| /* |
| * (C) Copyright 2006 Freescale Semiconductor, Inc. |
| * |
| * (C) Copyright 2006 |
| * Wolfgang Denk, DENX Software Engineering, wd@denx.de. |
| * |
| * Copyright (C) 2004-2006 Freescale Semiconductor, Inc. |
| * (C) Copyright 2003 Motorola Inc. |
| * Xianghua Xiao (X.Xiao@motorola.com) |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| #include <common.h> |
| #include <asm/processor.h> |
| #include <i2c.h> |
| #include <spd.h> |
| #include <asm/mmu.h> |
| #include <spd_sdram.h> |
| |
| #ifdef CONFIG_SPD_EEPROM |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRC) |
| extern void dma_init(void); |
| extern uint dma_check(void); |
| extern int dma_xfer(void *dest, uint count, void *src); |
| #endif |
| |
| #ifndef CFG_READ_SPD |
| #define CFG_READ_SPD i2c_read |
| #endif |
| |
| /* |
| * Convert picoseconds into clock cycles (rounding up if needed). |
| */ |
| int |
| picos_to_clk(int picos) |
| { |
| unsigned int ddr_bus_clk; |
| int clks; |
| |
| ddr_bus_clk = gd->ddr_clk >> 1; |
| clks = picos / (1000000000 / (ddr_bus_clk / 1000)); |
| if (picos % (1000000000 / (ddr_bus_clk / 1000)) != 0) |
| clks++; |
| |
| return clks; |
| } |
| |
| unsigned int banksize(unsigned char row_dens) |
| { |
| return ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24; |
| } |
| |
| int read_spd(uint addr) |
| { |
| return ((int) addr); |
| } |
| |
| #undef SPD_DEBUG |
| #ifdef SPD_DEBUG |
| static void spd_debug(spd_eeprom_t *spd) |
| { |
| printf ("\nDIMM type: %-18.18s\n", spd->mpart); |
| printf ("SPD size: %d\n", spd->info_size); |
| printf ("EEPROM size: %d\n", 1 << spd->chip_size); |
| printf ("Memory type: %d\n", spd->mem_type); |
| printf ("Row addr: %d\n", spd->nrow_addr); |
| printf ("Column addr: %d\n", spd->ncol_addr); |
| printf ("# of rows: %d\n", spd->nrows); |
| printf ("Row density: %d\n", spd->row_dens); |
| printf ("# of banks: %d\n", spd->nbanks); |
| printf ("Data width: %d\n", |
| 256 * spd->dataw_msb + spd->dataw_lsb); |
| printf ("Chip width: %d\n", spd->primw); |
| printf ("Refresh rate: %02X\n", spd->refresh); |
| printf ("CAS latencies: %02X\n", spd->cas_lat); |
| printf ("Write latencies: %02X\n", spd->write_lat); |
| printf ("tRP: %d\n", spd->trp); |
| printf ("tRCD: %d\n", spd->trcd); |
| printf ("\n"); |
| } |
| #endif /* SPD_DEBUG */ |
| |
| long int spd_sdram() |
| { |
| volatile immap_t *immap = (immap_t *)CFG_IMMR; |
| volatile ddr83xx_t *ddr = &immap->ddr; |
| volatile law83xx_t *ecm = &immap->sysconf.ddrlaw[0]; |
| spd_eeprom_t spd; |
| unsigned int n_ranks; |
| unsigned int odt_rd_cfg, odt_wr_cfg; |
| unsigned char twr_clk, twtr_clk; |
| unsigned char sdram_type; |
| unsigned int memsize; |
| unsigned int law_size; |
| unsigned char caslat, caslat_ctrl; |
| unsigned int trfc, trfc_clk, trfc_low, trfc_high; |
| unsigned int trcd_clk, trtp_clk; |
| unsigned char cke_min_clk; |
| unsigned char add_lat, wr_lat; |
| unsigned char wr_data_delay; |
| unsigned char four_act; |
| unsigned char cpo; |
| unsigned char burstlen; |
| unsigned char odt_cfg, mode_odt_enable; |
| unsigned int max_bus_clk; |
| unsigned int max_data_rate, effective_data_rate; |
| unsigned int ddrc_clk; |
| unsigned int refresh_clk; |
| unsigned int sdram_cfg; |
| unsigned int ddrc_ecc_enable; |
| unsigned int pvr = get_pvr(); |
| |
| /* Read SPD parameters with I2C */ |
| CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) & spd, sizeof (spd)); |
| #ifdef SPD_DEBUG |
| spd_debug(&spd); |
| #endif |
| /* Check the memory type */ |
| if (spd.mem_type != SPD_MEMTYPE_DDR && spd.mem_type != SPD_MEMTYPE_DDR2) { |
| printf("DDR: Module mem type is %02X\n", spd.mem_type); |
| return 0; |
| } |
| |
| /* Check the number of physical bank */ |
| if (spd.mem_type == SPD_MEMTYPE_DDR) { |
| n_ranks = spd.nrows; |
| } else { |
| n_ranks = (spd.nrows & 0x7) + 1; |
| } |
| |
| if (n_ranks > 2) { |
| printf("DDR: The number of physical bank is %02X\n", n_ranks); |
| return 0; |
| } |
| |
| /* Check if the number of row of the module is in the range of DDRC */ |
| if (spd.nrow_addr < 12 || spd.nrow_addr > 15) { |
| printf("DDR: Row number is out of range of DDRC, row=%02X\n", |
| spd.nrow_addr); |
| return 0; |
| } |
| |
| /* Check if the number of col of the module is in the range of DDRC */ |
| if (spd.ncol_addr < 8 || spd.ncol_addr > 11) { |
| printf("DDR: Col number is out of range of DDRC, col=%02X\n", |
| spd.ncol_addr); |
| return 0; |
| } |
| |
| #ifdef CFG_DDRCDR_VALUE |
| /* |
| * Adjust DDR II IO voltage biasing. It just makes it work. |
| */ |
| if(spd.mem_type == SPD_MEMTYPE_DDR2) { |
| immap->sysconf.ddrcdr = CFG_DDRCDR_VALUE; |
| } |
| #endif |
| |
| /* |
| * ODT configuration recommendation from DDR Controller Chapter. |
| */ |
| odt_rd_cfg = 0; /* Never assert ODT */ |
| odt_wr_cfg = 0; /* Never assert ODT */ |
| if (spd.mem_type == SPD_MEMTYPE_DDR2) { |
| odt_wr_cfg = 1; /* Assert ODT on writes to CSn */ |
| } |
| |
| /* Setup DDR chip select register */ |
| #ifdef CFG_83XX_DDR_USES_CS0 |
| ddr->csbnds[0].csbnds = (banksize(spd.row_dens) >> 24) - 1; |
| ddr->cs_config[0] = ( 1 << 31 |
| | (odt_rd_cfg << 20) |
| | (odt_wr_cfg << 16) |
| | (spd.nrow_addr - 12) << 8 |
| | (spd.ncol_addr - 8) ); |
| debug("\n"); |
| debug("cs0_bnds = 0x%08x\n",ddr->csbnds[0].csbnds); |
| debug("cs0_config = 0x%08x\n",ddr->cs_config[0]); |
| |
| if (n_ranks == 2) { |
| ddr->csbnds[1].csbnds = ( (banksize(spd.row_dens) >> 8) |
| | ((banksize(spd.row_dens) >> 23) - 1) ); |
| ddr->cs_config[1] = ( 1<<31 |
| | (odt_rd_cfg << 20) |
| | (odt_wr_cfg << 16) |
| | (spd.nrow_addr-12) << 8 |
| | (spd.ncol_addr-8) ); |
| debug("cs1_bnds = 0x%08x\n",ddr->csbnds[1].csbnds); |
| debug("cs1_config = 0x%08x\n",ddr->cs_config[1]); |
| } |
| |
| #else |
| ddr->csbnds[2].csbnds = (banksize(spd.row_dens) >> 24) - 1; |
| ddr->cs_config[2] = ( 1 << 31 |
| | (odt_rd_cfg << 20) |
| | (odt_wr_cfg << 16) |
| | (spd.nrow_addr - 12) << 8 |
| | (spd.ncol_addr - 8) ); |
| debug("\n"); |
| debug("cs2_bnds = 0x%08x\n",ddr->csbnds[2].csbnds); |
| debug("cs2_config = 0x%08x\n",ddr->cs_config[2]); |
| |
| if (n_ranks == 2) { |
| ddr->csbnds[3].csbnds = ( (banksize(spd.row_dens) >> 8) |
| | ((banksize(spd.row_dens) >> 23) - 1) ); |
| ddr->cs_config[3] = ( 1<<31 |
| | (odt_rd_cfg << 20) |
| | (odt_wr_cfg << 16) |
| | (spd.nrow_addr-12) << 8 |
| | (spd.ncol_addr-8) ); |
| debug("cs3_bnds = 0x%08x\n",ddr->csbnds[3].csbnds); |
| debug("cs3_config = 0x%08x\n",ddr->cs_config[3]); |
| } |
| #endif |
| |
| /* |
| * Figure out memory size in Megabytes. |
| */ |
| memsize = n_ranks * banksize(spd.row_dens) / 0x100000; |
| |
| /* |
| * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. |
| */ |
| law_size = 19 + __ilog2(memsize); |
| |
| /* |
| * Set up LAWBAR for all of DDR. |
| */ |
| ecm->bar = ((CFG_DDR_SDRAM_BASE>>12) & 0xfffff); |
| ecm->ar = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & law_size)); |
| debug("DDR:bar=0x%08x\n", ecm->bar); |
| debug("DDR:ar=0x%08x\n", ecm->ar); |
| |
| /* |
| * Find the largest CAS by locating the highest 1 bit |
| * in the spd.cas_lat field. Translate it to a DDR |
| * controller field value: |
| * |
| * CAS Lat DDR I DDR II Ctrl |
| * Clocks SPD Bit SPD Bit Value |
| * ------- ------- ------- ----- |
| * 1.0 0 0001 |
| * 1.5 1 0010 |
| * 2.0 2 2 0011 |
| * 2.5 3 0100 |
| * 3.0 4 3 0101 |
| * 3.5 5 0110 |
| * 4.0 6 4 0111 |
| * 4.5 1000 |
| * 5.0 5 1001 |
| */ |
| caslat = __ilog2(spd.cas_lat); |
| if ((spd.mem_type == SPD_MEMTYPE_DDR) |
| && (caslat > 6)) { |
| printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat); |
| return 0; |
| } else if (spd.mem_type == SPD_MEMTYPE_DDR2 |
| && (caslat < 2 || caslat > 5)) { |
| printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n", |
| spd.cas_lat); |
| return 0; |
| } |
| debug("DDR: caslat SPD bit is %d\n", caslat); |
| |
| max_bus_clk = 1000 *10 / (((spd.clk_cycle & 0xF0) >> 4) * 10 |
| + (spd.clk_cycle & 0x0f)); |
| max_data_rate = max_bus_clk * 2; |
| |
| debug("DDR:Module maximum data rate is: %dMhz\n", max_data_rate); |
| |
| ddrc_clk = gd->ddr_clk / 1000000; |
| effective_data_rate = 0; |
| |
| if (max_data_rate >= 390 && max_data_rate < 460) { /* it is DDR 400 */ |
| if (ddrc_clk <= 460 && ddrc_clk > 350) { |
| /* DDR controller clk at 350~460 */ |
| effective_data_rate = 400; /* 5ns */ |
| caslat = caslat; |
| } else if (ddrc_clk <= 350 && ddrc_clk > 280) { |
| /* DDR controller clk at 280~350 */ |
| effective_data_rate = 333; /* 6ns */ |
| if (spd.clk_cycle2 == 0x60) |
| caslat = caslat - 1; |
| else |
| caslat = caslat; |
| } else if (ddrc_clk <= 280 && ddrc_clk > 230) { |
| /* DDR controller clk at 230~280 */ |
| effective_data_rate = 266; /* 7.5ns */ |
| if (spd.clk_cycle3 == 0x75) |
| caslat = caslat - 2; |
| else if (spd.clk_cycle2 == 0x75) |
| caslat = caslat - 1; |
| else |
| caslat = caslat; |
| } else if (ddrc_clk <= 230 && ddrc_clk > 90) { |
| /* DDR controller clk at 90~230 */ |
| effective_data_rate = 200; /* 10ns */ |
| if (spd.clk_cycle3 == 0xa0) |
| caslat = caslat - 2; |
| else if (spd.clk_cycle2 == 0xa0) |
| caslat = caslat - 1; |
| else |
| caslat = caslat; |
| } |
| } else if (max_data_rate >= 323) { /* it is DDR 333 */ |
| if (ddrc_clk <= 350 && ddrc_clk > 280) { |
| /* DDR controller clk at 280~350 */ |
| effective_data_rate = 333; /* 6ns */ |
| caslat = caslat; |
| } else if (ddrc_clk <= 280 && ddrc_clk > 230) { |
| /* DDR controller clk at 230~280 */ |
| effective_data_rate = 266; /* 7.5ns */ |
| if (spd.clk_cycle2 == 0x75) |
| caslat = caslat - 1; |
| else |
| caslat = caslat; |
| } else if (ddrc_clk <= 230 && ddrc_clk > 90) { |
| /* DDR controller clk at 90~230 */ |
| effective_data_rate = 200; /* 10ns */ |
| if (spd.clk_cycle3 == 0xa0) |
| caslat = caslat - 2; |
| else if (spd.clk_cycle2 == 0xa0) |
| caslat = caslat - 1; |
| else |
| caslat = caslat; |
| } |
| } else if (max_data_rate >= 256) { /* it is DDR 266 */ |
| if (ddrc_clk <= 350 && ddrc_clk > 280) { |
| /* DDR controller clk at 280~350 */ |
| printf("DDR: DDR controller freq is more than " |
| "max data rate of the module\n"); |
| return 0; |
| } else if (ddrc_clk <= 280 && ddrc_clk > 230) { |
| /* DDR controller clk at 230~280 */ |
| effective_data_rate = 266; /* 7.5ns */ |
| caslat = caslat; |
| } else if (ddrc_clk <= 230 && ddrc_clk > 90) { |
| /* DDR controller clk at 90~230 */ |
| effective_data_rate = 200; /* 10ns */ |
| if (spd.clk_cycle2 == 0xa0) |
| caslat = caslat - 1; |
| } |
| } else if (max_data_rate >= 190) { /* it is DDR 200 */ |
| if (ddrc_clk <= 350 && ddrc_clk > 230) { |
| /* DDR controller clk at 230~350 */ |
| printf("DDR: DDR controller freq is more than " |
| "max data rate of the module\n"); |
| return 0; |
| } else if (ddrc_clk <= 230 && ddrc_clk > 90) { |
| /* DDR controller clk at 90~230 */ |
| effective_data_rate = 200; /* 10ns */ |
| caslat = caslat; |
| } |
| } |
| |
| debug("DDR:Effective data rate is: %dMhz\n", effective_data_rate); |
| debug("DDR:The MSB 1 of CAS Latency is: %d\n", caslat); |
| |
| /* |
| * Errata DDR6 work around: input enable 2 cycles earlier. |
| * including MPC834x Rev1.0/1.1 and MPC8360 Rev1.1/1.2. |
| */ |
| if(PVR_MAJ(pvr) <= 1 && spd.mem_type == SPD_MEMTYPE_DDR){ |
| if (caslat == 2) |
| ddr->debug_reg = 0x201c0000; /* CL=2 */ |
| else if (caslat == 3) |
| ddr->debug_reg = 0x202c0000; /* CL=2.5 */ |
| else if (caslat == 4) |
| ddr->debug_reg = 0x202c0000; /* CL=3.0 */ |
| |
| __asm__ __volatile__ ("sync"); |
| |
| debug("Errata DDR6 (debug_reg=0x%08x)\n", ddr->debug_reg); |
| } |
| |
| /* |
| * Convert caslat clocks to DDR controller value. |
| * Force caslat_ctrl to be DDR Controller field-sized. |
| */ |
| if (spd.mem_type == SPD_MEMTYPE_DDR) { |
| caslat_ctrl = (caslat + 1) & 0x07; |
| } else { |
| caslat_ctrl = (2 * caslat - 1) & 0x0f; |
| } |
| |
| debug("DDR: effective data rate is %d MHz\n", effective_data_rate); |
| debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n", |
| caslat, caslat_ctrl); |
| |
| /* |
| * Timing Config 0. |
| * Avoid writing for DDR I. |
| */ |
| if (spd.mem_type == SPD_MEMTYPE_DDR2) { |
| unsigned char taxpd_clk = 8; /* By the book. */ |
| unsigned char tmrd_clk = 2; /* By the book. */ |
| unsigned char act_pd_exit = 2; /* Empirical? */ |
| unsigned char pre_pd_exit = 6; /* Empirical? */ |
| |
| ddr->timing_cfg_0 = (0 |
| | ((act_pd_exit & 0x7) << 20) /* ACT_PD_EXIT */ |
| | ((pre_pd_exit & 0x7) << 16) /* PRE_PD_EXIT */ |
| | ((taxpd_clk & 0xf) << 8) /* ODT_PD_EXIT */ |
| | ((tmrd_clk & 0xf) << 0) /* MRS_CYC */ |
| ); |
| debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0); |
| } |
| |
| /* |
| * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD, |
| * use conservative value. |
| * For DDR II, they are bytes 36 and 37, in quarter nanos. |
| */ |
| |
| if (spd.mem_type == SPD_MEMTYPE_DDR) { |
| twr_clk = 3; /* Clocks */ |
| twtr_clk = 1; /* Clocks */ |
| } else { |
| twr_clk = picos_to_clk(spd.twr * 250); |
| twtr_clk = picos_to_clk(spd.twtr * 250); |
| } |
| |
| /* |
| * Calculate Trfc, in picos. |
| * DDR I: Byte 42 straight up in ns. |
| * DDR II: Byte 40 and 42 swizzled some, in ns. |
| */ |
| if (spd.mem_type == SPD_MEMTYPE_DDR) { |
| trfc = spd.trfc * 1000; /* up to ps */ |
| } else { |
| unsigned int byte40_table_ps[8] = { |
| 0, |
| 250, |
| 330, |
| 500, |
| 660, |
| 750, |
| 0, |
| 0 |
| }; |
| |
| trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000 |
| + byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7]; |
| } |
| trfc_clk = picos_to_clk(trfc); |
| |
| /* |
| * Trcd, Byte 29, from quarter nanos to ps and clocks. |
| */ |
| trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7; |
| |
| /* |
| * Convert trfc_clk to DDR controller fields. DDR I should |
| * fit in the REFREC field (16-19) of TIMING_CFG_1, but the |
| * 83xx controller has an extended REFREC field of three bits. |
| * The controller automatically adds 8 clocks to this value, |
| * so preadjust it down 8 first before splitting it up. |
| */ |
| trfc_low = (trfc_clk - 8) & 0xf; |
| trfc_high = ((trfc_clk - 8) >> 4) & 0x3; |
| |
| ddr->timing_cfg_1 = |
| (((picos_to_clk(spd.trp * 250) & 0x07) << 28 ) | /* PRETOACT */ |
| ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24 ) | /* ACTTOPRE */ |
| (trcd_clk << 20 ) | /* ACTTORW */ |
| (caslat_ctrl << 16 ) | /* CASLAT */ |
| (trfc_low << 12 ) | /* REFEC */ |
| ((twr_clk & 0x07) << 8) | /* WRRREC */ |
| ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) | /* ACTTOACT */ |
| ((twtr_clk & 0x07) << 0) /* WRTORD */ |
| ); |
| |
| /* |
| * Additive Latency |
| * For DDR I, 0. |
| * For DDR II, with ODT enabled, use "a value" less than ACTTORW, |
| * which comes from Trcd, and also note that: |
| * add_lat + caslat must be >= 4 |
| */ |
| add_lat = 0; |
| if (spd.mem_type == SPD_MEMTYPE_DDR2 |
| && (odt_wr_cfg || odt_rd_cfg) |
| && (caslat < 4)) { |
| add_lat = trcd_clk - 1; |
| if ((add_lat + caslat) < 4) { |
| add_lat = 0; |
| } |
| } |
| |
| /* |
| * Write Data Delay |
| * Historically 0x2 == 4/8 clock delay. |
| * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266. |
| */ |
| wr_data_delay = 2; |
| |
| /* |
| * Write Latency |
| * Read to Precharge |
| * Minimum CKE Pulse Width. |
| * Four Activate Window |
| */ |
| if (spd.mem_type == SPD_MEMTYPE_DDR) { |
| /* |
| * This is a lie. It should really be 1, but if it is |
| * set to 1, bits overlap into the old controller's |
| * otherwise unused ACSM field. If we leave it 0, then |
| * the HW will magically treat it as 1 for DDR 1. Oh Yea. |
| */ |
| wr_lat = 0; |
| |
| trtp_clk = 2; /* By the book. */ |
| cke_min_clk = 1; /* By the book. */ |
| four_act = 1; /* By the book. */ |
| |
| } else { |
| wr_lat = caslat - 1; |
| |
| /* Convert SPD value from quarter nanos to picos. */ |
| trtp_clk = picos_to_clk(spd.trtp * 250); |
| |
| cke_min_clk = 3; /* By the book. */ |
| four_act = picos_to_clk(37500); /* By the book. 1k pages? */ |
| } |
| |
| /* |
| * Empirically set ~MCAS-to-preamble override for DDR 2. |
| * Your milage will vary. |
| */ |
| cpo = 0; |
| if (spd.mem_type == SPD_MEMTYPE_DDR2) { |
| if (effective_data_rate == 266 || effective_data_rate == 333) { |
| cpo = 0x7; /* READ_LAT + 5/4 */ |
| } else if (effective_data_rate == 400) { |
| cpo = 0x9; /* READ_LAT + 7/4 */ |
| } else { |
| /* Automatic calibration */ |
| cpo = 0x1f; |
| } |
| } |
| |
| ddr->timing_cfg_2 = (0 |
| | ((add_lat & 0x7) << 28) /* ADD_LAT */ |
| | ((cpo & 0x1f) << 23) /* CPO */ |
| | ((wr_lat & 0x7) << 19) /* WR_LAT */ |
| | ((trtp_clk & 0x7) << 13) /* RD_TO_PRE */ |
| | ((wr_data_delay & 0x7) << 10) /* WR_DATA_DELAY */ |
| | ((cke_min_clk & 0x7) << 6) /* CKE_PLS */ |
| | ((four_act & 0x1f) << 0) /* FOUR_ACT */ |
| ); |
| |
| debug("DDR:timing_cfg_1=0x%08x\n", ddr->timing_cfg_1); |
| debug("DDR:timing_cfg_2=0x%08x\n", ddr->timing_cfg_2); |
| |
| /* Check DIMM data bus width */ |
| if (spd.dataw_lsb == 0x20) { |
| burstlen = 0x03; /* 32 bit data bus, burst len is 8 */ |
| printf("\n DDR DIMM: data bus width is 32 bit"); |
| } else { |
| burstlen = 0x02; /* Others act as 64 bit bus, burst len is 4 */ |
| printf("\n DDR DIMM: data bus width is 64 bit"); |
| } |
| |
| /* Is this an ECC DDR chip? */ |
| if (spd.config == 0x02) |
| printf(" with ECC\n"); |
| else |
| printf(" without ECC\n"); |
| |
| /* Burst length is always 4 for 64 bit data bus, 8 for 32 bit data bus, |
| Burst type is sequential |
| */ |
| if (spd.mem_type == SPD_MEMTYPE_DDR) { |
| switch (caslat) { |
| case 1: |
| ddr->sdram_mode = 0x50 | burstlen; /* CL=1.5 */ |
| break; |
| case 2: |
| ddr->sdram_mode = 0x20 | burstlen; /* CL=2.0 */ |
| break; |
| case 3: |
| ddr->sdram_mode = 0x60 | burstlen; /* CL=2.5 */ |
| break; |
| case 4: |
| ddr->sdram_mode = 0x30 | burstlen; /* CL=3.0 */ |
| break; |
| default: |
| printf("DDR:only CL 1.5, 2.0, 2.5, 3.0 is supported\n"); |
| return 0; |
| } |
| } else { |
| mode_odt_enable = 0x0; /* Default disabled */ |
| if (odt_wr_cfg || odt_rd_cfg) { |
| /* |
| * Bits 6 and 2 in Extended MRS(1) |
| * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules. |
| * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module. |
| */ |
| mode_odt_enable = 0x40; /* 150 Ohm */ |
| } |
| |
| ddr->sdram_mode = |
| (0 |
| | (1 << (16 + 10)) /* DQS Differential disable */ |
| | (add_lat << (16 + 3)) /* Additive Latency in EMRS1 */ |
| | (mode_odt_enable << 16) /* ODT Enable in EMRS1 */ |
| | ((twr_clk - 1) << 9) /* Write Recovery Autopre */ |
| | (caslat << 4) /* caslat */ |
| | (burstlen << 0) /* Burst length */ |
| ); |
| } |
| debug("DDR:sdram_mode=0x%08x\n", ddr->sdram_mode); |
| |
| /* |
| * Clear EMRS2 and EMRS3. |
| */ |
| ddr->sdram_mode2 = 0; |
| debug("DDR: sdram_mode2 = 0x%08x\n", ddr->sdram_mode2); |
| |
| switch (spd.refresh) { |
| case 0x00: |
| case 0x80: |
| refresh_clk = picos_to_clk(15625000); |
| break; |
| case 0x01: |
| case 0x81: |
| refresh_clk = picos_to_clk(3900000); |
| break; |
| case 0x02: |
| case 0x82: |
| refresh_clk = picos_to_clk(7800000); |
| break; |
| case 0x03: |
| case 0x83: |
| refresh_clk = picos_to_clk(31300000); |
| break; |
| case 0x04: |
| case 0x84: |
| refresh_clk = picos_to_clk(62500000); |
| break; |
| case 0x05: |
| case 0x85: |
| refresh_clk = picos_to_clk(125000000); |
| break; |
| default: |
| refresh_clk = 0x512; |
| break; |
| } |
| |
| /* |
| * Set BSTOPRE to 0x100 for page mode |
| * If auto-charge is used, set BSTOPRE = 0 |
| */ |
| ddr->sdram_interval = ((refresh_clk & 0x3fff) << 16) | 0x100; |
| debug("DDR:sdram_interval=0x%08x\n", ddr->sdram_interval); |
| |
| /* |
| * SDRAM Cfg 2 |
| */ |
| odt_cfg = 0; |
| if (odt_rd_cfg | odt_wr_cfg) { |
| odt_cfg = 0x2; /* ODT to IOs during reads */ |
| } |
| if (spd.mem_type == SPD_MEMTYPE_DDR2) { |
| ddr->sdram_cfg2 = (0 |
| | (0 << 26) /* True DQS */ |
| | (odt_cfg << 21) /* ODT only read */ |
| | (1 << 12) /* 1 refresh at a time */ |
| ); |
| |
| debug("DDR: sdram_cfg2 = 0x%08x\n", ddr->sdram_cfg2); |
| } |
| |
| #ifdef CFG_DDR_SDRAM_CLK_CNTL /* Optional platform specific value */ |
| ddr->sdram_clk_cntl = CFG_DDR_SDRAM_CLK_CNTL; |
| #endif |
| debug("DDR:sdram_clk_cntl=0x%08x\n", ddr->sdram_clk_cntl); |
| |
| asm("sync;isync"); |
| |
| udelay(600); |
| |
| /* |
| * Figure out the settings for the sdram_cfg register. Build up |
| * the value in 'sdram_cfg' before writing since the write into |
| * the register will actually enable the memory controller, and all |
| * settings must be done before enabling. |
| * |
| * sdram_cfg[0] = 1 (ddr sdram logic enable) |
| * sdram_cfg[1] = 1 (self-refresh-enable) |
| * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM) |
| * 010 DDR 1 SDRAM |
| * 011 DDR 2 SDRAM |
| * sdram_cfg[12] = 0 (32_BE =0 , 64 bit bus mode) |
| * sdram_cfg[13] = 0 (8_BE =0, 4-beat bursts) |
| */ |
| if (spd.mem_type == SPD_MEMTYPE_DDR) |
| sdram_type = 2; |
| else |
| sdram_type = 3; |
| |
| sdram_cfg = (0 |
| | (1 << 31) /* DDR enable */ |
| | (1 << 30) /* Self refresh */ |
| | (sdram_type << 24) /* SDRAM type */ |
| ); |
| |
| /* sdram_cfg[3] = RD_EN - registered DIMM enable */ |
| if (spd.mod_attr & 0x02) |
| sdram_cfg |= 0x10000000; |
| |
| /* The DIMM is 32bit width */ |
| if (spd.dataw_lsb == 0x20) |
| sdram_cfg |= 0x000C0000; |
| |
| ddrc_ecc_enable = 0; |
| |
| #if defined(CONFIG_DDR_ECC) |
| /* Enable ECC with sdram_cfg[2] */ |
| if (spd.config == 0x02) { |
| sdram_cfg |= 0x20000000; |
| ddrc_ecc_enable = 1; |
| /* disable error detection */ |
| ddr->err_disable = ~ECC_ERROR_ENABLE; |
| /* set single bit error threshold to maximum value, |
| * reset counter to zero */ |
| ddr->err_sbe = (255 << ECC_ERROR_MAN_SBET_SHIFT) | |
| (0 << ECC_ERROR_MAN_SBEC_SHIFT); |
| } |
| |
| debug("DDR:err_disable=0x%08x\n", ddr->err_disable); |
| debug("DDR:err_sbe=0x%08x\n", ddr->err_sbe); |
| #endif |
| printf(" DDRC ECC mode: %s\n", ddrc_ecc_enable ? "ON":"OFF"); |
| |
| #if defined(CONFIG_DDR_2T_TIMING) |
| /* |
| * Enable 2T timing by setting sdram_cfg[16]. |
| */ |
| sdram_cfg |= SDRAM_CFG_2T_EN; |
| #endif |
| /* Enable controller, and GO! */ |
| ddr->sdram_cfg = sdram_cfg; |
| asm("sync;isync"); |
| udelay(500); |
| |
| debug("DDR:sdram_cfg=0x%08x\n", ddr->sdram_cfg); |
| return memsize; /*in MBytes*/ |
| } |
| #endif /* CONFIG_SPD_EEPROM */ |
| |
| #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRC) |
| /* |
| * Use timebase counter, get_timer() is not availabe |
| * at this point of initialization yet. |
| */ |
| static __inline__ unsigned long get_tbms (void) |
| { |
| unsigned long tbl; |
| unsigned long tbu1, tbu2; |
| unsigned long ms; |
| unsigned long long tmp; |
| |
| ulong tbclk = get_tbclk(); |
| |
| /* get the timebase ticks */ |
| do { |
| asm volatile ("mftbu %0":"=r" (tbu1):); |
| asm volatile ("mftb %0":"=r" (tbl):); |
| asm volatile ("mftbu %0":"=r" (tbu2):); |
| } while (tbu1 != tbu2); |
| |
| /* convert ticks to ms */ |
| tmp = (unsigned long long)(tbu1); |
| tmp = (tmp << 32); |
| tmp += (unsigned long long)(tbl); |
| ms = tmp/(tbclk/1000); |
| |
| return ms; |
| } |
| |
| /* |
| * Initialize all of memory for ECC, then enable errors. |
| */ |
| /* #define CONFIG_DDR_ECC_INIT_VIA_DMA */ |
| void ddr_enable_ecc(unsigned int dram_size) |
| { |
| volatile immap_t *immap = (immap_t *)CFG_IMMR; |
| volatile ddr83xx_t *ddr= &immap->ddr; |
| unsigned long t_start, t_end; |
| register u64 *p; |
| register uint size; |
| unsigned int pattern[2]; |
| #if defined(CONFIG_DDR_ECC_INIT_VIA_DMA) |
| uint i; |
| #endif |
| icache_enable(); |
| t_start = get_tbms(); |
| pattern[0] = 0xdeadbeef; |
| pattern[1] = 0xdeadbeef; |
| |
| #if !defined(CONFIG_DDR_ECC_INIT_VIA_DMA) |
| debug("ddr init: CPU FP write method\n"); |
| size = dram_size; |
| for (p = 0; p < (u64*)(size); p++) { |
| ppcDWstore((u32*)p, pattern); |
| } |
| __asm__ __volatile__ ("sync"); |
| #else |
| debug("ddr init: DMA method\n"); |
| size = 0x2000; |
| for (p = 0; p < (u64*)(size); p++) { |
| ppcDWstore((u32*)p, pattern); |
| } |
| __asm__ __volatile__ ("sync"); |
| |
| /* Initialise DMA for direct transfer */ |
| dma_init(); |
| /* Start DMA to transfer */ |
| dma_xfer((uint *)0x2000, 0x2000, (uint *)0); /* 8K */ |
| dma_xfer((uint *)0x4000, 0x4000, (uint *)0); /* 16K */ |
| dma_xfer((uint *)0x8000, 0x8000, (uint *)0); /* 32K */ |
| dma_xfer((uint *)0x10000, 0x10000, (uint *)0); /* 64K */ |
| dma_xfer((uint *)0x20000, 0x20000, (uint *)0); /* 128K */ |
| dma_xfer((uint *)0x40000, 0x40000, (uint *)0); /* 256K */ |
| dma_xfer((uint *)0x80000, 0x80000, (uint *)0); /* 512K */ |
| dma_xfer((uint *)0x100000, 0x100000, (uint *)0); /* 1M */ |
| dma_xfer((uint *)0x200000, 0x200000, (uint *)0); /* 2M */ |
| dma_xfer((uint *)0x400000, 0x400000, (uint *)0); /* 4M */ |
| |
| for (i = 1; i < dram_size / 0x800000; i++) { |
| dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0); |
| } |
| #endif |
| |
| t_end = get_tbms(); |
| icache_disable(); |
| |
| debug("\nREADY!!\n"); |
| debug("ddr init duration: %ld ms\n", t_end - t_start); |
| |
| /* Clear All ECC Errors */ |
| if ((ddr->err_detect & ECC_ERROR_DETECT_MME) == ECC_ERROR_DETECT_MME) |
| ddr->err_detect |= ECC_ERROR_DETECT_MME; |
| if ((ddr->err_detect & ECC_ERROR_DETECT_MBE) == ECC_ERROR_DETECT_MBE) |
| ddr->err_detect |= ECC_ERROR_DETECT_MBE; |
| if ((ddr->err_detect & ECC_ERROR_DETECT_SBE) == ECC_ERROR_DETECT_SBE) |
| ddr->err_detect |= ECC_ERROR_DETECT_SBE; |
| if ((ddr->err_detect & ECC_ERROR_DETECT_MSE) == ECC_ERROR_DETECT_MSE) |
| ddr->err_detect |= ECC_ERROR_DETECT_MSE; |
| |
| /* Disable ECC-Interrupts */ |
| ddr->err_int_en &= ECC_ERR_INT_DISABLE; |
| |
| /* Enable errors for ECC */ |
| ddr->err_disable &= ECC_ERROR_ENABLE; |
| |
| __asm__ __volatile__ ("sync"); |
| __asm__ __volatile__ ("isync"); |
| } |
| #endif /* CONFIG_DDR_ECC */ |