blob: f931e4b3c1d63ed70159e671b75a4a0b779ddca9 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2019 Broadcom.
*
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <malloc.h>
#include <sdhci.h>
#include <linux/delay.h>
DECLARE_GLOBAL_DATA_PTR;
struct sdhci_iproc_host {
struct sdhci_host host;
u32 shadow_cmd;
u32 shadow_blk;
};
#define REG_OFFSET_IN_BITS(reg) ((reg) << 3 & 0x18)
static inline struct sdhci_iproc_host *to_iproc(struct sdhci_host *host)
{
return (struct sdhci_iproc_host *)host;
}
#ifdef CONFIG_MMC_SDHCI_IO_ACCESSORS
static u32 sdhci_iproc_readl(struct sdhci_host *host, int reg)
{
u32 val = readl(host->ioaddr + reg);
#ifdef CONFIG_MMC_SDHCI_IO_ACCESSORS_TRACE
printf("%s %d: readl [0x%02x] 0x%08x\n",
host->name, host->index, reg, val);
#endif
return val;
}
static u16 sdhci_iproc_readw(struct sdhci_host *host, int reg)
{
u32 val = sdhci_iproc_readl(host, (reg & ~3));
u16 word = val >> REG_OFFSET_IN_BITS(reg) & 0xffff;
return word;
}
static u8 sdhci_iproc_readb(struct sdhci_host *host, int reg)
{
u32 val = sdhci_iproc_readl(host, (reg & ~3));
u8 byte = val >> REG_OFFSET_IN_BITS(reg) & 0xff;
return byte;
}
static void sdhci_iproc_writel(struct sdhci_host *host, u32 val, int reg)
{
u32 clock = 0;
#ifdef CONFIG_MMC_SDHCI_IO_ACCESSORS_TRACE
printf("%s %d: writel [0x%02x] 0x%08x\n",
host->name, host->index, reg, val);
#endif
writel(val, host->ioaddr + reg);
if (host->mmc)
clock = host->mmc->clock;
if (clock <= 400000) {
/* Round up to micro-second four SD clock delay */
if (clock)
udelay((4 * 1000000 + clock - 1) / clock);
else
udelay(10);
}
}
/*
* The Arasan has a bugette whereby it may lose the content of successive
* writes to the same register that are within two SD-card clock cycles of
* each other (a clock domain crossing problem). The data
* register does not have this problem, which is just as well - otherwise we'd
* have to nobble the DMA engine too.
*
* This wouldn't be a problem with the code except that we can only write the
* controller with 32-bit writes. So two different 16-bit registers are
* written back to back creates the problem.
*
* In reality, this only happens when SDHCI_BLOCK_SIZE and SDHCI_BLOCK_COUNT
* are written followed by SDHCI_TRANSFER_MODE and SDHCI_COMMAND.
* The BLOCK_SIZE and BLOCK_COUNT are meaningless until a command issued so
* the work around can be further optimized. We can keep shadow values of
* BLOCK_SIZE, BLOCK_COUNT, and TRANSFER_MODE until a COMMAND is issued.
* Then, write the BLOCK_SIZE+BLOCK_COUNT in a single 32-bit write followed
* by the TRANSFER+COMMAND in another 32-bit write.
*/
static void sdhci_iproc_writew(struct sdhci_host *host, u16 val, int reg)
{
struct sdhci_iproc_host *iproc_host = to_iproc(host);
u32 word_shift = REG_OFFSET_IN_BITS(reg);
u32 mask = 0xffff << word_shift;
u32 oldval, newval;
if (reg == SDHCI_COMMAND) {
/* Write the block now as we are issuing a command */
if (iproc_host->shadow_blk != 0) {
sdhci_iproc_writel(host, iproc_host->shadow_blk,
SDHCI_BLOCK_SIZE);
iproc_host->shadow_blk = 0;
}
oldval = iproc_host->shadow_cmd;
} else if (reg == SDHCI_BLOCK_SIZE || reg == SDHCI_BLOCK_COUNT) {
/* Block size and count are stored in shadow reg */
oldval = iproc_host->shadow_blk;
} else {
/* Read reg, all other registers are not shadowed */
oldval = sdhci_iproc_readl(host, (reg & ~3));
}
newval = (oldval & ~mask) | (val << word_shift);
if (reg == SDHCI_TRANSFER_MODE) {
/* Save the transfer mode until the command is issued */
iproc_host->shadow_cmd = newval;
} else if (reg == SDHCI_BLOCK_SIZE || reg == SDHCI_BLOCK_COUNT) {
/* Save the block info until the command is issued */
iproc_host->shadow_blk = newval;
} else {
/* Command or other regular 32-bit write */
sdhci_iproc_writel(host, newval, reg & ~3);
}
}
static void sdhci_iproc_writeb(struct sdhci_host *host, u8 val, int reg)
{
u32 oldval = sdhci_iproc_readl(host, (reg & ~3));
u32 byte_shift = REG_OFFSET_IN_BITS(reg);
u32 mask = 0xff << byte_shift;
u32 newval = (oldval & ~mask) | (val << byte_shift);
sdhci_iproc_writel(host, newval, reg & ~3);
}
#endif
static int sdhci_iproc_set_ios_post(struct sdhci_host *host)
{
u32 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
/* Reset UHS mode bits */
ctrl &= ~SDHCI_CTRL_UHS_MASK;
if (host->mmc->ddr_mode)
ctrl |= UHS_DDR50_BUS_SPEED;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
return 0;
}
static struct sdhci_ops sdhci_platform_ops = {
#ifdef CONFIG_MMC_SDHCI_IO_ACCESSORS
.read_l = sdhci_iproc_readl,
.read_w = sdhci_iproc_readw,
.read_b = sdhci_iproc_readb,
.write_l = sdhci_iproc_writel,
.write_w = sdhci_iproc_writew,
.write_b = sdhci_iproc_writeb,
#endif
.set_ios_post = sdhci_iproc_set_ios_post,
};
struct iproc_sdhci_plat {
struct mmc_config cfg;
struct mmc mmc;
};
static int iproc_sdhci_probe(struct udevice *dev)
{
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
struct iproc_sdhci_plat *plat = dev_get_plat(dev);
struct sdhci_host *host = dev_get_priv(dev);
struct sdhci_iproc_host *iproc_host;
int node = dev_of_offset(dev);
u32 f_min_max[2];
int ret;
iproc_host = malloc(sizeof(struct sdhci_iproc_host));
if (!iproc_host) {
printf("%s: sdhci host malloc fail!\n", __func__);
return -ENOMEM;
}
iproc_host->shadow_cmd = 0;
iproc_host->shadow_blk = 0;
host->name = dev->name;
host->ioaddr = dev_read_addr_ptr(dev);
host->voltages = MMC_VDD_165_195 |
MMC_VDD_32_33 | MMC_VDD_33_34;
host->quirks = SDHCI_QUIRK_BROKEN_VOLTAGE | SDHCI_QUIRK_BROKEN_R1B;
host->host_caps = MMC_MODE_DDR_52MHz;
host->index = fdtdec_get_uint(gd->fdt_blob, node, "index", 0);
host->ops = &sdhci_platform_ops;
host->version = sdhci_readw(host, SDHCI_HOST_VERSION);
ret = fdtdec_get_int_array(gd->fdt_blob, dev_of_offset(dev),
"clock-freq-min-max", f_min_max, 2);
if (ret) {
printf("sdhci: clock-freq-min-max not found\n");
free(iproc_host);
return ret;
}
host->max_clk = f_min_max[1];
host->bus_width = fdtdec_get_int(gd->fdt_blob,
dev_of_offset(dev), "bus-width", 4);
/* Update host_caps for 8 bit bus width */
if (host->bus_width == 8)
host->host_caps |= MMC_MODE_8BIT;
memcpy(&iproc_host->host, host, sizeof(struct sdhci_host));
iproc_host->host.mmc = &plat->mmc;
iproc_host->host.mmc->dev = dev;
iproc_host->host.mmc->priv = &iproc_host->host;
upriv->mmc = iproc_host->host.mmc;
ret = sdhci_setup_cfg(&plat->cfg, &iproc_host->host,
f_min_max[1], f_min_max[0]);
if (ret) {
free(iproc_host);
return ret;
}
return sdhci_probe(dev);
}
static int iproc_sdhci_bind(struct udevice *dev)
{
struct iproc_sdhci_plat *plat = dev_get_plat(dev);
return sdhci_bind(dev, &plat->mmc, &plat->cfg);
}
static const struct udevice_id iproc_sdhci_ids[] = {
{ .compatible = "brcm,iproc-sdhci" },
{ }
};
U_BOOT_DRIVER(iproc_sdhci_drv) = {
.name = "iproc_sdhci",
.id = UCLASS_MMC,
.of_match = iproc_sdhci_ids,
.ops = &sdhci_ops,
.bind = iproc_sdhci_bind,
.probe = iproc_sdhci_probe,
.priv_auto = sizeof(struct sdhci_host),
.plat_auto = sizeof(struct iproc_sdhci_plat),
};