blob: 11ef242a37bef90a6de78f964b0c26fe70b277c6 [file] [log] [blame]
// SPDX-License-Identifier: BSD-3-Clause
/*
* Cadence DDR Driver
*
* Copyright (C) 2012-2022 Cadence Design Systems, Inc.
* Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/
*/
#include <errno.h>
#include "cps_drv_lpddr4.h"
#include "lpddr4_if.h"
#include "lpddr4.h"
#include "lpddr4_structs_if.h"
static u32 lpddr4_pollphyindepirq(const lpddr4_privatedata *pd, lpddr4_intr_phyindepinterrupt irqbit, u32 delay);
static u32 lpddr4_pollandackirq(const lpddr4_privatedata *pd);
static u32 lpddr4_startsequencecontroller(const lpddr4_privatedata *pd);
static u32 lpddr4_writemmrregister(const lpddr4_privatedata *pd, u32 writemoderegval);
static void lpddr4_checkcatrainingerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr);
static void lpddr4_checkgatelvlerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr);
static void lpddr4_checkreadlvlerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr);
static void lpddr4_checkdqtrainingerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr);
static u8 lpddr4_seterror(volatile u32 *reg, u32 errbitmask, u8 *errfoundptr, const u32 errorinfobits);
static void lpddr4_setphysnapsettings(lpddr4_ctlregs *ctlregbase, const bool errorfound);
static void lpddr4_setphyadrsnapsettings(lpddr4_ctlregs *ctlregbase, const bool errorfound);
static void readpdwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles);
static void readsrshortwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles);
static void readsrlongwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles);
static void readsrlonggatewakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles);
static void readsrdpshortwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles);
static void readsrdplongwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles);
static void readsrdplonggatewakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles);
static void lpddr4_readlpiwakeuptime(lpddr4_ctlregs *ctlregbase, const lpddr4_lpiwakeupparam *lpiwakeupparam, const lpddr4_ctlfspnum *fspnum, u32 *cycles);
static void writepdwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles);
static void writesrshortwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles);
static void writesrlongwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles);
static void writesrlonggatewakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles);
static void writesrdpshortwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles);
static void writesrdplongwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles);
static void writesrdplonggatewakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles);
static void lpddr4_writelpiwakeuptime(lpddr4_ctlregs *ctlregbase, const lpddr4_lpiwakeupparam *lpiwakeupparam, const lpddr4_ctlfspnum *fspnum, const u32 *cycles);
static void lpddr4_updatefsp2refrateparams(const lpddr4_privatedata *pd, const u32 *tref, const u32 *tras_max);
static void lpddr4_updatefsp1refrateparams(const lpddr4_privatedata *pd, const u32 *tref, const u32 *tras_max);
static void lpddr4_updatefsp0refrateparams(const lpddr4_privatedata *pd, const u32 *tref, const u32 *tras_max);
static u32 lpddr4_getphyrwmask(u32 regoffset);
u32 lpddr4_pollctlirq(const lpddr4_privatedata *pd, lpddr4_intr_ctlinterrupt irqbit, u32 delay)
{
u32 result = 0U;
u32 timeout = 0U;
bool irqstatus = false;
do {
if (++timeout == delay) {
result = (u32)EIO;
break;
}
result = lpddr4_checkctlinterrupt(pd, irqbit, &irqstatus);
} while ((irqstatus == (bool)false) && (result == (u32)0));
return result;
}
static u32 lpddr4_pollphyindepirq(const lpddr4_privatedata *pd, lpddr4_intr_phyindepinterrupt irqbit, u32 delay)
{
u32 result = 0U;
u32 timeout = 0U;
bool irqstatus = false;
do {
if (++timeout == delay) {
result = (u32)EIO;
break;
}
result = lpddr4_checkphyindepinterrupt(pd, irqbit, &irqstatus);
} while ((irqstatus == (bool)false) && (result == (u32)0));
return result;
}
static u32 lpddr4_pollandackirq(const lpddr4_privatedata *pd)
{
u32 result = 0U;
result = lpddr4_pollphyindepirq(pd, LPDDR4_INTR_PHY_INDEP_INIT_DONE_BIT, LPDDR4_CUSTOM_TIMEOUT_DELAY);
if (result == (u32)0)
result = lpddr4_ackphyindepinterrupt(pd, LPDDR4_INTR_PHY_INDEP_INIT_DONE_BIT);
if (result == (u32)0)
result = lpddr4_pollctlirq(pd, LPDDR4_INTR_MC_INIT_DONE, LPDDR4_CUSTOM_TIMEOUT_DELAY);
if (result == (u32)0)
result = lpddr4_ackctlinterrupt(pd, LPDDR4_INTR_MC_INIT_DONE);
return result;
}
static u32 lpddr4_startsequencecontroller(const lpddr4_privatedata *pd)
{
u32 result = 0U;
u32 regval = 0U;
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
lpddr4_infotype infotype;
regval = CPS_FLD_SET(LPDDR4__PI_START__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__PI_START__REG)));
CPS_REG_WRITE((&(ctlregbase->LPDDR4__PI_START__REG)), regval);
regval = CPS_FLD_SET(LPDDR4__START__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__START__REG)));
CPS_REG_WRITE(&(ctlregbase->LPDDR4__START__REG), regval);
if (pd->infohandler != (lpddr4_infocallback)NULL) {
infotype = LPDDR4_DRV_SOC_PLL_UPDATE;
pd->infohandler(pd, infotype);
}
result = lpddr4_pollandackirq(pd);
return result;
}
volatile u32 *lpddr4_addoffset(volatile u32 *addr, u32 regoffset)
{
volatile u32 *local_addr = addr;
volatile u32 *regaddr = &local_addr[regoffset];
return regaddr;
}
u32 lpddr4_probe(const lpddr4_config *config, u16 *configsize)
{
u32 result;
result = (u32)(lpddr4_probesf(config, configsize));
if (result == (u32)0)
*configsize = (u16)(sizeof(lpddr4_privatedata));
return result;
}
u32 lpddr4_init(lpddr4_privatedata *pd, const lpddr4_config *cfg)
{
u32 result = 0U;
result = lpddr4_initsf(pd, cfg);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)cfg->ctlbase;
pd->ctlbase = ctlregbase;
pd->infohandler = (lpddr4_infocallback)cfg->infohandler;
pd->ctlinterrupthandler = (lpddr4_ctlcallback)cfg->ctlinterrupthandler;
pd->phyindepinterrupthandler = (lpddr4_phyindepcallback)cfg->phyindepinterrupthandler;
}
return result;
}
u32 lpddr4_start(const lpddr4_privatedata *pd)
{
u32 result = 0U;
result = lpddr4_startsf(pd);
if (result == (u32)0) {
result = lpddr4_enablepiinitiator(pd);
result = lpddr4_startsequencecontroller(pd);
}
return result;
}
u32 lpddr4_readreg(const lpddr4_privatedata *pd, lpddr4_regblock cpp, u32 regoffset, u32 *regvalue)
{
u32 result = 0U;
result = lpddr4_readregsf(pd, cpp, regvalue);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
if (cpp == LPDDR4_CTL_REGS) {
if (regoffset >= LPDDR4_INTR_CTL_REG_COUNT)
result = (u32)EINVAL;
else
*regvalue = CPS_REG_READ(lpddr4_addoffset(&(ctlregbase->DENALI_CTL_0), regoffset));
} else if (cpp == LPDDR4_PHY_REGS) {
if (regoffset >= LPDDR4_INTR_PHY_REG_COUNT)
result = (u32)EINVAL;
else
*regvalue = CPS_REG_READ(lpddr4_addoffset(&(ctlregbase->DENALI_PHY_0), regoffset));
} else {
if (regoffset >= LPDDR4_INTR_PHY_INDEP_REG_COUNT)
result = (u32)EINVAL;
else
*regvalue = CPS_REG_READ(lpddr4_addoffset(&(ctlregbase->DENALI_PI_0), regoffset));
}
}
return result;
}
static u32 lpddr4_getphyrwmask(u32 regoffset)
{
u32 rwmask = 0U;
u32 arrayoffset = 0U;
u32 slicenum, sliceoffset = 0U;
for (slicenum = (u32)0U; slicenum <= (DSLICE_NUM + ASLICE_NUM); slicenum++) {
sliceoffset = sliceoffset + (u32)SLICE_WIDTH;
if (regoffset < sliceoffset)
break;
}
arrayoffset = regoffset - (sliceoffset - (u32)SLICE_WIDTH);
if (slicenum < DSLICE_NUM) {
rwmask = lpddr4_getdslicemask(slicenum, arrayoffset);
} else {
if (slicenum == DSLICE_NUM) {
if (arrayoffset < ASLICE0_REG_COUNT)
rwmask = g_lpddr4_address_slice_0_rw_mask[arrayoffset];
} else {
if (arrayoffset < PHY_CORE_REG_COUNT)
rwmask = g_lpddr4_phy_core_rw_mask[arrayoffset];
}
}
return rwmask;
}
u32 lpddr4_deferredregverify(const lpddr4_privatedata *pd, lpddr4_regblock cpp, u32 regvalues[], u16 regnum[], u16 regcount)
{
u32 result = (u32)0;
u32 aindex;
u32 regreadval = 0U;
u32 rwmask = 0U;
result = lpddr4_deferredregverifysf(pd, cpp);
if ((regvalues == (u32 *)NULL) || (regnum == (u16 *)NULL))
result = EINVAL;
if (result == (u32)0) {
for (aindex = 0; aindex < regcount; aindex++) {
result = lpddr4_readreg(pd, cpp, (u32)regnum[aindex], &regreadval);
if (result == (u32)0) {
switch (cpp) {
case LPDDR4_PHY_INDEP_REGS:
rwmask = g_lpddr4_pi_rw_mask[(u32)regnum[aindex]];
break;
case LPDDR4_PHY_REGS:
rwmask = lpddr4_getphyrwmask((u32)regnum[aindex]);
break;
default:
rwmask = g_lpddr4_ddr_controller_rw_mask[(u32)regnum[aindex]];
break;
}
if ((rwmask & regreadval) != ((u32)(regvalues[aindex]) & rwmask)) {
result = EIO;
break;
}
}
}
}
return result;
}
u32 lpddr4_writereg(const lpddr4_privatedata *pd, lpddr4_regblock cpp, u32 regoffset, u32 regvalue)
{
u32 result = 0U;
result = lpddr4_writeregsf(pd, cpp);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
if (cpp == LPDDR4_CTL_REGS) {
if (regoffset >= LPDDR4_INTR_CTL_REG_COUNT)
result = (u32)EINVAL;
else
CPS_REG_WRITE(lpddr4_addoffset(&(ctlregbase->DENALI_CTL_0), regoffset), regvalue);
} else if (cpp == LPDDR4_PHY_REGS) {
if (regoffset >= LPDDR4_INTR_PHY_REG_COUNT)
result = (u32)EINVAL;
else
CPS_REG_WRITE(lpddr4_addoffset(&(ctlregbase->DENALI_PHY_0), regoffset), regvalue);
} else {
if (regoffset >= LPDDR4_INTR_PHY_INDEP_REG_COUNT)
result = (u32)EINVAL;
else
CPS_REG_WRITE(lpddr4_addoffset(&(ctlregbase->DENALI_PI_0), regoffset), regvalue);
}
}
return result;
}
u32 lpddr4_getmmrregister(const lpddr4_privatedata *pd, u32 readmoderegval, u64 *mmrvalue, u8 *mmrstatus)
{
u32 result = 0U;
u32 tdelay = 1000U;
u32 regval = 0U;
result = lpddr4_getmmrregistersf(pd, mmrvalue, mmrstatus);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
regval = CPS_FLD_WRITE(LPDDR4__READ_MODEREG__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__READ_MODEREG__REG)), readmoderegval);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__READ_MODEREG__REG), regval);
result = lpddr4_pollctlirq(pd, LPDDR4_INTR_MR_READ_DONE, tdelay);
}
if (result == (u32)0)
result = lpddr4_checkmmrreaderror(pd, mmrvalue, mmrstatus);
return result;
}
static u32 lpddr4_writemmrregister(const lpddr4_privatedata *pd, u32 writemoderegval)
{
u32 result = (u32)0;
u32 tdelay = 1000U;
u32 regval = 0U;
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
regval = CPS_FLD_WRITE(LPDDR4__WRITE_MODEREG__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__WRITE_MODEREG__REG)), writemoderegval);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__WRITE_MODEREG__REG), regval);
result = lpddr4_pollctlirq(pd, LPDDR4_INTR_MR_WRITE_DONE, tdelay);
return result;
}
u32 lpddr4_setmmrregister(const lpddr4_privatedata *pd, u32 writemoderegval, u8 *mrwstatus)
{
u32 result = 0U;
result = lpddr4_setmmrregistersf(pd, mrwstatus);
if (result == (u32)0) {
result = lpddr4_writemmrregister(pd, writemoderegval);
if (result == (u32)0)
result = lpddr4_ackctlinterrupt(pd, LPDDR4_INTR_MR_WRITE_DONE);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
*mrwstatus = (u8)CPS_FLD_READ(LPDDR4__MRW_STATUS__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__MRW_STATUS__REG)));
if ((*mrwstatus) != 0U)
result = (u32)EIO;
}
}
return result;
}
u32 lpddr4_writectlconfig(const lpddr4_privatedata *pd, u32 regvalues[], u16 regnum[], u16 regcount)
{
u32 result;
u32 aindex;
result = lpddr4_writectlconfigsf(pd);
if ((regvalues == (u32 *)NULL) || (regnum == (u16 *)NULL))
result = EINVAL;
if (result == (u32)0) {
for (aindex = 0; aindex < regcount; aindex++)
result = (u32)lpddr4_writereg(pd, LPDDR4_CTL_REGS, (u32)regnum[aindex],
(u32)regvalues[aindex]);
}
return result;
}
u32 lpddr4_writephyindepconfig(const lpddr4_privatedata *pd, u32 regvalues[], u16 regnum[], u16 regcount)
{
u32 result;
u32 aindex;
result = lpddr4_writephyindepconfigsf(pd);
if ((regvalues == (u32 *)NULL) || (regnum == (u16 *)NULL))
result = EINVAL;
if (result == (u32)0) {
for (aindex = 0; aindex < regcount; aindex++)
result = (u32)lpddr4_writereg(pd, LPDDR4_PHY_INDEP_REGS, (u32)regnum[aindex],
(u32)regvalues[aindex]);
}
return result;
}
u32 lpddr4_writephyconfig(const lpddr4_privatedata *pd, u32 regvalues[], u16 regnum[], u16 regcount)
{
u32 result;
u32 aindex;
result = lpddr4_writephyconfigsf(pd);
if ((regvalues == (u32 *)NULL) || (regnum == (u16 *)NULL))
result = EINVAL;
if (result == (u32)0) {
for (aindex = 0; aindex < regcount; aindex++)
result = (u32)lpddr4_writereg(pd, LPDDR4_PHY_REGS, (u32)regnum[aindex],
(u32)regvalues[aindex]);
}
return result;
}
u32 lpddr4_readctlconfig(const lpddr4_privatedata *pd, u32 regvalues[], u16 regnum[], u16 regcount)
{
u32 result;
u32 aindex;
result = lpddr4_readctlconfigsf(pd);
if ((regvalues == (u32 *)NULL) || (regnum == (u16 *)NULL))
result = EINVAL;
if (result == (u32)0) {
for (aindex = 0; aindex < regcount; aindex++)
result = (u32)lpddr4_readreg(pd, LPDDR4_CTL_REGS, (u32)regnum[aindex],
(u32 *)(&regvalues[aindex]));
}
return result;
}
u32 lpddr4_readphyindepconfig(const lpddr4_privatedata *pd, u32 regvalues[], u16 regnum[], u16 regcount)
{
u32 result;
u32 aindex;
result = lpddr4_readphyindepconfigsf(pd);
if ((regvalues == (u32 *)NULL) || (regnum == (u16 *)NULL))
result = EINVAL;
if (result == (u32)0) {
for (aindex = 0; aindex < regcount; aindex++)
result = (u32)lpddr4_readreg(pd, LPDDR4_PHY_INDEP_REGS, (u32)regnum[aindex],
(u32 *)(&regvalues[aindex]));
}
return result;
}
u32 lpddr4_readphyconfig(const lpddr4_privatedata *pd, u32 regvalues[], u16 regnum[], u16 regcount)
{
u32 result;
u32 aindex;
result = lpddr4_readphyconfigsf(pd);
if ((regvalues == (u32 *)NULL) || (regnum == (u16 *)NULL))
result = EINVAL;
if (result == (u32)0) {
for (aindex = 0; aindex < regcount; aindex++)
result = (u32)lpddr4_readreg(pd, LPDDR4_PHY_REGS, (u32)regnum[aindex],
(u32 *)(&regvalues[aindex]));
}
return result;
}
u32 lpddr4_getphyindepinterruptmask(const lpddr4_privatedata *pd, u32 *mask)
{
u32 result;
result = lpddr4_getphyindepinterruptmsf(pd, mask);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
*mask = CPS_FLD_READ(LPDDR4__PI_INT_MASK__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__PI_INT_MASK__REG)));
}
return result;
}
u32 lpddr4_setphyindepinterruptmask(const lpddr4_privatedata *pd, const u32 *mask)
{
u32 result;
u32 regval = 0;
const u32 ui32irqcount = (u32)LPDDR4_INTR_PHY_INDEP_DLL_LOCK_STATE_CHANGE_BIT + 1U;
result = lpddr4_setphyindepinterruptmsf(pd, mask);
if ((result == (u32)0) && (ui32irqcount < WORD_SHIFT)) {
if (*mask >= (1U << ui32irqcount))
result = (u32)EINVAL;
}
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
regval = CPS_FLD_WRITE(LPDDR4__PI_INT_MASK__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__PI_INT_MASK__REG)), *mask);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__PI_INT_MASK__REG), regval);
}
return result;
}
u32 lpddr4_checkphyindepinterrupt(const lpddr4_privatedata *pd, lpddr4_intr_phyindepinterrupt intr, bool *irqstatus)
{
u32 result = 0;
u32 phyindepirqstatus = 0;
result = LPDDR4_INTR_CheckPhyIndepIntSF(pd, intr, irqstatus);
if ((result == (u32)0) && ((u32)intr < WORD_SHIFT)) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
phyindepirqstatus = CPS_REG_READ(&(ctlregbase->LPDDR4__PI_INT_STATUS__REG));
*irqstatus = (bool)(((phyindepirqstatus >> (u32)intr) & LPDDR4_BIT_MASK) > 0U);
}
return result;
}
u32 lpddr4_ackphyindepinterrupt(const lpddr4_privatedata *pd, lpddr4_intr_phyindepinterrupt intr)
{
u32 result = 0U;
u32 regval = 0U;
result = LPDDR4_INTR_AckPhyIndepIntSF(pd, intr);
if ((result == (u32)0) && ((u32)intr < WORD_SHIFT)) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
regval = ((u32)LPDDR4_BIT_MASK << (u32)intr);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__PI_INT_ACK__REG), regval);
}
return result;
}
static void lpddr4_checkcatrainingerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr)
{
u32 regval;
u32 errbitmask = 0U;
u32 snum;
volatile u32 *regaddress;
regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__PHY_ADR_CALVL_OBS1_0__REG));
errbitmask = (CA_TRAIN_RL) | (NIBBLE_MASK);
for (snum = 0U; snum < ASLICE_NUM; snum++) {
regval = CPS_REG_READ(regaddress);
if ((regval & errbitmask) != CA_TRAIN_RL) {
debuginfo->catraingerror = CDN_TRUE;
*errfoundptr = true;
}
regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH);
}
}
static void lpddr4_checkgatelvlerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr)
{
u32 regval;
u32 errbitmask = 0U;
u32 snum;
volatile u32 *regaddress;
regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__PHY_GTLVL_STATUS_OBS_0__REG));
errbitmask = GATE_LVL_ERROR_FIELDS;
for (snum = (u32)0U; snum < DSLICE_NUM; snum++) {
regval = CPS_REG_READ(regaddress);
if ((regval & errbitmask) != 0U) {
debuginfo->gatelvlerror = CDN_TRUE;
*errfoundptr = true;
}
regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH);
}
}
static void lpddr4_checkreadlvlerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr)
{
u32 regval;
u32 errbitmask = 0U;
u32 snum;
volatile u32 *regaddress;
regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__PHY_RDLVL_STATUS_OBS_0__REG));
errbitmask = READ_LVL_ERROR_FIELDS;
for (snum = (u32)0U; snum < DSLICE_NUM; snum++) {
regval = CPS_REG_READ(regaddress);
if ((regval & errbitmask) != 0U) {
debuginfo->readlvlerror = CDN_TRUE;
*errfoundptr = true;
}
regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH);
}
}
static void lpddr4_checkdqtrainingerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr)
{
u32 regval;
u32 errbitmask = 0U;
u32 snum;
volatile u32 *regaddress;
regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__PHY_WDQLVL_STATUS_OBS_0__REG));
errbitmask = DQ_LVL_STATUS;
for (snum = (u32)0U; snum < DSLICE_NUM; snum++) {
regval = CPS_REG_READ(regaddress);
if ((regval & errbitmask) != 0U) {
debuginfo->dqtrainingerror = CDN_TRUE;
*errfoundptr = true;
}
regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH);
}
}
bool lpddr4_checklvlerrors(const lpddr4_privatedata *pd, lpddr4_debuginfo *debuginfo, bool errfound)
{
bool localerrfound = errfound;
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
if (localerrfound == (bool)false)
lpddr4_checkcatrainingerror(ctlregbase, debuginfo, &localerrfound);
if (localerrfound == (bool)false)
lpddr4_checkwrlvlerror(ctlregbase, debuginfo, &localerrfound);
if (localerrfound == (bool)false)
lpddr4_checkgatelvlerror(ctlregbase, debuginfo, &localerrfound);
if (localerrfound == (bool)false)
lpddr4_checkreadlvlerror(ctlregbase, debuginfo, &localerrfound);
if (localerrfound == (bool)false)
lpddr4_checkdqtrainingerror(ctlregbase, debuginfo, &localerrfound);
return localerrfound;
}
static u8 lpddr4_seterror(volatile u32 *reg, u32 errbitmask, u8 *errfoundptr, const u32 errorinfobits)
{
u32 regval = 0U;
regval = CPS_REG_READ(reg);
if ((regval & errbitmask) != errorinfobits)
*errfoundptr = CDN_TRUE;
return *errfoundptr;
}
void lpddr4_seterrors(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, u8 *errfoundptr)
{
u32 errbitmask = (LPDDR4_BIT_MASK << 0x1U) | (LPDDR4_BIT_MASK);
debuginfo->pllerror = lpddr4_seterror(&(ctlregbase->LPDDR4__PHY_PLL_OBS_0__REG),
errbitmask, errfoundptr, PLL_READY);
if (*errfoundptr == CDN_FALSE)
debuginfo->pllerror = lpddr4_seterror(&(ctlregbase->LPDDR4__PHY_PLL_OBS_1__REG),
errbitmask, errfoundptr, PLL_READY);
if (*errfoundptr == CDN_FALSE)
debuginfo->iocaliberror = lpddr4_seterror(&(ctlregbase->LPDDR4__PHY_CAL_RESULT_OBS_0__REG),
IO_CALIB_DONE, errfoundptr, IO_CALIB_DONE);
if (*errfoundptr == CDN_FALSE)
debuginfo->iocaliberror = lpddr4_seterror(&(ctlregbase->LPDDR4__PHY_CAL_RESULT2_OBS_0__REG),
IO_CALIB_DONE, errfoundptr, IO_CALIB_DONE);
if (*errfoundptr == CDN_FALSE)
debuginfo->iocaliberror = lpddr4_seterror(&(ctlregbase->LPDDR4__PHY_CAL_RESULT3_OBS_0__REG),
IO_CALIB_FIELD, errfoundptr, IO_CALIB_STATE);
}
static void lpddr4_setphysnapsettings(lpddr4_ctlregs *ctlregbase, const bool errorfound)
{
u32 snum = 0U;
volatile u32 *regaddress;
u32 regval = 0U;
if (errorfound == (bool)false) {
regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__SC_PHY_SNAP_OBS_REGS_0__REG));
for (snum = (u32)0U; snum < DSLICE_NUM; snum++) {
regval = CPS_FLD_SET(LPDDR4__SC_PHY_SNAP_OBS_REGS_0__FLD, CPS_REG_READ(regaddress));
CPS_REG_WRITE(regaddress, regval);
regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH);
}
}
}
static void lpddr4_setphyadrsnapsettings(lpddr4_ctlregs *ctlregbase, const bool errorfound)
{
u32 snum = 0U;
volatile u32 *regaddress;
u32 regval = 0U;
if (errorfound == (bool)false) {
regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__SC_PHY_ADR_SNAP_OBS_REGS_0__REG));
for (snum = (u32)0U; snum < ASLICE_NUM; snum++) {
regval = CPS_FLD_SET(LPDDR4__SC_PHY_ADR_SNAP_OBS_REGS_0__FLD, CPS_REG_READ(regaddress));
CPS_REG_WRITE(regaddress, regval);
regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH);
}
}
}
void lpddr4_setsettings(lpddr4_ctlregs *ctlregbase, const bool errorfound)
{
lpddr4_setphysnapsettings(ctlregbase, errorfound);
lpddr4_setphyadrsnapsettings(ctlregbase, errorfound);
}
static void readpdwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles)
{
if (*fspnum == LPDDR4_FSP_0)
*cycles = CPS_FLD_READ(LPDDR4__LPI_PD_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F0__REG)));
else if (*fspnum == LPDDR4_FSP_1)
*cycles = CPS_FLD_READ(LPDDR4__LPI_PD_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F1__REG)));
else
*cycles = CPS_FLD_READ(LPDDR4__LPI_PD_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F2__REG)));
}
static void readsrshortwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles)
{
if (*fspnum == LPDDR4_FSP_0)
*cycles = CPS_FLD_READ(LPDDR4__LPI_SR_SHORT_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F0__REG)));
else if (*fspnum == LPDDR4_FSP_1)
*cycles = CPS_FLD_READ(LPDDR4__LPI_SR_SHORT_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F1__REG)));
else
*cycles = CPS_FLD_READ(LPDDR4__LPI_SR_SHORT_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F2__REG)));
}
static void readsrlongwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles)
{
if (*fspnum == LPDDR4_FSP_0)
*cycles = CPS_FLD_READ(LPDDR4__LPI_SR_LONG_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F0__REG)));
else if (*fspnum == LPDDR4_FSP_1)
*cycles = CPS_FLD_READ(LPDDR4__LPI_SR_LONG_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F1__REG)));
else
*cycles = CPS_FLD_READ(LPDDR4__LPI_SR_LONG_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F2__REG)));
}
static void readsrlonggatewakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles)
{
if (*fspnum == LPDDR4_FSP_0)
*cycles = CPS_FLD_READ(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__REG)));
else if (*fspnum == LPDDR4_FSP_1)
*cycles = CPS_FLD_READ(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__REG)));
else
*cycles = CPS_FLD_READ(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__REG)));
}
static void readsrdpshortwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles)
{
if (*fspnum == LPDDR4_FSP_0)
*cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__REG)));
else if (*fspnum == LPDDR4_FSP_1)
*cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__REG)));
else
*cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__REG)));
}
static void readsrdplongwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles)
{
if (*fspnum == LPDDR4_FSP_0)
*cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__REG)));
else if (*fspnum == LPDDR4_FSP_1)
*cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__REG)));
else
*cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__REG)));
}
static void readsrdplonggatewakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles)
{
if (*fspnum == LPDDR4_FSP_0)
*cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__REG)));
else if (*fspnum == LPDDR4_FSP_1)
*cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__REG)));
else
*cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__REG)));
}
static void lpddr4_readlpiwakeuptime(lpddr4_ctlregs *ctlregbase, const lpddr4_lpiwakeupparam *lpiwakeupparam, const lpddr4_ctlfspnum *fspnum, u32 *cycles)
{
if (*lpiwakeupparam == LPDDR4_LPI_PD_WAKEUP_FN)
readpdwakeup(fspnum, ctlregbase, cycles);
else if (*lpiwakeupparam == LPDDR4_LPI_SR_SHORT_WAKEUP_FN)
readsrshortwakeup(fspnum, ctlregbase, cycles);
else if (*lpiwakeupparam == LPDDR4_LPI_SR_LONG_WAKEUP_FN)
readsrlongwakeup(fspnum, ctlregbase, cycles);
else if (*lpiwakeupparam == LPDDR4_LPI_SR_LONG_MCCLK_GATE_WAKEUP_FN)
readsrlonggatewakeup(fspnum, ctlregbase, cycles);
else if (*lpiwakeupparam == LPDDR4_LPI_SRPD_SHORT_WAKEUP_FN)
readsrdpshortwakeup(fspnum, ctlregbase, cycles);
else if (*lpiwakeupparam == LPDDR4_LPI_SRPD_LONG_WAKEUP_FN)
readsrdplongwakeup(fspnum, ctlregbase, cycles);
else
readsrdplonggatewakeup(fspnum, ctlregbase, cycles);
}
u32 lpddr4_getlpiwakeuptime(const lpddr4_privatedata *pd, const lpddr4_lpiwakeupparam *lpiwakeupparam, const lpddr4_ctlfspnum *fspnum, u32 *cycles)
{
u32 result = 0U;
result = lpddr4_getlpiwakeuptimesf(pd, lpiwakeupparam, fspnum, cycles);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
lpddr4_readlpiwakeuptime(ctlregbase, lpiwakeupparam, fspnum, cycles);
}
return result;
}
static void writepdwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles)
{
u32 regval = 0U;
if (*fspnum == LPDDR4_FSP_0) {
regval = CPS_FLD_WRITE(LPDDR4__LPI_PD_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F0__REG)), *cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F0__REG), regval);
} else if (*fspnum == LPDDR4_FSP_1) {
regval = CPS_FLD_WRITE(LPDDR4__LPI_PD_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F1__REG)), *cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F1__REG), regval);
} else {
regval = CPS_FLD_WRITE(LPDDR4__LPI_PD_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F2__REG)), *cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F2__REG), regval);
}
}
static void writesrshortwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles)
{
u32 regval = 0U;
if (*fspnum == LPDDR4_FSP_0) {
regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_SHORT_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F0__REG)), *cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F0__REG), regval);
} else if (*fspnum == LPDDR4_FSP_1) {
regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_SHORT_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F1__REG)), *cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F1__REG), regval);
} else {
regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_SHORT_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F2__REG)), *cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F2__REG), regval);
}
}
static void writesrlongwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles)
{
u32 regval = 0U;
if (*fspnum == LPDDR4_FSP_0) {
regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F0__REG)), *cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F0__REG), regval);
} else if (*fspnum == LPDDR4_FSP_1) {
regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F1__REG)), *cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F1__REG), regval);
} else {
regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F2__REG)), *cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F2__REG), regval);
}
}
static void writesrlonggatewakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles)
{
u32 regval = 0U;
if (*fspnum == LPDDR4_FSP_0) {
regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__REG)), *cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__REG), regval);
} else if (*fspnum == LPDDR4_FSP_1) {
regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__REG)), *cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__REG), regval);
} else {
regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__REG)), *cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__REG), regval);
}
}
static void writesrdpshortwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles)
{
u32 regval = 0U;
if (*fspnum == LPDDR4_FSP_0) {
regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__REG)), *cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__REG), regval);
} else if (*fspnum == LPDDR4_FSP_1) {
regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__REG)), *cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__REG), regval);
} else {
regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__REG)), *cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__REG), regval);
}
}
static void writesrdplongwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles)
{
u32 regval = 0U;
if (*fspnum == LPDDR4_FSP_0) {
regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__REG)), *cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__REG), regval);
} else if (*fspnum == LPDDR4_FSP_1) {
regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__REG)), *cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__REG), regval);
} else {
regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__REG)), *cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__REG), regval);
}
}
static void writesrdplonggatewakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles)
{
u32 regval = 0U;
if (*fspnum == LPDDR4_FSP_0) {
regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__REG)), *cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__REG), regval);
} else if (*fspnum == LPDDR4_FSP_1) {
regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__REG)), *cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__REG), regval);
} else {
regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__REG)), *cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__REG), regval);
}
}
static void lpddr4_writelpiwakeuptime(lpddr4_ctlregs *ctlregbase, const lpddr4_lpiwakeupparam *lpiwakeupparam, const lpddr4_ctlfspnum *fspnum, const u32 *cycles)
{
if (*lpiwakeupparam == LPDDR4_LPI_PD_WAKEUP_FN)
writepdwakeup(fspnum, ctlregbase, cycles);
else if (*lpiwakeupparam == LPDDR4_LPI_SR_SHORT_WAKEUP_FN)
writesrshortwakeup(fspnum, ctlregbase, cycles);
else if (*lpiwakeupparam == LPDDR4_LPI_SR_LONG_WAKEUP_FN)
writesrlongwakeup(fspnum, ctlregbase, cycles);
else if (*lpiwakeupparam == LPDDR4_LPI_SR_LONG_MCCLK_GATE_WAKEUP_FN)
writesrlonggatewakeup(fspnum, ctlregbase, cycles);
else if (*lpiwakeupparam == LPDDR4_LPI_SRPD_SHORT_WAKEUP_FN)
writesrdpshortwakeup(fspnum, ctlregbase, cycles);
else if (*lpiwakeupparam == LPDDR4_LPI_SRPD_LONG_WAKEUP_FN)
writesrdplongwakeup(fspnum, ctlregbase, cycles);
else
writesrdplonggatewakeup(fspnum, ctlregbase, cycles);
}
u32 lpddr4_setlpiwakeuptime(const lpddr4_privatedata *pd, const lpddr4_lpiwakeupparam *lpiwakeupparam, const lpddr4_ctlfspnum *fspnum, const u32 *cycles)
{
u32 result = 0U;
result = lpddr4_setlpiwakeuptimesf(pd, lpiwakeupparam, fspnum, cycles);
if (result == (u32)0) {
if (*cycles > NIBBLE_MASK)
result = (u32)EINVAL;
}
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
lpddr4_writelpiwakeuptime(ctlregbase, lpiwakeupparam, fspnum, cycles);
}
return result;
}
u32 lpddr4_getdbireadmode(const lpddr4_privatedata *pd, bool *on_off)
{
u32 result = 0U;
result = lpddr4_getdbireadmodesf(pd, on_off);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
if (CPS_FLD_READ(LPDDR4__RD_DBI_EN__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__RD_DBI_EN__REG))) == 0U)
*on_off = false;
else
*on_off = true;
}
return result;
}
u32 lpddr4_getdbiwritemode(const lpddr4_privatedata *pd, bool *on_off)
{
u32 result = 0U;
result = lpddr4_getdbireadmodesf(pd, on_off);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
if (CPS_FLD_READ(LPDDR4__WR_DBI_EN__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__WR_DBI_EN__REG))) == 0U)
*on_off = false;
else
*on_off = true;
}
return result;
}
u32 lpddr4_setdbimode(const lpddr4_privatedata *pd, const lpddr4_dbimode *mode)
{
u32 result = 0U;
u32 regval = 0U;
result = lpddr4_setdbimodesf(pd, mode);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
if (*mode == LPDDR4_DBI_RD_ON)
regval = CPS_FLD_WRITE(LPDDR4__RD_DBI_EN__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__RD_DBI_EN__REG)), 1U);
else if (*mode == LPDDR4_DBI_RD_OFF)
regval = CPS_FLD_WRITE(LPDDR4__RD_DBI_EN__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__RD_DBI_EN__REG)), 0U);
else if (*mode == LPDDR4_DBI_WR_ON)
regval = CPS_FLD_WRITE(LPDDR4__WR_DBI_EN__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__WR_DBI_EN__REG)), 1U);
else
regval = CPS_FLD_WRITE(LPDDR4__WR_DBI_EN__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__WR_DBI_EN__REG)), 0U);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__RD_DBI_EN__REG), regval);
}
return result;
}
u32 lpddr4_getrefreshrate(const lpddr4_privatedata *pd, const lpddr4_ctlfspnum *fspnum, u32 *tref, u32 *tras_max)
{
u32 result = 0U;
result = lpddr4_getrefreshratesf(pd, fspnum, tref, tras_max);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
switch (*fspnum) {
case LPDDR4_FSP_2:
*tref = CPS_FLD_READ(LPDDR4__TREF_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TREF_F2__REG)));
*tras_max = CPS_FLD_READ(LPDDR4__TRAS_MAX_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TRAS_MAX_F2__REG)));
break;
case LPDDR4_FSP_1:
*tref = CPS_FLD_READ(LPDDR4__TREF_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TREF_F1__REG)));
*tras_max = CPS_FLD_READ(LPDDR4__TRAS_MAX_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TRAS_MAX_F1__REG)));
break;
default:
*tref = CPS_FLD_READ(LPDDR4__TREF_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TREF_F0__REG)));
*tras_max = CPS_FLD_READ(LPDDR4__TRAS_MAX_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TRAS_MAX_F0__REG)));
break;
}
}
return result;
}
static void lpddr4_updatefsp2refrateparams(const lpddr4_privatedata *pd, const u32 *tref, const u32 *tras_max)
{
u32 regval = 0U;
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
regval = CPS_FLD_WRITE(LPDDR4__TREF_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TREF_F2__REG)), *tref);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__TREF_F2__REG), regval);
regval = CPS_FLD_WRITE(LPDDR4__TRAS_MAX_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TRAS_MAX_F2__REG)), *tras_max);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__TRAS_MAX_F2__REG), regval);
}
static void lpddr4_updatefsp1refrateparams(const lpddr4_privatedata *pd, const u32 *tref, const u32 *tras_max)
{
u32 regval = 0U;
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
regval = CPS_FLD_WRITE(LPDDR4__TREF_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TREF_F1__REG)), *tref);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__TREF_F1__REG), regval);
regval = CPS_FLD_WRITE(LPDDR4__TRAS_MAX_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TRAS_MAX_F1__REG)), *tras_max);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__TRAS_MAX_F1__REG), regval);;
}
static void lpddr4_updatefsp0refrateparams(const lpddr4_privatedata *pd, const u32 *tref, const u32 *tras_max)
{
u32 regval = 0U;
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
regval = CPS_FLD_WRITE(LPDDR4__TREF_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TREF_F0__REG)), *tref);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__TREF_F0__REG), regval);
regval = CPS_FLD_WRITE(LPDDR4__TRAS_MAX_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TRAS_MAX_F0__REG)), *tras_max);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__TRAS_MAX_F0__REG), regval);
}
u32 lpddr4_setrefreshrate(const lpddr4_privatedata *pd, const lpddr4_ctlfspnum *fspnum, const u32 *tref, const u32 *tras_max)
{
u32 result = 0U;
result = lpddr4_setrefreshratesf(pd, fspnum, tref, tras_max);
if (result == (u32)0) {
switch (*fspnum) {
case LPDDR4_FSP_2:
lpddr4_updatefsp2refrateparams(pd, tref, tras_max);
break;
case LPDDR4_FSP_1:
lpddr4_updatefsp1refrateparams(pd, tref, tras_max);
break;
default:
lpddr4_updatefsp0refrateparams(pd, tref, tras_max);
break;
}
}
return result;
}
u32 lpddr4_refreshperchipselect(const lpddr4_privatedata *pd, const u32 trefinterval)
{
u32 result = 0U;
u32 regval = 0U;
result = lpddr4_refreshperchipselectsf(pd);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
regval = CPS_FLD_WRITE(LPDDR4__TREF_INTERVAL__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TREF_INTERVAL__REG)), trefinterval);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__TREF_INTERVAL__REG), regval);
}
return result;
}