr), &regs->aux_addr_7_0);
writel(AUX_ADDR_15_8(val_addr), &regs->aux_addr_15_8);
writel(AUX_ADDR_19_16(val_addr), &regs->aux_addr_19_16);
/*
* Set DisplayPort transaction and read 1 byte
* If bit 3 is 1, DisplayPort transaction.
* If Bit 3 is 0, I2C transaction.
*/
if (request == DPCD_WRITE) {
val = AUX_LENGTH(len) |
AUX_TX_COMM_DP_TRANSACTION |
AUX_TX_COMM_WRITE;
for (i = 0; i < len; i++)
writel(*data++, &regs->buf_data[i]);
} else
val = AUX_LENGTH(len) |
AUX_TX_COMM_DP_TRANSACTION |
AUX_TX_COMM_READ;
writel(val, &regs->aux_ch_ctl_1);
/* Start AUX transaction */
ret = rk_edp_start_aux_transaction(regs);
if (ret == 0)
break;
else
printf("read dpcd Aux Transaction fail!\n");
}
if (ret)
return ret;
if (request == DPCD_READ) {
for (i = 0; i < len; i++)
*data++ = (u8)readl(&regs->buf_data[i]);
}
length -= len;
val_addr += len;
in_data += len;
}
return 0;
}
static int rk_edp_dpcd_read(struct rk3288_edp *regs, u32 addr, u8 *values,
size_t size)
{
return rk_edp_dpcd_transfer(regs, addr, values, size, DPCD_READ);
}
static int rk_edp_dpcd_write(struct rk3288_edp *regs, u32 addr, u8 *values,
size_t size)
{
return rk_edp_dpcd_transfer(regs, addr, values, size, DPCD_WRITE);
}
static int rk_edp_link_power_up(struct rk_edp_priv *edp)
{
u8 value;
int ret;
/* DP_SET_POWER register is only available on DPCD v1.1 and later */
if (edp->link_train.revision < 0x11)
return 0;
ret = rk_edp_dpcd_read(edp->regs, DPCD_LINK_POWER_STATE, &value, 1);
if (ret)
return ret;
value &= ~DP_SET_POWER_MASK;
value |= DP_SET_POWER_D0;
ret = rk_edp_dpcd_write(edp->regs, DPCD_LINK_POWER_STATE, &value, 1);
if (ret)
return ret;
/*
* According to the DP 1.1 specification, a "Sink Device must exit the
* power saving state within 1 ms" (Section 2.5.3.1, Table 5-52, "Sink
* Control Field" (register 0x600).
*/
mdelay(1);
return 0;
}
static int rk_edp_link_configure(struct rk_edp_priv *edp)
{
u8 values[2];
values[0] = edp->link_train.link_rate;
values[1] = edp->link_train.lane_count;
return rk_edp_dpcd_write(edp->regs, DPCD_LINK_BW_SET, values,
sizeof(values));
}
static void rk_edp_set_link_training(struct rk_edp_priv *edp,
const u8 *training_values)
{
int i;
for (i = 0; i < edp->link_train.lane_count; i++)
writel(training_values[i], &edp->regs->ln_link_trn_ctl[i]);
}
static u8 edp_link_status(const u8 *link_status, int r)
{
return link_status[r - DPCD_LANE0_1_STATUS];
}
static int rk_edp_dpcd_read_link_status(struct rk_edp_priv *edp,
u8 *link_status)
{
return rk_edp_dpcd_read(edp->regs, DPCD_LANE0_1_STATUS, link_status,
DP_LINK_STATUS_SIZE);
}
static u8 edp_get_lane_status(const u8 *link_status, int lane)
{
int i = DPCD_LANE0_1_STATUS + (lane >> 1);
int s = (lane & 1) * 4;
u8 l = edp_link_status(link_status, i);
return (l >> s) & 0xf;
}
static int rk_edp_clock_recovery(const u8 *link_status, int lane_count)
{
int lane;
u8 lane_status;
for (lane = 0; lane < lane_count; lane++) {
lane_status = edp_get_lane_status(link_status, lane);
if ((lane_status & DP_LANE_CR_DONE) == 0)
return -EIO;
}
return 0;
}
static int rk_edp_channel_eq(const u8 *link_status, int lane_count)
{
u8 lane_align;
u8 lane_status;
int lane;
lane_align = edp_link_status(link_status,
DPCD_LANE_ALIGN_STATUS_UPDATED);
if (!(lane_align & DP_INTERLANE_ALIGN_DONE))
return -EIO;
for (lane = 0; lane < lane_count; lane++) {
lane_status = edp_get_lane_status(link_status, lane);
if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
return -EIO;
}
return 0;
}
static uint rk_edp_get_adjust_request_voltage(const u8 *link_status, int lane)
{
int i = DPCD_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
int s = ((lane & 1) ?
DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
u8 l = edp_link_status(link_status, i);
return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
}
static uint rk_edp_get_adjust_request_pre_emphasis(const u8 *link_status,
int lane)
{
int i = DPCD_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
int s = ((lane & 1) ?
DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
u8 l = edp_link_status(link_status, i);
return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
}
static void edp_get_adjust_train(const u8 *link_status, int lane_count,
u8 train_set[])
{
uint v = 0;
uint p = 0;
int lane;
for (lane = 0; lane < lane_count; lane++) {
uint this_v, this_p;
this_v = rk_edp_get_adjust_request_voltage(link_status, lane);
this_p = rk_edp_get_adjust_request_pre_emphasis(link_status,
lane);
debug("requested signal parameters: lane %d voltage %s pre_emph %s\n",
lane,
voltage_names[this_v >> DP_TRAIN_VOLTAGE_SWING_SHIFT],
pre_emph_names[this_p >> DP_TRAIN_PRE_EMPHASIS_SHIFT]);
if (this_v > v)
v = this_v;
if (this_p > p)
p = this_p;
}
if (v >= DP_VOLTAGE_MAX)
v |= DP_TRAIN_MAX_SWING_REACHED;
if (p >= DP_PRE_EMPHASIS_MAX)
p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
debug("using signal parameters: voltage %s pre_emph %s\n",
voltage_names[(v & DP_TRAIN_VOLTAGE_SWING_MASK)
>> DP_TRAIN_VOLTAGE_SWING_SHIFT],
pre_emph_names[(p & DP_TRAIN_PRE_EMPHASIS_MASK)
>> DP_TRAIN_PRE_EMPHASIS_SHIFT]);
for (lane = 0; lane < 4; lane++)
train_set[lane] = v | p;
}
static int rk_edp_link_train_cr(struct rk_edp_priv *edp)
{
struct rk3288_edp *regs = edp->regs;
int clock_recovery;
uint voltage, tries = 0;
u8 status[DP_LINK_STATUS_SIZE];
int i, ret;
u8 value;
value = DP_TRAINING_PATTERN_1;
writel(value, &regs->dp_training_ptn_set);
ret = rk_edp_dpcd_write(regs, DPCD_TRAINING_PATTERN_SET, &value, 1);
if (ret)
return ret;
memset(edp->train_set, '\0', sizeof(edp->train_set));
/* clock recovery loop */
clock_recovery = 0;
tries = 0;
voltage = 0xff;
while (1) {
rk_edp_set_link_training(edp, edp->train_set);
ret = rk_edp_dpcd_write(regs, DPCD_TRAINING_LANE0_SET,
edp->train_set,
edp->link_train.lane_count);
if (ret)
return ret;
mdelay(1);
ret = rk_edp_dpcd_read_link_status(edp, status);
if (ret) {
printf("displayport link status failed, ret=%d\n", ret);
break;
}
clock_recovery = rk_edp_clock_recovery(status,
edp->link_train.lane_count);
if (!clock_recovery)
break;
for (i = 0; i < edp->link_train.lane_count; i++) {
if ((edp->train_set[i] &
DP_TRAIN_MAX_SWING_REACHED) == 0)
break;
}
if (i == edp->link_train.lane_count) {
printf("clock recovery reached max voltage\n");
break;
}
if ((edp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) ==
voltage) {
if (++tries == MAX_CR_LOOP) {
printf("clock recovery tried 5 times\n");
break;
}
} else {
tries = 0;
}
voltage = edp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
/* Compute new train_set as requested by sink */
edp_get_adjust_train(status, edp->link_train.lane_count,
edp->train_set);
}
if (clock_recovery) {
printf("clock recovery failed: %d\n", clock_recovery);
return clock_recovery;
} else {
debug("clock recovery at voltage %d pre-emphasis %d\n",
edp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK,
(edp->train_set[0] & DP_TRAIN_PRE_EMPHASIS_MASK) >>
DP_TRAIN_PRE_EMPHASIS_SHIFT);
return 0;
}
}
static int rk_edp_link_train_ce(struct rk_edp_priv *edp)
{
struct rk3288_edp *regs = edp->regs;
int channel_eq;
u8 value;
int tries;
u8 status[DP_LINK_STATUS_SIZE];
int ret;
value = DP_TRAINING_PATTERN_2;
writel(value, &regs->dp_training_ptn_set);
ret = rk_edp_dpcd_write(regs, DPCD_TRAINING_PATTERN_SET, &value, 1);
if (ret)
return ret;
/* channel equalization loop */
channel_eq = 0;
for (tries = 0; tries < 5; tries++) {
rk_edp_set_link_training(edp, edp->train_set);
ret = rk_edp_dpcd_write(regs, DPCD_TRAINING_LANE0_SET,
edp->train_set,
edp->link_train.lane_count);
if (ret)
return ret;
udelay(400);
if (rk_edp_dpcd_read_link_status(edp, status) < 0) {
printf("displayport link status failed\n");
return -1;
}
channel_eq = rk_edp_channel_eq(status,
edp->link_train.lane_count);
if (!channel_eq)
break;
edp_get_adjust_train(status, edp->link_train.lane_count,
edp->train_set);
}
if (channel_eq) {
printf("channel eq failed, ret=%d\n", channel_eq);
return channel_eq;
}
debug("channel eq at voltage %d pre-emphasis %d\n",
edp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK,
(edp->train_set[0] & DP_TRAIN_PRE_EMPHASIS_MASK)
>> DP_TRAIN_PRE_EMPHASIS_SHIFT);
return 0;
}
static int rk_edp_init_training(struct rk_edp_priv *edp)
{
u8 values[3];
int ret;
ret = rk_edp_dpcd_read(edp->regs, DPCD_DPCD_REV, values,
sizeof(values));
if (ret < 0)
return ret;
edp->link_train.revision = values[0];
edp->link_train.link_rate = values[1];
edp->link_train.lane_count = values[2] & DP_MAX_LANE_COUNT_MASK;
debug("max link rate:%d.%dGps max number of lanes:%d\n",
edp->link_train.link_rate * 27 / 100,
edp->link_train.link_rate * 27 % 100,
edp->link_train.lane_count);
if ((edp->link_train.link_rate != LINK_RATE_1_62GBPS) &&
(edp->link_train.link_rate != LINK_RATE_2_70GBPS)) {
debug("Rx Max Link Rate is abnormal :%x\n",
edp->link_train.link_rate);
return -EPERM;
}
if (edp->link_train.lane_count == 0) {
debug("Rx Max Lane count is abnormal :%x\n",
edp->link_train.lane_count);
return -EPERM;
}
ret = rk_edp_link_power_up(edp);
if (ret)
return ret;
return rk_edp_link_configure(edp);
}
static int rk_edp_hw_link_training(struct rk_edp_priv *edp)
{
ulong start;
u32 val;
int ret;
/* Set link rate and count as you want to establish */
writel(edp->link_train.link_rate, &edp->regs->link_bw_set);
writel(edp->link_train.lane_count, &edp->regs->lane_count_set);
ret = rk_edp_link_train_cr(edp);
if (ret)
return ret;
ret = rk_edp_link_train_ce(edp);
if (ret)
return ret;
writel(HW_LT_EN, &edp->regs->dp_hw_link_training);
start = get_timer(0);
do {
val = readl(&edp->regs->dp_hw_link_training);
if (!(val & HW_LT_EN))
break;
} while (get_timer(start) < 10);
if (val & HW_LT_ERR_CODE_MASK) {
printf("edp hw link training error: %d\n",
val >> HW_LT_ERR_CODE_SHIFT);
return -EIO;
}
return 0;
}
static int rk_edp_select_i2c_device(struct rk3288_edp *regs,
unsigned int device_addr,
unsigned int val_addr)
{
int ret;
/* Set EDID device address */
writel(device_addr, &regs->aux_addr_7_0);
writel(0x0, &regs->aux_addr_15_8);
writel(0x0, &regs->aux_addr_19_16);
/* Set offset from base address of EDID device */
writel(val_addr, &regs->buf_data[0]);
/*
* Set I2C transaction and write address
* If bit 3 is 1, DisplayPort transaction.
* If Bit 3 is 0, I2C transaction.
*/
writel(AUX_TX_COMM_I2C_TRANSACTION | AUX_TX_COMM_MOT |
AUX_TX_COMM_WRITE, &regs->aux_ch_ctl_1);
/* Start AUX transaction */
ret = rk_edp_start_aux_transaction(regs);
if (ret != 0) {
debug("select_i2c_device Aux Transaction fail!\n");
return ret;
}
return 0;
}
static int rk_edp_i2c_read(struct rk3288_edp *regs, unsigned int device_addr,
unsigned int val_addr, unsigned int count, u8 edid[])
{
u32 val;
unsigned int i, j;
unsigned int cur_data_idx;
unsigned int defer = 0;
int ret = 0;
for (i = 0; i < count; i += 16) {
for (j = 0; j < 10; j++) { /* try 10 times */
/* Clear AUX CH data buffer */
writel(BUF_CLR, &regs->buf_data_ctl);
/* Set normal AUX CH command */
clrbits_le32(&regs->aux_ch_ctl_2, ADDR_ONLY);
/*
* If Rx sends defer, Tx sends only reads
* request without sending addres
*/
if (!defer) {
ret = rk_edp_select_i2c_device(regs,
device_addr,
val_addr + i);
} else {
defer = 0;
}
/*
* Set I2C transaction and write data
* If bit 3 is 1, DisplayPort transaction.
* If Bit 3 is 0, I2C transaction.
*/
writel(AUX_LENGTH(16) | AUX_TX_COMM_I2C_TRANSACTION |
AUX_TX_COMM_READ, &regs->aux_ch_ctl_1);
/* Start AUX transaction */
ret = rk_edp_start_aux_transaction(regs);
if (ret == 0) {
break;
} else {
debug("Aux Transaction fail!\n");
continue;
}
/* Check if Rx sends defer */
val = readl(&regs->aux_rx_comm);
if (val == AUX_RX_COMM_AUX_DEFER ||
val == AUX_RX_COMM_I2C_DEFER) {
debug("Defer: %d\n\n", val);
defer = 1;
}
}
if (ret)
return ret;
for (cur_data_idx = 0; cur_data_idx < 16; cur_data_idx++) {
val = readl(&regs->buf_data[cur_data_idx]);
edid[i + cur_data_idx] = (u8)val;
}
}
return 0;
}
static int rk_edp_set_link_train(struct rk_edp_priv *edp)
{
int ret;
ret = rk_edp_init_training(edp);
if (ret) {
printf("DP LT init failed!\n");
return ret;
}
ret = rk_edp_hw_link_training(edp);
if (ret)
return ret;
return 0;
}
static void rk_edp_init_video(struct rk3288_edp *regs)
{
writel(VSYNC_DET | VID_FORMAT_CHG | VID_CLK_CHG,
&regs->common_int_sta_1);
writel(CHA_CRI(4) | CHA_CTRL, &regs->sys_ctl_2);
writel(VID_HRES_TH(2) | VID_VRES_TH(0), &regs->video_ctl_8);
}
static void rk_edp_config_video_slave_mode(struct rk3288_edp *regs)
{
clrbits_le32(&regs->func_en_1, VID_FIFO_FUNC_EN_N | VID_CAP_FUNC_EN_N);
}
static void rk_edp_set_video_cr_mn(struct rk3288_edp *regs,
enum clock_recovery_m_value_type type,
u32 m_value,
u32 n_value)
{
if (type == REGISTER_M) {
setbits_le32(&regs->sys_ctl_4, FIX_M_VID);
writel(m_value & 0xff, &regs->m_vid_0);
writel((m_value >> 8) & 0xff, &regs->m_vid_1);
writel((m_value >> 16) & 0xff, &regs->m_vid_2);
writel(n_value & 0xf, &regs->n_vid_0);
writel((n_value >> 8) & 0xff, &regs->n_vid_1);
writel((n_value >> 16) & 0xff, &regs->n_vid_2);
} else {
clrbits_le32(&regs->sys_ctl_4, FIX_M_VID);
writel(0x00, &regs->n_vid_0);
writel(0x80, &regs->n_vid_1);
writel(0x00, &regs->n_vid_2);
}
}
static int rk_edp_is_video_stream_clock_on(struct rk3288_edp *regs)
{
ulong start;
u32 val;
start = get_timer(0);
do {
val = readl(&regs->sys_ctl_1);
/* must write value to update DET_STA bit status */
writel(val, &regs->sys_ctl_1);
val = readl(&regs->sys_ctl_1);
if (!(val & DET_STA))
continue;
val = readl(&regs->sys_ctl_2);
/* must write value to update CHA_STA bit status */
writel(val, &regs->sys_ctl_2);
val = readl(&regs->sys_ctl_2);
if (!(val & CHA_STA))
return 0;
} while (get_timer(start) < 100);
return -ETIMEDOUT;
}
static int rk_edp_is_video_stream_on(struct rk_edp_priv *edp)
{
ulong start;
u32 val;
start = get_timer(0);
do {
val = readl(&edp->regs->sys_ctl_3);
/* must write value to update STRM_VALID bit status */
writel(val, &edp->regs->sys_ctl_3);
val = readl(&edp->regs->sys_ctl_3);
if (!(val & STRM_VALID))
return 0;
} while (get_timer(start) < 100);
return -ETIMEDOUT;
}
static int rk_edp_config_video(struct rk_edp_priv *edp)
{
int ret;
rk_edp_config_video_slave_mode(edp->regs);
if (!rk_edp_get_pll_locked(edp->regs)) {
debug("PLL is not locked yet.\n");
return -ETIMEDOUT;
}
ret = rk_edp_is_video_stream_clock_on(edp->regs);
if (ret)
return ret;
/* Set to use the register calculated M/N video */
rk_edp_set_video_cr_mn(edp->regs, CALCULATED_M, 0, 0);
/* For video bist, Video timing must be generated by register */
clrbits_le32(&edp->regs->video_ctl_10, F_SEL);
/* Disable video mute */
clrbits_le32(&edp->regs->video_ctl_1, VIDEO_MUTE);
/* Enable video at next frame */
setbits_le32(&edp->regs->video_ctl_1, VIDEO_EN);
return rk_edp_is_video_stream_on(edp);
}
static void rockchip_edp_force_hpd(struct rk_edp_priv *edp)
{
setbits_le32(&edp->regs->sys_ctl_3, F_HPD | HPD_CTRL);
}
static int rockchip_edp_get_plug_in_status(struct rk_edp_priv *edp)
{
u32 val;
val = readl(&edp->regs->sys_ctl_3);
if (val & HPD_STATUS)
return 1;
return 0;
}
/*
* support edp HPD function
* some hardware version do not support edp hdp,
* we use 200ms to try to get the hpd single now,
* if we can not get edp hpd single, it will delay 200ms,
* also meet the edp power timing request, to compatible
* all of the hardware version
*/
static void rockchip_edp_wait_hpd(struct rk_edp_priv *edp)
{
ulong start;
start = get_timer(0);
do {
if (rockchip_edp_get_plug_in_status(edp))
return;
udelay(100);
} while (get_timer(start) < 200);
debug("do not get hpd single, force hpd\n");
rockchip_edp_force_hpd(edp);
}
static int rk_edp_enable(struct udevice *dev, int panel_bpp,
const struct display_timing *edid)
{
struct rk_edp_priv *priv = dev_get_priv(dev);
int ret = 0;
ret = rk_edp_set_link_train(priv);
if (ret) {
printf("link train failed!\n");
return ret;
}
rk_edp_init_video(priv->regs);
ret = rk_edp_config_video(priv);
if (ret) {
printf("config video failed\n");
return ret;
}
ret = panel_enable_backlight(priv->panel);
if (ret) {
debug("%s: backlight error: %d\n", __func__, ret);
return ret;
}
return 0;
}
static int rk_edp_read_edid(struct udevice *dev, u8 *buf, int buf_size)
{
struct rk_edp_priv *priv = dev_get_priv(dev);
u32 edid_size = EDID_LENGTH;
int ret;
int i;
for (i = 0; i < 3; i++) {
ret = rk_edp_i2c_read(priv->regs, EDID_ADDR, EDID_HEADER,
EDID_LENGTH, &buf[EDID_HEADER]);
if (ret) {
debug("EDID read failed\n");
continue;
}
/*
* check if the EDID has an extension flag, and read additional
* EDID data if needed
*/
if (buf[EDID_EXTENSION_FLAG]) {
edid_size += EDID_LENGTH;
ret = rk_edp_i2c_read(priv->regs, EDID_ADDR,
EDID_LENGTH, EDID_LENGTH,
&buf[EDID_LENGTH]);
if (ret) {
debug("EDID Read failed!\n");
continue;
}
}
goto done;
}
/* After 3 attempts, give up */
return ret;
done:
return edid_size;
}
static int rk_edp_ofdata_to_platdata(struct udevice *dev)
{
struct rk_edp_priv *priv = dev_get_priv(dev);
priv->regs = dev_read_addr_ptr(dev);
priv->grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF);
return 0;
}
static int rk_edp_remove(struct udevice *dev)
{
struct rk_edp_priv *priv = dev_get_priv(dev);
struct rk3288_edp *regs = priv->regs;
setbits_le32(&regs->video_ctl_1, VIDEO_MUTE);
clrbits_le32(&regs->video_ctl_1, VIDEO_EN);
clrbits_le32(&regs->sys_ctl_3, F_HPD | HPD_CTRL);
setbits_le32(&regs->func_en_1, SW_FUNC_EN_N);
return 0;
}
static int rk_edp_probe(struct udevice *dev)
{
struct display_plat *uc_plat = dev_get_uclass_platdata(dev);
struct rk_edp_priv *priv = dev_get_priv(dev);
struct rk3288_edp *regs = priv->regs;
struct clk clk;
int ret;
ret = uclass_get_device_by_phandle(UCLASS_PANEL, dev, "rockchip,panel",
&priv->panel);
if (ret) {
debug("%s: Cannot find panel for '%s' (ret=%d)\n", __func__,
dev->name, ret);
return ret;
}
int vop_id = uc_plat->source_id;
debug("%s, uc_plat=%p, vop_id=%u\n", __func__, uc_plat, vop_id);
ret = clk_get_by_index(dev, 1, &clk);
if (ret >= 0) {
ret = clk_set_rate(&clk, 0);
clk_free(&clk);
}
if (ret) {
debug("%s: Failed to set EDP clock: ret=%d\n", __func__, ret);
return ret;
}
ret = clk_get_by_index(uc_plat->src_dev, 0, &clk);
if (ret >= 0) {
ret = clk_set_rate(&clk, 192000000);
clk_free(&clk);
}
if (ret < 0) {
debug("%s: Failed to set clock in source device '%s': ret=%d\n",
__func__, uc_plat->src_dev->name, ret);
return ret;
}
/* grf_edp_ref_clk_sel: from internal 24MHz or 27MHz clock */
rk_setreg(&priv->grf->soc_con12, 1 << 4);
/* select epd signal from vop0 or vop1 */
rk_clrsetreg(&priv->grf->soc_con6, (1 << 5),
(vop_id == 1) ? (1 << 5) : (0 << 5));
rockchip_edp_wait_hpd(priv);
rk_edp_init_refclk(regs);
rk_edp_init_interrupt(regs);
rk_edp_enable_sw_function(regs);
ret = rk_edp_init_analog_func(regs);
if (ret)
return ret;
rk_edp_init_aux(regs);
return 0;
}
static const struct dm_display_ops dp_rockchip_ops = {
.read_edid = rk_edp_read_edid,
.enable = rk_edp_enable,
};
static const struct udevice_id rockchip_dp_ids[] = {
{ .compatible = "rockchip,rk3288-edp" },
{ }
};
U_BOOT_DRIVER(dp_rockchip) = {
.name = "edp_rockchip",
.id = UCLASS_DISPLAY,
.of_match = rockchip_dp_ids,
.ops = &dp_rockchip_ops,
.ofdata_to_platdata = rk_edp_ofdata_to_platdata,
.probe = rk_edp_probe,
.remove = rk_edp_remove,
.priv_auto = sizeof(struct rk_edp_priv),
};