| // SPDX-License-Identifier: BSD-3-Clause |
| /* |
| * Cadence DDR Driver |
| * |
| * Copyright (C) 2012-2022 Cadence Design Systems, Inc. |
| * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/ |
| */ |
| |
| #include <errno.h> |
| |
| #include "cps_drv_lpddr4.h" |
| #include "lpddr4_if.h" |
| #include "lpddr4.h" |
| #include "lpddr4_structs_if.h" |
| |
| static u32 lpddr4_pollphyindepirq(const lpddr4_privatedata *pd, lpddr4_intr_phyindepinterrupt irqbit, u32 delay); |
| static u32 lpddr4_pollandackirq(const lpddr4_privatedata *pd); |
| static u32 lpddr4_startsequencecontroller(const lpddr4_privatedata *pd); |
| static u32 lpddr4_writemmrregister(const lpddr4_privatedata *pd, u32 writemoderegval); |
| static void lpddr4_checkcatrainingerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr); |
| static void lpddr4_checkgatelvlerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr); |
| static void lpddr4_checkreadlvlerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr); |
| static void lpddr4_checkdqtrainingerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr); |
| static u8 lpddr4_seterror(volatile u32 *reg, u32 errbitmask, u8 *errfoundptr, const u32 errorinfobits); |
| static void lpddr4_setphysnapsettings(lpddr4_ctlregs *ctlregbase, const bool errorfound); |
| static void lpddr4_setphyadrsnapsettings(lpddr4_ctlregs *ctlregbase, const bool errorfound); |
| static void readpdwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles); |
| static void readsrshortwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles); |
| static void readsrlongwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles); |
| static void readsrlonggatewakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles); |
| static void readsrdpshortwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles); |
| static void readsrdplongwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles); |
| static void readsrdplonggatewakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles); |
| static void lpddr4_readlpiwakeuptime(lpddr4_ctlregs *ctlregbase, const lpddr4_lpiwakeupparam *lpiwakeupparam, const lpddr4_ctlfspnum *fspnum, u32 *cycles); |
| static void writepdwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles); |
| static void writesrshortwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles); |
| static void writesrlongwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles); |
| static void writesrlonggatewakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles); |
| static void writesrdpshortwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles); |
| static void writesrdplongwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles); |
| static void writesrdplonggatewakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles); |
| static void lpddr4_writelpiwakeuptime(lpddr4_ctlregs *ctlregbase, const lpddr4_lpiwakeupparam *lpiwakeupparam, const lpddr4_ctlfspnum *fspnum, const u32 *cycles); |
| static void lpddr4_updatefsp2refrateparams(const lpddr4_privatedata *pd, const u32 *tref, const u32 *tras_max); |
| static void lpddr4_updatefsp1refrateparams(const lpddr4_privatedata *pd, const u32 *tref, const u32 *tras_max); |
| static void lpddr4_updatefsp0refrateparams(const lpddr4_privatedata *pd, const u32 *tref, const u32 *tras_max); |
| static u32 lpddr4_getphyrwmask(u32 regoffset); |
| |
| u32 lpddr4_pollctlirq(const lpddr4_privatedata *pd, lpddr4_intr_ctlinterrupt irqbit, u32 delay) |
| { |
| u32 result = 0U; |
| u32 timeout = 0U; |
| bool irqstatus = false; |
| |
| do { |
| if (++timeout == delay) { |
| result = (u32)EIO; |
| break; |
| } |
| result = lpddr4_checkctlinterrupt(pd, irqbit, &irqstatus); |
| } while ((irqstatus == (bool)false) && (result == (u32)0)); |
| |
| return result; |
| } |
| |
| static u32 lpddr4_pollphyindepirq(const lpddr4_privatedata *pd, lpddr4_intr_phyindepinterrupt irqbit, u32 delay) |
| { |
| u32 result = 0U; |
| u32 timeout = 0U; |
| bool irqstatus = false; |
| |
| do { |
| if (++timeout == delay) { |
| result = (u32)EIO; |
| break; |
| } |
| result = lpddr4_checkphyindepinterrupt(pd, irqbit, &irqstatus); |
| } while ((irqstatus == (bool)false) && (result == (u32)0)); |
| |
| return result; |
| } |
| |
| static u32 lpddr4_pollandackirq(const lpddr4_privatedata *pd) |
| { |
| u32 result = 0U; |
| |
| result = lpddr4_pollphyindepirq(pd, LPDDR4_INTR_PHY_INDEP_INIT_DONE_BIT, LPDDR4_CUSTOM_TIMEOUT_DELAY); |
| |
| if (result == (u32)0) |
| result = lpddr4_ackphyindepinterrupt(pd, LPDDR4_INTR_PHY_INDEP_INIT_DONE_BIT); |
| if (result == (u32)0) |
| result = lpddr4_pollctlirq(pd, LPDDR4_INTR_MC_INIT_DONE, LPDDR4_CUSTOM_TIMEOUT_DELAY); |
| if (result == (u32)0) |
| result = lpddr4_ackctlinterrupt(pd, LPDDR4_INTR_MC_INIT_DONE); |
| return result; |
| } |
| |
| static u32 lpddr4_startsequencecontroller(const lpddr4_privatedata *pd) |
| { |
| u32 result = 0U; |
| u32 regval = 0U; |
| lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; |
| lpddr4_infotype infotype; |
| |
| regval = CPS_FLD_SET(LPDDR4__PI_START__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__PI_START__REG))); |
| CPS_REG_WRITE((&(ctlregbase->LPDDR4__PI_START__REG)), regval); |
| |
| regval = CPS_FLD_SET(LPDDR4__START__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__START__REG))); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__START__REG), regval); |
| |
| if (pd->infohandler != (lpddr4_infocallback)NULL) { |
| infotype = LPDDR4_DRV_SOC_PLL_UPDATE; |
| pd->infohandler(pd, infotype); |
| } |
| |
| result = lpddr4_pollandackirq(pd); |
| |
| return result; |
| } |
| |
| volatile u32 *lpddr4_addoffset(volatile u32 *addr, u32 regoffset) |
| { |
| volatile u32 *local_addr = addr; |
| volatile u32 *regaddr = &local_addr[regoffset]; |
| |
| return regaddr; |
| } |
| |
| u32 lpddr4_probe(const lpddr4_config *config, u16 *configsize) |
| { |
| u32 result; |
| |
| result = (u32)(lpddr4_probesf(config, configsize)); |
| if (result == (u32)0) |
| *configsize = (u16)(sizeof(lpddr4_privatedata)); |
| return result; |
| } |
| |
| u32 lpddr4_init(lpddr4_privatedata *pd, const lpddr4_config *cfg) |
| { |
| u32 result = 0U; |
| |
| result = lpddr4_initsf(pd, cfg); |
| if (result == (u32)0) { |
| lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)cfg->ctlbase; |
| pd->ctlbase = ctlregbase; |
| pd->infohandler = (lpddr4_infocallback)cfg->infohandler; |
| pd->ctlinterrupthandler = (lpddr4_ctlcallback)cfg->ctlinterrupthandler; |
| pd->phyindepinterrupthandler = (lpddr4_phyindepcallback)cfg->phyindepinterrupthandler; |
| } |
| return result; |
| } |
| |
| u32 lpddr4_start(const lpddr4_privatedata *pd) |
| { |
| u32 result = 0U; |
| |
| result = lpddr4_startsf(pd); |
| if (result == (u32)0) { |
| result = lpddr4_enablepiinitiator(pd); |
| result = lpddr4_startsequencecontroller(pd); |
| } |
| return result; |
| } |
| |
| u32 lpddr4_readreg(const lpddr4_privatedata *pd, lpddr4_regblock cpp, u32 regoffset, u32 *regvalue) |
| { |
| u32 result = 0U; |
| |
| result = lpddr4_readregsf(pd, cpp, regvalue); |
| if (result == (u32)0) { |
| lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; |
| |
| if (cpp == LPDDR4_CTL_REGS) { |
| if (regoffset >= LPDDR4_INTR_CTL_REG_COUNT) |
| result = (u32)EINVAL; |
| else |
| *regvalue = CPS_REG_READ(lpddr4_addoffset(&(ctlregbase->DENALI_CTL_0), regoffset)); |
| } else if (cpp == LPDDR4_PHY_REGS) { |
| if (regoffset >= LPDDR4_INTR_PHY_REG_COUNT) |
| result = (u32)EINVAL; |
| else |
| *regvalue = CPS_REG_READ(lpddr4_addoffset(&(ctlregbase->DENALI_PHY_0), regoffset)); |
| |
| } else { |
| if (regoffset >= LPDDR4_INTR_PHY_INDEP_REG_COUNT) |
| result = (u32)EINVAL; |
| else |
| *regvalue = CPS_REG_READ(lpddr4_addoffset(&(ctlregbase->DENALI_PI_0), regoffset)); |
| } |
| } |
| return result; |
| } |
| |
| static u32 lpddr4_getphyrwmask(u32 regoffset) |
| { |
| u32 rwmask = 0U; |
| u32 arrayoffset = 0U; |
| u32 slicenum, sliceoffset = 0U; |
| |
| for (slicenum = (u32)0U; slicenum <= (DSLICE_NUM + ASLICE_NUM); slicenum++) { |
| sliceoffset = sliceoffset + (u32)SLICE_WIDTH; |
| if (regoffset < sliceoffset) |
| break; |
| } |
| arrayoffset = regoffset - (sliceoffset - (u32)SLICE_WIDTH); |
| |
| if (slicenum < DSLICE_NUM) { |
| rwmask = lpddr4_getdslicemask(slicenum, arrayoffset); |
| } else { |
| if (slicenum == DSLICE_NUM) { |
| if (arrayoffset < ASLICE0_REG_COUNT) |
| rwmask = g_lpddr4_address_slice_0_rw_mask[arrayoffset]; |
| } else { |
| if (arrayoffset < PHY_CORE_REG_COUNT) |
| rwmask = g_lpddr4_phy_core_rw_mask[arrayoffset]; |
| } |
| } |
| return rwmask; |
| } |
| |
| u32 lpddr4_deferredregverify(const lpddr4_privatedata *pd, lpddr4_regblock cpp, u32 regvalues[], u16 regnum[], u16 regcount) |
| { |
| u32 result = (u32)0; |
| u32 aindex; |
| u32 regreadval = 0U; |
| u32 rwmask = 0U; |
| |
| result = lpddr4_deferredregverifysf(pd, cpp); |
| |
| if ((regvalues == (u32 *)NULL) || (regnum == (u16 *)NULL)) |
| result = EINVAL; |
| if (result == (u32)0) { |
| for (aindex = 0; aindex < regcount; aindex++) { |
| result = lpddr4_readreg(pd, cpp, (u32)regnum[aindex], ®readval); |
| |
| if (result == (u32)0) { |
| switch (cpp) { |
| case LPDDR4_PHY_INDEP_REGS: |
| rwmask = g_lpddr4_pi_rw_mask[(u32)regnum[aindex]]; |
| break; |
| case LPDDR4_PHY_REGS: |
| rwmask = lpddr4_getphyrwmask((u32)regnum[aindex]); |
| break; |
| default: |
| rwmask = g_lpddr4_ddr_controller_rw_mask[(u32)regnum[aindex]]; |
| break; |
| } |
| |
| if ((rwmask & regreadval) != ((u32)(regvalues[aindex]) & rwmask)) { |
| result = EIO; |
| break; |
| } |
| } |
| } |
| } |
| return result; |
| } |
| |
| u32 lpddr4_writereg(const lpddr4_privatedata *pd, lpddr4_regblock cpp, u32 regoffset, u32 regvalue) |
| { |
| u32 result = 0U; |
| |
| result = lpddr4_writeregsf(pd, cpp); |
| if (result == (u32)0) { |
| lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; |
| |
| if (cpp == LPDDR4_CTL_REGS) { |
| if (regoffset >= LPDDR4_INTR_CTL_REG_COUNT) |
| result = (u32)EINVAL; |
| else |
| CPS_REG_WRITE(lpddr4_addoffset(&(ctlregbase->DENALI_CTL_0), regoffset), regvalue); |
| } else if (cpp == LPDDR4_PHY_REGS) { |
| if (regoffset >= LPDDR4_INTR_PHY_REG_COUNT) |
| result = (u32)EINVAL; |
| else |
| CPS_REG_WRITE(lpddr4_addoffset(&(ctlregbase->DENALI_PHY_0), regoffset), regvalue); |
| } else { |
| if (regoffset >= LPDDR4_INTR_PHY_INDEP_REG_COUNT) |
| result = (u32)EINVAL; |
| else |
| CPS_REG_WRITE(lpddr4_addoffset(&(ctlregbase->DENALI_PI_0), regoffset), regvalue); |
| } |
| } |
| |
| return result; |
| } |
| |
| u32 lpddr4_getmmrregister(const lpddr4_privatedata *pd, u32 readmoderegval, u64 *mmrvalue, u8 *mmrstatus) |
| { |
| u32 result = 0U; |
| u32 tdelay = 1000U; |
| u32 regval = 0U; |
| |
| result = lpddr4_getmmrregistersf(pd, mmrvalue, mmrstatus); |
| if (result == (u32)0) { |
| lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; |
| |
| regval = CPS_FLD_WRITE(LPDDR4__READ_MODEREG__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__READ_MODEREG__REG)), readmoderegval); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__READ_MODEREG__REG), regval); |
| |
| result = lpddr4_pollctlirq(pd, LPDDR4_INTR_MR_READ_DONE, tdelay); |
| } |
| if (result == (u32)0) |
| result = lpddr4_checkmmrreaderror(pd, mmrvalue, mmrstatus); |
| return result; |
| } |
| |
| static u32 lpddr4_writemmrregister(const lpddr4_privatedata *pd, u32 writemoderegval) |
| { |
| u32 result = (u32)0; |
| u32 tdelay = 1000U; |
| u32 regval = 0U; |
| lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; |
| |
| regval = CPS_FLD_WRITE(LPDDR4__WRITE_MODEREG__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__WRITE_MODEREG__REG)), writemoderegval); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__WRITE_MODEREG__REG), regval); |
| |
| result = lpddr4_pollctlirq(pd, LPDDR4_INTR_MR_WRITE_DONE, tdelay); |
| |
| return result; |
| } |
| |
| u32 lpddr4_setmmrregister(const lpddr4_privatedata *pd, u32 writemoderegval, u8 *mrwstatus) |
| { |
| u32 result = 0U; |
| |
| result = lpddr4_setmmrregistersf(pd, mrwstatus); |
| if (result == (u32)0) { |
| result = lpddr4_writemmrregister(pd, writemoderegval); |
| |
| if (result == (u32)0) |
| result = lpddr4_ackctlinterrupt(pd, LPDDR4_INTR_MR_WRITE_DONE); |
| if (result == (u32)0) { |
| lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; |
| *mrwstatus = (u8)CPS_FLD_READ(LPDDR4__MRW_STATUS__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__MRW_STATUS__REG))); |
| if ((*mrwstatus) != 0U) |
| result = (u32)EIO; |
| } |
| } |
| |
| return result; |
| } |
| |
| u32 lpddr4_writectlconfig(const lpddr4_privatedata *pd, u32 regvalues[], u16 regnum[], u16 regcount) |
| { |
| u32 result; |
| u32 aindex; |
| |
| result = lpddr4_writectlconfigsf(pd); |
| if ((regvalues == (u32 *)NULL) || (regnum == (u16 *)NULL)) |
| result = EINVAL; |
| |
| if (result == (u32)0) { |
| for (aindex = 0; aindex < regcount; aindex++) |
| result = (u32)lpddr4_writereg(pd, LPDDR4_CTL_REGS, (u32)regnum[aindex], |
| (u32)regvalues[aindex]); |
| } |
| return result; |
| } |
| |
| u32 lpddr4_writephyindepconfig(const lpddr4_privatedata *pd, u32 regvalues[], u16 regnum[], u16 regcount) |
| { |
| u32 result; |
| u32 aindex; |
| |
| result = lpddr4_writephyindepconfigsf(pd); |
| if ((regvalues == (u32 *)NULL) || (regnum == (u16 *)NULL)) |
| result = EINVAL; |
| if (result == (u32)0) { |
| for (aindex = 0; aindex < regcount; aindex++) |
| result = (u32)lpddr4_writereg(pd, LPDDR4_PHY_INDEP_REGS, (u32)regnum[aindex], |
| (u32)regvalues[aindex]); |
| } |
| return result; |
| } |
| |
| u32 lpddr4_writephyconfig(const lpddr4_privatedata *pd, u32 regvalues[], u16 regnum[], u16 regcount) |
| { |
| u32 result; |
| u32 aindex; |
| |
| result = lpddr4_writephyconfigsf(pd); |
| if ((regvalues == (u32 *)NULL) || (regnum == (u16 *)NULL)) |
| result = EINVAL; |
| if (result == (u32)0) { |
| for (aindex = 0; aindex < regcount; aindex++) |
| result = (u32)lpddr4_writereg(pd, LPDDR4_PHY_REGS, (u32)regnum[aindex], |
| (u32)regvalues[aindex]); |
| } |
| return result; |
| } |
| |
| u32 lpddr4_readctlconfig(const lpddr4_privatedata *pd, u32 regvalues[], u16 regnum[], u16 regcount) |
| { |
| u32 result; |
| u32 aindex; |
| |
| result = lpddr4_readctlconfigsf(pd); |
| if ((regvalues == (u32 *)NULL) || (regnum == (u16 *)NULL)) |
| result = EINVAL; |
| if (result == (u32)0) { |
| for (aindex = 0; aindex < regcount; aindex++) |
| result = (u32)lpddr4_readreg(pd, LPDDR4_CTL_REGS, (u32)regnum[aindex], |
| (u32 *)(®values[aindex])); |
| } |
| return result; |
| } |
| |
| u32 lpddr4_readphyindepconfig(const lpddr4_privatedata *pd, u32 regvalues[], u16 regnum[], u16 regcount) |
| { |
| u32 result; |
| u32 aindex; |
| |
| result = lpddr4_readphyindepconfigsf(pd); |
| if ((regvalues == (u32 *)NULL) || (regnum == (u16 *)NULL)) |
| result = EINVAL; |
| if (result == (u32)0) { |
| for (aindex = 0; aindex < regcount; aindex++) |
| result = (u32)lpddr4_readreg(pd, LPDDR4_PHY_INDEP_REGS, (u32)regnum[aindex], |
| (u32 *)(®values[aindex])); |
| } |
| return result; |
| } |
| |
| u32 lpddr4_readphyconfig(const lpddr4_privatedata *pd, u32 regvalues[], u16 regnum[], u16 regcount) |
| { |
| u32 result; |
| u32 aindex; |
| |
| result = lpddr4_readphyconfigsf(pd); |
| if ((regvalues == (u32 *)NULL) || (regnum == (u16 *)NULL)) |
| result = EINVAL; |
| if (result == (u32)0) { |
| for (aindex = 0; aindex < regcount; aindex++) |
| result = (u32)lpddr4_readreg(pd, LPDDR4_PHY_REGS, (u32)regnum[aindex], |
| (u32 *)(®values[aindex])); |
| } |
| return result; |
| } |
| |
| u32 lpddr4_getphyindepinterruptmask(const lpddr4_privatedata *pd, u32 *mask) |
| { |
| u32 result; |
| |
| result = lpddr4_getphyindepinterruptmsf(pd, mask); |
| if (result == (u32)0) { |
| lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; |
| *mask = CPS_FLD_READ(LPDDR4__PI_INT_MASK__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__PI_INT_MASK__REG))); |
| } |
| return result; |
| } |
| |
| u32 lpddr4_setphyindepinterruptmask(const lpddr4_privatedata *pd, const u32 *mask) |
| { |
| u32 result; |
| u32 regval = 0; |
| const u32 ui32irqcount = (u32)LPDDR4_INTR_PHY_INDEP_DLL_LOCK_STATE_CHANGE_BIT + 1U; |
| |
| result = lpddr4_setphyindepinterruptmsf(pd, mask); |
| if ((result == (u32)0) && (ui32irqcount < WORD_SHIFT)) { |
| if (*mask >= (1U << ui32irqcount)) |
| result = (u32)EINVAL; |
| } |
| if (result == (u32)0) { |
| lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; |
| |
| regval = CPS_FLD_WRITE(LPDDR4__PI_INT_MASK__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__PI_INT_MASK__REG)), *mask); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__PI_INT_MASK__REG), regval); |
| } |
| return result; |
| } |
| |
| u32 lpddr4_checkphyindepinterrupt(const lpddr4_privatedata *pd, lpddr4_intr_phyindepinterrupt intr, bool *irqstatus) |
| { |
| u32 result = 0; |
| u32 phyindepirqstatus = 0; |
| |
| result = LPDDR4_INTR_CheckPhyIndepIntSF(pd, intr, irqstatus); |
| if ((result == (u32)0) && ((u32)intr < WORD_SHIFT)) { |
| lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; |
| |
| phyindepirqstatus = CPS_REG_READ(&(ctlregbase->LPDDR4__PI_INT_STATUS__REG)); |
| *irqstatus = (bool)(((phyindepirqstatus >> (u32)intr) & LPDDR4_BIT_MASK) > 0U); |
| } |
| return result; |
| } |
| |
| u32 lpddr4_ackphyindepinterrupt(const lpddr4_privatedata *pd, lpddr4_intr_phyindepinterrupt intr) |
| { |
| u32 result = 0U; |
| u32 regval = 0U; |
| |
| result = LPDDR4_INTR_AckPhyIndepIntSF(pd, intr); |
| if ((result == (u32)0) && ((u32)intr < WORD_SHIFT)) { |
| lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; |
| |
| regval = ((u32)LPDDR4_BIT_MASK << (u32)intr); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__PI_INT_ACK__REG), regval); |
| } |
| |
| return result; |
| } |
| |
| static void lpddr4_checkcatrainingerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr) |
| { |
| u32 regval; |
| u32 errbitmask = 0U; |
| u32 snum; |
| volatile u32 *regaddress; |
| |
| regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__PHY_ADR_CALVL_OBS1_0__REG)); |
| errbitmask = (CA_TRAIN_RL) | (NIBBLE_MASK); |
| for (snum = 0U; snum < ASLICE_NUM; snum++) { |
| regval = CPS_REG_READ(regaddress); |
| if ((regval & errbitmask) != CA_TRAIN_RL) { |
| debuginfo->catraingerror = CDN_TRUE; |
| *errfoundptr = true; |
| } |
| regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH); |
| } |
| } |
| |
| static void lpddr4_checkgatelvlerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr) |
| { |
| u32 regval; |
| u32 errbitmask = 0U; |
| u32 snum; |
| volatile u32 *regaddress; |
| |
| regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__PHY_GTLVL_STATUS_OBS_0__REG)); |
| errbitmask = GATE_LVL_ERROR_FIELDS; |
| for (snum = (u32)0U; snum < DSLICE_NUM; snum++) { |
| regval = CPS_REG_READ(regaddress); |
| if ((regval & errbitmask) != 0U) { |
| debuginfo->gatelvlerror = CDN_TRUE; |
| *errfoundptr = true; |
| } |
| regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH); |
| } |
| } |
| |
| static void lpddr4_checkreadlvlerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr) |
| { |
| u32 regval; |
| u32 errbitmask = 0U; |
| u32 snum; |
| volatile u32 *regaddress; |
| |
| regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__PHY_RDLVL_STATUS_OBS_0__REG)); |
| errbitmask = READ_LVL_ERROR_FIELDS; |
| for (snum = (u32)0U; snum < DSLICE_NUM; snum++) { |
| regval = CPS_REG_READ(regaddress); |
| if ((regval & errbitmask) != 0U) { |
| debuginfo->readlvlerror = CDN_TRUE; |
| *errfoundptr = true; |
| } |
| regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH); |
| } |
| } |
| |
| static void lpddr4_checkdqtrainingerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr) |
| { |
| u32 regval; |
| u32 errbitmask = 0U; |
| u32 snum; |
| volatile u32 *regaddress; |
| |
| regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__PHY_WDQLVL_STATUS_OBS_0__REG)); |
| errbitmask = DQ_LVL_STATUS; |
| for (snum = (u32)0U; snum < DSLICE_NUM; snum++) { |
| regval = CPS_REG_READ(regaddress); |
| if ((regval & errbitmask) != 0U) { |
| debuginfo->dqtrainingerror = CDN_TRUE; |
| *errfoundptr = true; |
| } |
| regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH); |
| } |
| } |
| |
| bool lpddr4_checklvlerrors(const lpddr4_privatedata *pd, lpddr4_debuginfo *debuginfo, bool errfound) |
| { |
| bool localerrfound = errfound; |
| |
| lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; |
| |
| if (localerrfound == (bool)false) |
| lpddr4_checkcatrainingerror(ctlregbase, debuginfo, &localerrfound); |
| |
| if (localerrfound == (bool)false) |
| lpddr4_checkwrlvlerror(ctlregbase, debuginfo, &localerrfound); |
| |
| if (localerrfound == (bool)false) |
| lpddr4_checkgatelvlerror(ctlregbase, debuginfo, &localerrfound); |
| |
| if (localerrfound == (bool)false) |
| lpddr4_checkreadlvlerror(ctlregbase, debuginfo, &localerrfound); |
| |
| if (localerrfound == (bool)false) |
| lpddr4_checkdqtrainingerror(ctlregbase, debuginfo, &localerrfound); |
| return localerrfound; |
| } |
| |
| static u8 lpddr4_seterror(volatile u32 *reg, u32 errbitmask, u8 *errfoundptr, const u32 errorinfobits) |
| { |
| u32 regval = 0U; |
| |
| regval = CPS_REG_READ(reg); |
| if ((regval & errbitmask) != errorinfobits) |
| *errfoundptr = CDN_TRUE; |
| return *errfoundptr; |
| } |
| |
| void lpddr4_seterrors(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, u8 *errfoundptr) |
| { |
| u32 errbitmask = (LPDDR4_BIT_MASK << 0x1U) | (LPDDR4_BIT_MASK); |
| |
| debuginfo->pllerror = lpddr4_seterror(&(ctlregbase->LPDDR4__PHY_PLL_OBS_0__REG), |
| errbitmask, errfoundptr, PLL_READY); |
| if (*errfoundptr == CDN_FALSE) |
| debuginfo->pllerror = lpddr4_seterror(&(ctlregbase->LPDDR4__PHY_PLL_OBS_1__REG), |
| errbitmask, errfoundptr, PLL_READY); |
| |
| if (*errfoundptr == CDN_FALSE) |
| debuginfo->iocaliberror = lpddr4_seterror(&(ctlregbase->LPDDR4__PHY_CAL_RESULT_OBS_0__REG), |
| IO_CALIB_DONE, errfoundptr, IO_CALIB_DONE); |
| if (*errfoundptr == CDN_FALSE) |
| debuginfo->iocaliberror = lpddr4_seterror(&(ctlregbase->LPDDR4__PHY_CAL_RESULT2_OBS_0__REG), |
| IO_CALIB_DONE, errfoundptr, IO_CALIB_DONE); |
| if (*errfoundptr == CDN_FALSE) |
| debuginfo->iocaliberror = lpddr4_seterror(&(ctlregbase->LPDDR4__PHY_CAL_RESULT3_OBS_0__REG), |
| IO_CALIB_FIELD, errfoundptr, IO_CALIB_STATE); |
| } |
| |
| static void lpddr4_setphysnapsettings(lpddr4_ctlregs *ctlregbase, const bool errorfound) |
| { |
| u32 snum = 0U; |
| volatile u32 *regaddress; |
| u32 regval = 0U; |
| |
| if (errorfound == (bool)false) { |
| regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__SC_PHY_SNAP_OBS_REGS_0__REG)); |
| for (snum = (u32)0U; snum < DSLICE_NUM; snum++) { |
| regval = CPS_FLD_SET(LPDDR4__SC_PHY_SNAP_OBS_REGS_0__FLD, CPS_REG_READ(regaddress)); |
| CPS_REG_WRITE(regaddress, regval); |
| regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH); |
| } |
| } |
| } |
| |
| static void lpddr4_setphyadrsnapsettings(lpddr4_ctlregs *ctlregbase, const bool errorfound) |
| { |
| u32 snum = 0U; |
| volatile u32 *regaddress; |
| u32 regval = 0U; |
| |
| if (errorfound == (bool)false) { |
| regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__SC_PHY_ADR_SNAP_OBS_REGS_0__REG)); |
| for (snum = (u32)0U; snum < ASLICE_NUM; snum++) { |
| regval = CPS_FLD_SET(LPDDR4__SC_PHY_ADR_SNAP_OBS_REGS_0__FLD, CPS_REG_READ(regaddress)); |
| CPS_REG_WRITE(regaddress, regval); |
| regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH); |
| } |
| } |
| } |
| |
| void lpddr4_setsettings(lpddr4_ctlregs *ctlregbase, const bool errorfound) |
| { |
| lpddr4_setphysnapsettings(ctlregbase, errorfound); |
| lpddr4_setphyadrsnapsettings(ctlregbase, errorfound); |
| } |
| |
| static void readpdwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles) |
| { |
| if (*fspnum == LPDDR4_FSP_0) |
| *cycles = CPS_FLD_READ(LPDDR4__LPI_PD_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F0__REG))); |
| else if (*fspnum == LPDDR4_FSP_1) |
| *cycles = CPS_FLD_READ(LPDDR4__LPI_PD_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F1__REG))); |
| else |
| *cycles = CPS_FLD_READ(LPDDR4__LPI_PD_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F2__REG))); |
| } |
| |
| static void readsrshortwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles) |
| { |
| if (*fspnum == LPDDR4_FSP_0) |
| *cycles = CPS_FLD_READ(LPDDR4__LPI_SR_SHORT_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F0__REG))); |
| else if (*fspnum == LPDDR4_FSP_1) |
| *cycles = CPS_FLD_READ(LPDDR4__LPI_SR_SHORT_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F1__REG))); |
| else |
| *cycles = CPS_FLD_READ(LPDDR4__LPI_SR_SHORT_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F2__REG))); |
| } |
| |
| static void readsrlongwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles) |
| { |
| if (*fspnum == LPDDR4_FSP_0) |
| *cycles = CPS_FLD_READ(LPDDR4__LPI_SR_LONG_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F0__REG))); |
| else if (*fspnum == LPDDR4_FSP_1) |
| *cycles = CPS_FLD_READ(LPDDR4__LPI_SR_LONG_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F1__REG))); |
| else |
| *cycles = CPS_FLD_READ(LPDDR4__LPI_SR_LONG_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F2__REG))); |
| } |
| |
| static void readsrlonggatewakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles) |
| { |
| if (*fspnum == LPDDR4_FSP_0) |
| *cycles = CPS_FLD_READ(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__REG))); |
| else if (*fspnum == LPDDR4_FSP_1) |
| *cycles = CPS_FLD_READ(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__REG))); |
| else |
| *cycles = CPS_FLD_READ(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__REG))); |
| } |
| |
| static void readsrdpshortwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles) |
| { |
| if (*fspnum == LPDDR4_FSP_0) |
| *cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__REG))); |
| else if (*fspnum == LPDDR4_FSP_1) |
| *cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__REG))); |
| else |
| *cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__REG))); |
| } |
| |
| static void readsrdplongwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles) |
| { |
| if (*fspnum == LPDDR4_FSP_0) |
| *cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__REG))); |
| else if (*fspnum == LPDDR4_FSP_1) |
| *cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__REG))); |
| else |
| *cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__REG))); |
| } |
| |
| static void readsrdplonggatewakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles) |
| { |
| if (*fspnum == LPDDR4_FSP_0) |
| *cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__REG))); |
| else if (*fspnum == LPDDR4_FSP_1) |
| *cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__REG))); |
| else |
| *cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__REG))); |
| |
| } |
| |
| static void lpddr4_readlpiwakeuptime(lpddr4_ctlregs *ctlregbase, const lpddr4_lpiwakeupparam *lpiwakeupparam, const lpddr4_ctlfspnum *fspnum, u32 *cycles) |
| { |
| if (*lpiwakeupparam == LPDDR4_LPI_PD_WAKEUP_FN) |
| readpdwakeup(fspnum, ctlregbase, cycles); |
| else if (*lpiwakeupparam == LPDDR4_LPI_SR_SHORT_WAKEUP_FN) |
| readsrshortwakeup(fspnum, ctlregbase, cycles); |
| else if (*lpiwakeupparam == LPDDR4_LPI_SR_LONG_WAKEUP_FN) |
| readsrlongwakeup(fspnum, ctlregbase, cycles); |
| else if (*lpiwakeupparam == LPDDR4_LPI_SR_LONG_MCCLK_GATE_WAKEUP_FN) |
| readsrlonggatewakeup(fspnum, ctlregbase, cycles); |
| else if (*lpiwakeupparam == LPDDR4_LPI_SRPD_SHORT_WAKEUP_FN) |
| readsrdpshortwakeup(fspnum, ctlregbase, cycles); |
| else if (*lpiwakeupparam == LPDDR4_LPI_SRPD_LONG_WAKEUP_FN) |
| readsrdplongwakeup(fspnum, ctlregbase, cycles); |
| else |
| readsrdplonggatewakeup(fspnum, ctlregbase, cycles); |
| } |
| |
| u32 lpddr4_getlpiwakeuptime(const lpddr4_privatedata *pd, const lpddr4_lpiwakeupparam *lpiwakeupparam, const lpddr4_ctlfspnum *fspnum, u32 *cycles) |
| { |
| u32 result = 0U; |
| |
| result = lpddr4_getlpiwakeuptimesf(pd, lpiwakeupparam, fspnum, cycles); |
| if (result == (u32)0) { |
| lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; |
| lpddr4_readlpiwakeuptime(ctlregbase, lpiwakeupparam, fspnum, cycles); |
| } |
| return result; |
| } |
| |
| static void writepdwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles) |
| { |
| u32 regval = 0U; |
| |
| if (*fspnum == LPDDR4_FSP_0) { |
| regval = CPS_FLD_WRITE(LPDDR4__LPI_PD_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F0__REG)), *cycles); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F0__REG), regval); |
| } else if (*fspnum == LPDDR4_FSP_1) { |
| regval = CPS_FLD_WRITE(LPDDR4__LPI_PD_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F1__REG)), *cycles); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F1__REG), regval); |
| } else { |
| regval = CPS_FLD_WRITE(LPDDR4__LPI_PD_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F2__REG)), *cycles); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F2__REG), regval); |
| } |
| } |
| |
| static void writesrshortwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles) |
| { |
| u32 regval = 0U; |
| |
| if (*fspnum == LPDDR4_FSP_0) { |
| regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_SHORT_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F0__REG)), *cycles); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F0__REG), regval); |
| } else if (*fspnum == LPDDR4_FSP_1) { |
| regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_SHORT_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F1__REG)), *cycles); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F1__REG), regval); |
| } else { |
| regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_SHORT_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F2__REG)), *cycles); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F2__REG), regval); |
| } |
| } |
| |
| static void writesrlongwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles) |
| { |
| u32 regval = 0U; |
| |
| if (*fspnum == LPDDR4_FSP_0) { |
| regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F0__REG)), *cycles); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F0__REG), regval); |
| } else if (*fspnum == LPDDR4_FSP_1) { |
| regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F1__REG)), *cycles); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F1__REG), regval); |
| } else { |
| regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F2__REG)), *cycles); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F2__REG), regval); |
| } |
| } |
| |
| static void writesrlonggatewakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles) |
| { |
| u32 regval = 0U; |
| |
| if (*fspnum == LPDDR4_FSP_0) { |
| regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__REG)), *cycles); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__REG), regval); |
| } else if (*fspnum == LPDDR4_FSP_1) { |
| regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__REG)), *cycles); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__REG), regval); |
| } else { |
| regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__REG)), *cycles); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__REG), regval); |
| } |
| } |
| |
| static void writesrdpshortwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles) |
| { |
| u32 regval = 0U; |
| |
| if (*fspnum == LPDDR4_FSP_0) { |
| regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__REG)), *cycles); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__REG), regval); |
| } else if (*fspnum == LPDDR4_FSP_1) { |
| regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__REG)), *cycles); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__REG), regval); |
| } else { |
| regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__REG)), *cycles); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__REG), regval); |
| } |
| } |
| |
| static void writesrdplongwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles) |
| { |
| u32 regval = 0U; |
| |
| if (*fspnum == LPDDR4_FSP_0) { |
| regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__REG)), *cycles); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__REG), regval); |
| } else if (*fspnum == LPDDR4_FSP_1) { |
| regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__REG)), *cycles); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__REG), regval); |
| } else { |
| regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__REG)), *cycles); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__REG), regval); |
| } |
| } |
| static void writesrdplonggatewakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles) |
| { |
| u32 regval = 0U; |
| |
| if (*fspnum == LPDDR4_FSP_0) { |
| regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__REG)), *cycles); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__REG), regval); |
| } else if (*fspnum == LPDDR4_FSP_1) { |
| regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__REG)), *cycles); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__REG), regval); |
| } else { |
| regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__REG)), *cycles); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__REG), regval); |
| } |
| } |
| |
| static void lpddr4_writelpiwakeuptime(lpddr4_ctlregs *ctlregbase, const lpddr4_lpiwakeupparam *lpiwakeupparam, const lpddr4_ctlfspnum *fspnum, const u32 *cycles) |
| { |
| if (*lpiwakeupparam == LPDDR4_LPI_PD_WAKEUP_FN) |
| writepdwakeup(fspnum, ctlregbase, cycles); |
| else if (*lpiwakeupparam == LPDDR4_LPI_SR_SHORT_WAKEUP_FN) |
| writesrshortwakeup(fspnum, ctlregbase, cycles); |
| else if (*lpiwakeupparam == LPDDR4_LPI_SR_LONG_WAKEUP_FN) |
| writesrlongwakeup(fspnum, ctlregbase, cycles); |
| else if (*lpiwakeupparam == LPDDR4_LPI_SR_LONG_MCCLK_GATE_WAKEUP_FN) |
| writesrlonggatewakeup(fspnum, ctlregbase, cycles); |
| else if (*lpiwakeupparam == LPDDR4_LPI_SRPD_SHORT_WAKEUP_FN) |
| writesrdpshortwakeup(fspnum, ctlregbase, cycles); |
| else if (*lpiwakeupparam == LPDDR4_LPI_SRPD_LONG_WAKEUP_FN) |
| writesrdplongwakeup(fspnum, ctlregbase, cycles); |
| else |
| writesrdplonggatewakeup(fspnum, ctlregbase, cycles); |
| } |
| |
| u32 lpddr4_setlpiwakeuptime(const lpddr4_privatedata *pd, const lpddr4_lpiwakeupparam *lpiwakeupparam, const lpddr4_ctlfspnum *fspnum, const u32 *cycles) |
| { |
| u32 result = 0U; |
| |
| result = lpddr4_setlpiwakeuptimesf(pd, lpiwakeupparam, fspnum, cycles); |
| if (result == (u32)0) { |
| if (*cycles > NIBBLE_MASK) |
| result = (u32)EINVAL; |
| } |
| if (result == (u32)0) { |
| lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; |
| lpddr4_writelpiwakeuptime(ctlregbase, lpiwakeupparam, fspnum, cycles); |
| } |
| return result; |
| } |
| |
| u32 lpddr4_getdbireadmode(const lpddr4_privatedata *pd, bool *on_off) |
| { |
| u32 result = 0U; |
| |
| result = lpddr4_getdbireadmodesf(pd, on_off); |
| |
| if (result == (u32)0) { |
| lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; |
| if (CPS_FLD_READ(LPDDR4__RD_DBI_EN__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__RD_DBI_EN__REG))) == 0U) |
| *on_off = false; |
| else |
| *on_off = true; |
| } |
| return result; |
| } |
| |
| u32 lpddr4_getdbiwritemode(const lpddr4_privatedata *pd, bool *on_off) |
| { |
| u32 result = 0U; |
| |
| result = lpddr4_getdbireadmodesf(pd, on_off); |
| |
| if (result == (u32)0) { |
| lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; |
| if (CPS_FLD_READ(LPDDR4__WR_DBI_EN__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__WR_DBI_EN__REG))) == 0U) |
| *on_off = false; |
| else |
| *on_off = true; |
| } |
| return result; |
| } |
| |
| u32 lpddr4_setdbimode(const lpddr4_privatedata *pd, const lpddr4_dbimode *mode) |
| { |
| u32 result = 0U; |
| u32 regval = 0U; |
| |
| result = lpddr4_setdbimodesf(pd, mode); |
| |
| if (result == (u32)0) { |
| lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; |
| |
| if (*mode == LPDDR4_DBI_RD_ON) |
| regval = CPS_FLD_WRITE(LPDDR4__RD_DBI_EN__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__RD_DBI_EN__REG)), 1U); |
| else if (*mode == LPDDR4_DBI_RD_OFF) |
| regval = CPS_FLD_WRITE(LPDDR4__RD_DBI_EN__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__RD_DBI_EN__REG)), 0U); |
| else if (*mode == LPDDR4_DBI_WR_ON) |
| regval = CPS_FLD_WRITE(LPDDR4__WR_DBI_EN__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__WR_DBI_EN__REG)), 1U); |
| else |
| regval = CPS_FLD_WRITE(LPDDR4__WR_DBI_EN__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__WR_DBI_EN__REG)), 0U); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__RD_DBI_EN__REG), regval); |
| } |
| return result; |
| } |
| |
| u32 lpddr4_getrefreshrate(const lpddr4_privatedata *pd, const lpddr4_ctlfspnum *fspnum, u32 *tref, u32 *tras_max) |
| { |
| u32 result = 0U; |
| |
| result = lpddr4_getrefreshratesf(pd, fspnum, tref, tras_max); |
| |
| if (result == (u32)0) { |
| lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; |
| |
| switch (*fspnum) { |
| case LPDDR4_FSP_2: |
| *tref = CPS_FLD_READ(LPDDR4__TREF_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TREF_F2__REG))); |
| *tras_max = CPS_FLD_READ(LPDDR4__TRAS_MAX_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TRAS_MAX_F2__REG))); |
| break; |
| case LPDDR4_FSP_1: |
| *tref = CPS_FLD_READ(LPDDR4__TREF_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TREF_F1__REG))); |
| *tras_max = CPS_FLD_READ(LPDDR4__TRAS_MAX_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TRAS_MAX_F1__REG))); |
| break; |
| default: |
| *tref = CPS_FLD_READ(LPDDR4__TREF_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TREF_F0__REG))); |
| *tras_max = CPS_FLD_READ(LPDDR4__TRAS_MAX_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TRAS_MAX_F0__REG))); |
| break; |
| } |
| } |
| return result; |
| } |
| |
| static void lpddr4_updatefsp2refrateparams(const lpddr4_privatedata *pd, const u32 *tref, const u32 *tras_max) |
| { |
| u32 regval = 0U; |
| lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; |
| |
| regval = CPS_FLD_WRITE(LPDDR4__TREF_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TREF_F2__REG)), *tref); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__TREF_F2__REG), regval); |
| regval = CPS_FLD_WRITE(LPDDR4__TRAS_MAX_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TRAS_MAX_F2__REG)), *tras_max); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__TRAS_MAX_F2__REG), regval); |
| } |
| |
| static void lpddr4_updatefsp1refrateparams(const lpddr4_privatedata *pd, const u32 *tref, const u32 *tras_max) |
| { |
| u32 regval = 0U; |
| lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; |
| |
| regval = CPS_FLD_WRITE(LPDDR4__TREF_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TREF_F1__REG)), *tref); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__TREF_F1__REG), regval); |
| regval = CPS_FLD_WRITE(LPDDR4__TRAS_MAX_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TRAS_MAX_F1__REG)), *tras_max); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__TRAS_MAX_F1__REG), regval);; |
| } |
| |
| static void lpddr4_updatefsp0refrateparams(const lpddr4_privatedata *pd, const u32 *tref, const u32 *tras_max) |
| { |
| u32 regval = 0U; |
| lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; |
| |
| regval = CPS_FLD_WRITE(LPDDR4__TREF_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TREF_F0__REG)), *tref); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__TREF_F0__REG), regval); |
| regval = CPS_FLD_WRITE(LPDDR4__TRAS_MAX_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TRAS_MAX_F0__REG)), *tras_max); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__TRAS_MAX_F0__REG), regval); |
| } |
| |
| u32 lpddr4_setrefreshrate(const lpddr4_privatedata *pd, const lpddr4_ctlfspnum *fspnum, const u32 *tref, const u32 *tras_max) |
| { |
| u32 result = 0U; |
| |
| result = lpddr4_setrefreshratesf(pd, fspnum, tref, tras_max); |
| |
| if (result == (u32)0) { |
| switch (*fspnum) { |
| case LPDDR4_FSP_2: |
| lpddr4_updatefsp2refrateparams(pd, tref, tras_max); |
| break; |
| case LPDDR4_FSP_1: |
| lpddr4_updatefsp1refrateparams(pd, tref, tras_max); |
| break; |
| default: |
| lpddr4_updatefsp0refrateparams(pd, tref, tras_max); |
| break; |
| } |
| } |
| return result; |
| } |
| |
| u32 lpddr4_refreshperchipselect(const lpddr4_privatedata *pd, const u32 trefinterval) |
| { |
| u32 result = 0U; |
| u32 regval = 0U; |
| |
| result = lpddr4_refreshperchipselectsf(pd); |
| |
| if (result == (u32)0) { |
| lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; |
| regval = CPS_FLD_WRITE(LPDDR4__TREF_INTERVAL__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TREF_INTERVAL__REG)), trefinterval); |
| CPS_REG_WRITE(&(ctlregbase->LPDDR4__TREF_INTERVAL__REG), regval); |
| } |
| return result; |
| } |