blob: e6943641225c12d739ab5a3d5851ee374652e4ce [file] [log] [blame]
/*
* Copyright (c) 2015 Google, Inc
* Copyright (c) 2011 The Chromium OS Authors.
* Copyright (C) 2009 NVIDIA, Corporation
* Copyright (C) 2007-2008 SMSC (Steve Glendinning)
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <malloc.h>
#include <memalign.h>
#include <usb.h>
#include <asm/unaligned.h>
#include <linux/mii.h>
#include "usb_ether.h"
/* SMSC LAN95xx based USB 2.0 Ethernet Devices */
/* LED defines */
#define LED_GPIO_CFG (0x24)
#define LED_GPIO_CFG_SPD_LED (0x01000000)
#define LED_GPIO_CFG_LNK_LED (0x00100000)
#define LED_GPIO_CFG_FDX_LED (0x00010000)
/* Tx command words */
#define TX_CMD_A_FIRST_SEG_ 0x00002000
#define TX_CMD_A_LAST_SEG_ 0x00001000
/* Rx status word */
#define RX_STS_FL_ 0x3FFF0000 /* Frame Length */
#define RX_STS_ES_ 0x00008000 /* Error Summary */
/* SCSRs */
#define ID_REV 0x00
#define INT_STS 0x08
#define TX_CFG 0x10
#define TX_CFG_ON_ 0x00000004
#define HW_CFG 0x14
#define HW_CFG_BIR_ 0x00001000
#define HW_CFG_RXDOFF_ 0x00000600
#define HW_CFG_MEF_ 0x00000020
#define HW_CFG_BCE_ 0x00000002
#define HW_CFG_LRST_ 0x00000008
#define PM_CTRL 0x20
#define PM_CTL_PHY_RST_ 0x00000010
#define AFC_CFG 0x2C
/*
* Hi watermark = 15.5Kb (~10 mtu pkts)
* low watermark = 3k (~2 mtu pkts)
* backpressure duration = ~ 350us
* Apply FC on any frame.
*/
#define AFC_CFG_DEFAULT 0x00F830A1
#define E2P_CMD 0x30
#define E2P_CMD_BUSY_ 0x80000000
#define E2P_CMD_READ_ 0x00000000
#define E2P_CMD_TIMEOUT_ 0x00000400
#define E2P_CMD_LOADED_ 0x00000200
#define E2P_CMD_ADDR_ 0x000001FF
#define E2P_DATA 0x34
#define BURST_CAP 0x38
#define INT_EP_CTL 0x68
#define INT_EP_CTL_PHY_INT_ 0x00008000
#define BULK_IN_DLY 0x6C
/* MAC CSRs */
#define MAC_CR 0x100
#define MAC_CR_MCPAS_ 0x00080000
#define MAC_CR_PRMS_ 0x00040000
#define MAC_CR_HPFILT_ 0x00002000
#define MAC_CR_TXEN_ 0x00000008
#define MAC_CR_RXEN_ 0x00000004
#define ADDRH 0x104
#define ADDRL 0x108
#define MII_ADDR 0x114
#define MII_WRITE_ 0x02
#define MII_BUSY_ 0x01
#define MII_READ_ 0x00 /* ~of MII Write bit */
#define MII_DATA 0x118
#define FLOW 0x11C
#define VLAN1 0x120
#define COE_CR 0x130
#define Tx_COE_EN_ 0x00010000
#define Rx_COE_EN_ 0x00000001
/* Vendor-specific PHY Definitions */
#define PHY_INT_SRC 29
#define PHY_INT_MASK 30
#define PHY_INT_MASK_ANEG_COMP_ ((u16)0x0040)
#define PHY_INT_MASK_LINK_DOWN_ ((u16)0x0010)
#define PHY_INT_MASK_DEFAULT_ (PHY_INT_MASK_ANEG_COMP_ | \
PHY_INT_MASK_LINK_DOWN_)
/* USB Vendor Requests */
#define USB_VENDOR_REQUEST_WRITE_REGISTER 0xA0
#define USB_VENDOR_REQUEST_READ_REGISTER 0xA1
/* Some extra defines */
#define HS_USB_PKT_SIZE 512
#define FS_USB_PKT_SIZE 64
/* 5/33 is lower limit for BURST_CAP to work */
#define DEFAULT_HS_BURST_CAP_SIZE (5 * HS_USB_PKT_SIZE)
#define DEFAULT_FS_BURST_CAP_SIZE (33 * FS_USB_PKT_SIZE)
#define DEFAULT_BULK_IN_DELAY 0x00002000
#define MAX_SINGLE_PACKET_SIZE 2048
#define EEPROM_MAC_OFFSET 0x01
#define SMSC95XX_INTERNAL_PHY_ID 1
#define ETH_P_8021Q 0x8100 /* 802.1Q VLAN Extended Header */
/* local defines */
#define SMSC95XX_BASE_NAME "sms"
#define USB_CTRL_SET_TIMEOUT 5000
#define USB_CTRL_GET_TIMEOUT 5000
#define USB_BULK_SEND_TIMEOUT 5000
#define USB_BULK_RECV_TIMEOUT 5000
#define RX_URB_SIZE DEFAULT_HS_BURST_CAP_SIZE
#define PHY_CONNECT_TIMEOUT 5000
#define TURBO_MODE
#ifndef CONFIG_DM_ETH
/* local vars */
static int curr_eth_dev; /* index for name of next device detected */
#endif
/* driver private */
struct smsc95xx_private {
#ifdef CONFIG_DM_ETH
struct ueth_data ueth;
#endif
size_t rx_urb_size; /* maximum USB URB size */
u32 mac_cr; /* MAC control register value */
int have_hwaddr; /* 1 if we have a hardware MAC address */
};
/*
* Smsc95xx infrastructure commands
*/
static int smsc95xx_write_reg(struct usb_device *udev, u32 index, u32 data)
{
int len;
ALLOC_CACHE_ALIGN_BUFFER(u32, tmpbuf, 1);
cpu_to_le32s(&data);
tmpbuf[0] = data;
len = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
USB_VENDOR_REQUEST_WRITE_REGISTER,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
0, index, tmpbuf, sizeof(data),
USB_CTRL_SET_TIMEOUT);
if (len != sizeof(data)) {
debug("smsc95xx_write_reg failed: index=%d, data=%d, len=%d",
index, data, len);
return -EIO;
}
return 0;
}
static int smsc95xx_read_reg(struct usb_device *udev, u32 index, u32 *data)
{
int len;
ALLOC_CACHE_ALIGN_BUFFER(u32, tmpbuf, 1);
len = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
USB_VENDOR_REQUEST_READ_REGISTER,
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
0, index, tmpbuf, sizeof(data),
USB_CTRL_GET_TIMEOUT);
*data = tmpbuf[0];
if (len != sizeof(data)) {
debug("smsc95xx_read_reg failed: index=%d, len=%d",
index, len);
return -EIO;
}
le32_to_cpus(data);
return 0;
}
/* Loop until the read is completed with timeout */
static int smsc95xx_phy_wait_not_busy(struct usb_device *udev)
{
unsigned long start_time = get_timer(0);
u32 val;
do {
smsc95xx_read_reg(udev, MII_ADDR, &val);
if (!(val & MII_BUSY_))
return 0;
} while (get_timer(start_time) < 1000);
return -ETIMEDOUT;
}
static int smsc95xx_mdio_read(struct usb_device *udev, int phy_id, int idx)
{
u32 val, addr;
/* confirm MII not busy */
if (smsc95xx_phy_wait_not_busy(udev)) {
debug("MII is busy in smsc95xx_mdio_read\n");
return -ETIMEDOUT;
}
/* set the address, index & direction (read from PHY) */
addr = (phy_id << 11) | (idx << 6) | MII_READ_;
smsc95xx_write_reg(udev, MII_ADDR, addr);
if (smsc95xx_phy_wait_not_busy(udev)) {
debug("Timed out reading MII reg %02X\n", idx);
return -ETIMEDOUT;
}
smsc95xx_read_reg(udev, MII_DATA, &val);
return (u16)(val & 0xFFFF);
}
static void smsc95xx_mdio_write(struct usb_device *udev, int phy_id, int idx,
int regval)
{
u32 val, addr;
/* confirm MII not busy */
if (smsc95xx_phy_wait_not_busy(udev)) {
debug("MII is busy in smsc95xx_mdio_write\n");
return;
}
val = regval;
smsc95xx_write_reg(udev, MII_DATA, val);
/* set the address, index & direction (write to PHY) */
addr = (phy_id << 11) | (idx << 6) | MII_WRITE_;
smsc95xx_write_reg(udev, MII_ADDR, addr);
if (smsc95xx_phy_wait_not_busy(udev))
debug("Timed out writing MII reg %02X\n", idx);
}
static int smsc95xx_eeprom_confirm_not_busy(struct usb_device *udev)
{
unsigned long start_time = get_timer(0);
u32 val;
do {
smsc95xx_read_reg(udev, E2P_CMD, &val);
if (!(val & E2P_CMD_BUSY_))
return 0;
udelay(40);
} while (get_timer(start_time) < 1 * 1000 * 1000);
debug("EEPROM is busy\n");
return -ETIMEDOUT;
}
static int smsc95xx_wait_eeprom(struct usb_device *udev)
{
unsigned long start_time = get_timer(0);
u32 val;
do {
smsc95xx_read_reg(udev, E2P_CMD, &val);
if (!(val & E2P_CMD_BUSY_) || (val & E2P_CMD_TIMEOUT_))
break;
udelay(40);
} while (get_timer(start_time) < 1 * 1000 * 1000);
if (val & (E2P_CMD_TIMEOUT_ | E2P_CMD_BUSY_)) {
debug("EEPROM read operation timeout\n");
return -ETIMEDOUT;
}
return 0;
}
static int smsc95xx_read_eeprom(struct usb_device *udev, u32 offset, u32 length,
u8 *data)
{
u32 val;
int i, ret;
ret = smsc95xx_eeprom_confirm_not_busy(udev);
if (ret)
return ret;
for (i = 0; i < length; i++) {
val = E2P_CMD_BUSY_ | E2P_CMD_READ_ | (offset & E2P_CMD_ADDR_);
smsc95xx_write_reg(udev, E2P_CMD, val);
ret = smsc95xx_wait_eeprom(udev);
if (ret < 0)
return ret;
smsc95xx_read_reg(udev, E2P_DATA, &val);
data[i] = val & 0xFF;
offset++;
}
return 0;
}
/*
* mii_nway_restart - restart NWay (autonegotiation) for this interface
*
* Returns 0 on success, negative on error.
*/
static int mii_nway_restart(struct usb_device *udev, struct ueth_data *dev)
{
int bmcr;
int r = -1;
/* if autoneg is off, it's an error */
bmcr = smsc95xx_mdio_read(udev, dev->phy_id, MII_BMCR);
if (bmcr & BMCR_ANENABLE) {
bmcr |= BMCR_ANRESTART;
smsc95xx_mdio_write(udev, dev->phy_id, MII_BMCR, bmcr);
r = 0;
}
return r;
}
static int smsc95xx_phy_initialize(struct usb_device *udev,
struct ueth_data *dev)
{
smsc95xx_mdio_write(udev, dev->phy_id, MII_BMCR, BMCR_RESET);
smsc95xx_mdio_write(udev, dev->phy_id, MII_ADVERTISE,
ADVERTISE_ALL | ADVERTISE_CSMA |
ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
/* read to clear */
smsc95xx_mdio_read(udev, dev->phy_id, PHY_INT_SRC);
smsc95xx_mdio_write(udev, dev->phy_id, PHY_INT_MASK,
PHY_INT_MASK_DEFAULT_);
mii_nway_restart(udev, dev);
debug("phy initialised succesfully\n");
return 0;
}
static int smsc95xx_init_mac_address(unsigned char *enetaddr,
struct usb_device *udev)
{
int ret;
/* try reading mac address from EEPROM */
ret = smsc95xx_read_eeprom(udev, EEPROM_MAC_OFFSET, ETH_ALEN, enetaddr);
if (ret)
return ret;
if (is_valid_ethaddr(enetaddr)) {
/* eeprom values are valid so use them */
debug("MAC address read from EEPROM\n");
return 0;
}
/*
* No eeprom, or eeprom values are invalid. Generating a random MAC
* address is not safe. Just return an error.
*/
debug("Invalid MAC address read from EEPROM\n");
return -ENXIO;
}
static int smsc95xx_write_hwaddr_common(struct usb_device *udev,
struct smsc95xx_private *priv,
unsigned char *enetaddr)
{
u32 addr_lo = __get_unaligned_le32(&enetaddr[0]);
u32 addr_hi = __get_unaligned_le16(&enetaddr[4]);
int ret;
/* set hardware address */
debug("** %s()\n", __func__);
ret = smsc95xx_write_reg(udev, ADDRL, addr_lo);
if (ret < 0)
return ret;
ret = smsc95xx_write_reg(udev, ADDRH, addr_hi);
if (ret < 0)
return ret;
debug("MAC %pM\n", enetaddr);
priv->have_hwaddr = 1;
return 0;
}
/* Enable or disable Tx & Rx checksum offload engines */
static int smsc95xx_set_csums(struct usb_device *udev, int use_tx_csum,
int use_rx_csum)
{
u32 read_buf;
int ret = smsc95xx_read_reg(udev, COE_CR, &read_buf);
if (ret < 0)
return ret;
if (use_tx_csum)
read_buf |= Tx_COE_EN_;
else
read_buf &= ~Tx_COE_EN_;
if (use_rx_csum)
read_buf |= Rx_COE_EN_;
else
read_buf &= ~Rx_COE_EN_;
ret = smsc95xx_write_reg(udev, COE_CR, read_buf);
if (ret < 0)
return ret;
debug("COE_CR = 0x%08x\n", read_buf);
return 0;
}
static void smsc95xx_set_multicast(struct smsc95xx_private *priv)
{
/* No multicast in u-boot */
priv->mac_cr &= ~(MAC_CR_PRMS_ | MAC_CR_MCPAS_ | MAC_CR_HPFILT_);
}
/* starts the TX path */
static void smsc95xx_start_tx_path(struct usb_device *udev,
struct smsc95xx_private *priv)
{
u32 reg_val;
/* Enable Tx at MAC */
priv->mac_cr |= MAC_CR_TXEN_;
smsc95xx_write_reg(udev, MAC_CR, priv->mac_cr);
/* Enable Tx at SCSRs */
reg_val = TX_CFG_ON_;
smsc95xx_write_reg(udev, TX_CFG, reg_val);
}
/* Starts the Receive path */
static void smsc95xx_start_rx_path(struct usb_device *udev,
struct smsc95xx_private *priv)
{
priv->mac_cr |= MAC_CR_RXEN_;
smsc95xx_write_reg(udev, MAC_CR, priv->mac_cr);
}
static int smsc95xx_init_common(struct usb_device *udev, struct ueth_data *dev,
struct smsc95xx_private *priv,
unsigned char *enetaddr)
{
int ret;
u32 write_buf;
u32 read_buf;
u32 burst_cap;
int timeout;
#define TIMEOUT_RESOLUTION 50 /* ms */
int link_detected;
debug("** %s()\n", __func__);
dev->phy_id = SMSC95XX_INTERNAL_PHY_ID; /* fixed phy id */
write_buf = HW_CFG_LRST_;
ret = smsc95xx_write_reg(udev, HW_CFG, write_buf);
if (ret < 0)
return ret;
timeout = 0;
do {
ret = smsc95xx_read_reg(udev, HW_CFG, &read_buf);
if (ret < 0)
return ret;
udelay(10 * 1000);
timeout++;
} while ((read_buf & HW_CFG_LRST_) && (timeout < 100));
if (timeout >= 100) {
debug("timeout waiting for completion of Lite Reset\n");
return -ETIMEDOUT;
}
write_buf = PM_CTL_PHY_RST_;
ret = smsc95xx_write_reg(udev, PM_CTRL, write_buf);
if (ret < 0)
return ret;
timeout = 0;
do {
ret = smsc95xx_read_reg(udev, PM_CTRL, &read_buf);
if (ret < 0)
return ret;
udelay(10 * 1000);
timeout++;
} while ((read_buf & PM_CTL_PHY_RST_) && (timeout < 100));
if (timeout >= 100) {
debug("timeout waiting for PHY Reset\n");
return -ETIMEDOUT;
}
if (!priv->have_hwaddr && smsc95xx_init_mac_address(enetaddr, udev) ==
0)
priv->have_hwaddr = 1;
if (!priv->have_hwaddr) {
puts("Error: SMSC95xx: No MAC address set - set usbethaddr\n");
return -EADDRNOTAVAIL;
}
ret = smsc95xx_write_hwaddr_common(udev, priv, enetaddr);
if (ret < 0)
return ret;
#ifdef TURBO_MODE
if (dev->pusb_dev->speed == USB_SPEED_HIGH) {
burst_cap = DEFAULT_HS_BURST_CAP_SIZE / HS_USB_PKT_SIZE;
priv->rx_urb_size = DEFAULT_HS_BURST_CAP_SIZE;
} else {
burst_cap = DEFAULT_FS_BURST_CAP_SIZE / FS_USB_PKT_SIZE;
priv->rx_urb_size = DEFAULT_FS_BURST_CAP_SIZE;
}
#else
burst_cap = 0;
priv->rx_urb_size = MAX_SINGLE_PACKET_SIZE;
#endif
debug("rx_urb_size=%ld\n", (ulong)priv->rx_urb_size);
ret = smsc95xx_write_reg(udev, BURST_CAP, burst_cap);
if (ret < 0)
return ret;
ret = smsc95xx_read_reg(udev, BURST_CAP, &read_buf);
if (ret < 0)
return ret;
debug("Read Value from BURST_CAP after writing: 0x%08x\n", read_buf);
read_buf = DEFAULT_BULK_IN_DELAY;
ret = smsc95xx_write_reg(udev, BULK_IN_DLY, read_buf);
if (ret < 0)
return ret;
ret = smsc95xx_read_reg(udev, BULK_IN_DLY, &read_buf);
if (ret < 0)
return ret;
debug("Read Value from BULK_IN_DLY after writing: "
"0x%08x\n", read_buf);
ret = smsc95xx_read_reg(udev, HW_CFG, &read_buf);
if (ret < 0)
return ret;
debug("Read Value from HW_CFG: 0x%08x\n", read_buf);
#ifdef TURBO_MODE
read_buf |= (HW_CFG_MEF_ | HW_CFG_BCE_);
#endif
read_buf &= ~HW_CFG_RXDOFF_;
#define NET_IP_ALIGN 0
read_buf |= NET_IP_ALIGN << 9;
ret = smsc95xx_write_reg(udev, HW_CFG, read_buf);
if (ret < 0)
return ret;
ret = smsc95xx_read_reg(udev, HW_CFG, &read_buf);
if (ret < 0)
return ret;
debug("Read Value from HW_CFG after writing: 0x%08x\n", read_buf);
write_buf = 0xFFFFFFFF;
ret = smsc95xx_write_reg(udev, INT_STS, write_buf);
if (ret < 0)
return ret;
ret = smsc95xx_read_reg(udev, ID_REV, &read_buf);
if (ret < 0)
return ret;
debug("ID_REV = 0x%08x\n", read_buf);
/* Configure GPIO pins as LED outputs */
write_buf = LED_GPIO_CFG_SPD_LED | LED_GPIO_CFG_LNK_LED |
LED_GPIO_CFG_FDX_LED;
ret = smsc95xx_write_reg(udev, LED_GPIO_CFG, write_buf);
if (ret < 0)
return ret;
debug("LED_GPIO_CFG set\n");
/* Init Tx */
write_buf = 0;
ret = smsc95xx_write_reg(udev, FLOW, write_buf);
if (ret < 0)
return ret;
read_buf = AFC_CFG_DEFAULT;
ret = smsc95xx_write_reg(udev, AFC_CFG, read_buf);
if (ret < 0)
return ret;
ret = smsc95xx_read_reg(udev, MAC_CR, &priv->mac_cr);
if (ret < 0)
return ret;
/* Init Rx. Set Vlan */
write_buf = (u32)ETH_P_8021Q;
ret = smsc95xx_write_reg(udev, VLAN1, write_buf);
if (ret < 0)
return ret;
/* Disable checksum offload engines */
ret = smsc95xx_set_csums(udev, 0, 0);
if (ret < 0) {
debug("Failed to set csum offload: %d\n", ret);
return ret;
}
smsc95xx_set_multicast(priv);
ret = smsc95xx_phy_initialize(udev, dev);
if (ret < 0)
return ret;
ret = smsc95xx_read_reg(udev, INT_EP_CTL, &read_buf);
if (ret < 0)
return ret;
/* enable PHY interrupts */
read_buf |= INT_EP_CTL_PHY_INT_;
ret = smsc95xx_write_reg(udev, INT_EP_CTL, read_buf);
if (ret < 0)
return ret;
smsc95xx_start_tx_path(udev, priv);
smsc95xx_start_rx_path(udev, priv);
timeout = 0;
do {
link_detected = smsc95xx_mdio_read(udev, dev->phy_id, MII_BMSR)
& BMSR_LSTATUS;
if (!link_detected) {
if (timeout == 0)
printf("Waiting for Ethernet connection... ");
udelay(TIMEOUT_RESOLUTION * 1000);
timeout += TIMEOUT_RESOLUTION;
}
} while (!link_detected && timeout < PHY_CONNECT_TIMEOUT);
if (link_detected) {
if (timeout != 0)
printf("done.\n");
} else {
printf("unable to connect.\n");
return -EIO;
}
return 0;
}
static int smsc95xx_send_common(struct ueth_data *dev, void *packet, int length)
{
int err;
int actual_len;
u32 tx_cmd_a;
u32 tx_cmd_b;
ALLOC_CACHE_ALIGN_BUFFER(unsigned char, msg,
PKTSIZE + sizeof(tx_cmd_a) + sizeof(tx_cmd_b));
debug("** %s(), len %d, buf %#x\n", __func__, length, (int)msg);
if (length > PKTSIZE)
return -ENOSPC;
tx_cmd_a = (u32)length | TX_CMD_A_FIRST_SEG_ | TX_CMD_A_LAST_SEG_;
tx_cmd_b = (u32)length;
cpu_to_le32s(&tx_cmd_a);
cpu_to_le32s(&tx_cmd_b);
/* prepend cmd_a and cmd_b */
memcpy(msg, &tx_cmd_a, sizeof(tx_cmd_a));
memcpy(msg + sizeof(tx_cmd_a), &tx_cmd_b, sizeof(tx_cmd_b));
memcpy(msg + sizeof(tx_cmd_a) + sizeof(tx_cmd_b), (void *)packet,
length);
err = usb_bulk_msg(dev->pusb_dev,
usb_sndbulkpipe(dev->pusb_dev, dev->ep_out),
(void *)msg,
length + sizeof(tx_cmd_a) + sizeof(tx_cmd_b),
&actual_len,
USB_BULK_SEND_TIMEOUT);
debug("Tx: len = %u, actual = %u, err = %d\n",
length + sizeof(tx_cmd_a) + sizeof(tx_cmd_b),
actual_len, err);
return err;
}
#ifndef CONFIG_DM_ETH
/*
* Smsc95xx callbacks
*/
static int smsc95xx_init(struct eth_device *eth, bd_t *bd)
{
struct ueth_data *dev = (struct ueth_data *)eth->priv;
struct usb_device *udev = dev->pusb_dev;
struct smsc95xx_private *priv =
(struct smsc95xx_private *)dev->dev_priv;
return smsc95xx_init_common(udev, dev, priv, eth->enetaddr);
}
static int smsc95xx_send(struct eth_device *eth, void *packet, int length)
{
struct ueth_data *dev = (struct ueth_data *)eth->priv;
return smsc95xx_send_common(dev, packet, length);
}
static int smsc95xx_recv(struct eth_device *eth)
{
struct ueth_data *dev = (struct ueth_data *)eth->priv;
DEFINE_CACHE_ALIGN_BUFFER(unsigned char, recv_buf, RX_URB_SIZE);
unsigned char *buf_ptr;
int err;
int actual_len;
u32 packet_len;
int cur_buf_align;
debug("** %s()\n", __func__);
err = usb_bulk_msg(dev->pusb_dev,
usb_rcvbulkpipe(dev->pusb_dev, dev->ep_in),
(void *)recv_buf, RX_URB_SIZE, &actual_len,
USB_BULK_RECV_TIMEOUT);
debug("Rx: len = %u, actual = %u, err = %d\n", RX_URB_SIZE,
actual_len, err);
if (err != 0) {
debug("Rx: failed to receive\n");
return -err;
}
if (actual_len > RX_URB_SIZE) {
debug("Rx: received too many bytes %d\n", actual_len);
return -ENOSPC;
}
buf_ptr = recv_buf;
while (actual_len > 0) {
/*
* 1st 4 bytes contain the length of the actual data plus error
* info. Extract data length.
*/
if (actual_len < sizeof(packet_len)) {
debug("Rx: incomplete packet length\n");
return -EIO;
}
memcpy(&packet_len, buf_ptr, sizeof(packet_len));
le32_to_cpus(&packet_len);
if (packet_len & RX_STS_ES_) {
debug("Rx: Error header=%#x", packet_len);
return -EIO;
}
packet_len = ((packet_len & RX_STS_FL_) >> 16);
if (packet_len > actual_len - sizeof(packet_len)) {
debug("Rx: too large packet: %d\n", packet_len);
return -EIO;
}
/* Notify net stack */
net_process_received_packet(buf_ptr + sizeof(packet_len),
packet_len - 4);
/* Adjust for next iteration */
actual_len -= sizeof(packet_len) + packet_len;
buf_ptr += sizeof(packet_len) + packet_len;
cur_buf_align = (int)buf_ptr - (int)recv_buf;
if (cur_buf_align & 0x03) {
int align = 4 - (cur_buf_align & 0x03);
actual_len -= align;
buf_ptr += align;
}
}
return err;
}
static void smsc95xx_halt(struct eth_device *eth)
{
debug("** %s()\n", __func__);
}
static int smsc95xx_write_hwaddr(struct eth_device *eth)
{
struct ueth_data *dev = eth->priv;
struct usb_device *udev = dev->pusb_dev;
struct smsc95xx_private *priv = dev->dev_priv;
return smsc95xx_write_hwaddr_common(udev, priv, eth->enetaddr);
}
/*
* SMSC probing functions
*/
void smsc95xx_eth_before_probe(void)
{
curr_eth_dev = 0;
}
struct smsc95xx_dongle {
unsigned short vendor;
unsigned short product;
};
static const struct smsc95xx_dongle smsc95xx_dongles[] = {
{ 0x0424, 0xec00 }, /* LAN9512/LAN9514 Ethernet */
{ 0x0424, 0x9500 }, /* LAN9500 Ethernet */
{ 0x0424, 0x9730 }, /* LAN9730 Ethernet (HSIC) */
{ 0x0424, 0x9900 }, /* SMSC9500 USB Ethernet Device (SAL10) */
{ 0x0424, 0x9e00 }, /* LAN9500A Ethernet */
{ 0x0000, 0x0000 } /* END - Do not remove */
};
/* Probe to see if a new device is actually an SMSC device */
int smsc95xx_eth_probe(struct usb_device *dev, unsigned int ifnum,
struct ueth_data *ss)
{
struct usb_interface *iface;
struct usb_interface_descriptor *iface_desc;
int i;
/* let's examine the device now */
iface = &dev->config.if_desc[ifnum];
iface_desc = &dev->config.if_desc[ifnum].desc;
for (i = 0; smsc95xx_dongles[i].vendor != 0; i++) {
if (dev->descriptor.idVendor == smsc95xx_dongles[i].vendor &&
dev->descriptor.idProduct == smsc95xx_dongles[i].product)
/* Found a supported dongle */
break;
}
if (smsc95xx_dongles[i].vendor == 0)
return 0;
/* At this point, we know we've got a live one */
debug("\n\nUSB Ethernet device detected\n");
memset(ss, '\0', sizeof(struct ueth_data));
/* Initialize the ueth_data structure with some useful info */
ss->ifnum = ifnum;
ss->pusb_dev = dev;
ss->subclass = iface_desc->bInterfaceSubClass;
ss->protocol = iface_desc->bInterfaceProtocol;
/*
* We are expecting a minimum of 3 endpoints - in, out (bulk), and int.
* We will ignore any others.
*/
for (i = 0; i < iface_desc->bNumEndpoints; i++) {
/* is it an BULK endpoint? */
if ((iface->ep_desc[i].bmAttributes &
USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK) {
if (iface->ep_desc[i].bEndpointAddress & USB_DIR_IN)
ss->ep_in =
iface->ep_desc[i].bEndpointAddress &
USB_ENDPOINT_NUMBER_MASK;
else
ss->ep_out =
iface->ep_desc[i].bEndpointAddress &
USB_ENDPOINT_NUMBER_MASK;
}
/* is it an interrupt endpoint? */
if ((iface->ep_desc[i].bmAttributes &
USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT) {
ss->ep_int = iface->ep_desc[i].bEndpointAddress &
USB_ENDPOINT_NUMBER_MASK;
ss->irqinterval = iface->ep_desc[i].bInterval;
}
}
debug("Endpoints In %d Out %d Int %d\n",
ss->ep_in, ss->ep_out, ss->ep_int);
/* Do some basic sanity checks, and bail if we find a problem */
if (usb_set_interface(dev, iface_desc->bInterfaceNumber, 0) ||
!ss->ep_in || !ss->ep_out || !ss->ep_int) {
debug("Problems with device\n");
return 0;
}
dev->privptr = (void *)ss;
/* alloc driver private */
ss->dev_priv = calloc(1, sizeof(struct smsc95xx_private));
if (!ss->dev_priv)
return 0;
return 1;
}
int smsc95xx_eth_get_info(struct usb_device *dev, struct ueth_data *ss,
struct eth_device *eth)
{
debug("** %s()\n", __func__);
if (!eth) {
debug("%s: missing parameter.\n", __func__);
return 0;
}
sprintf(eth->name, "%s%d", SMSC95XX_BASE_NAME, curr_eth_dev++);
eth->init = smsc95xx_init;
eth->send = smsc95xx_send;
eth->recv = smsc95xx_recv;
eth->halt = smsc95xx_halt;
eth->write_hwaddr = smsc95xx_write_hwaddr;
eth->priv = ss;
return 1;
}
#endif /* !CONFIG_DM_ETH */
#ifdef CONFIG_DM_ETH
static int smsc95xx_eth_start(struct udevice *dev)
{
struct usb_device *udev = dev_get_parentdata(dev);
struct smsc95xx_private *priv = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_platdata(dev);
/* Driver-model Ethernet ensures we have this */
priv->have_hwaddr = 1;
return smsc95xx_init_common(udev, &priv->ueth, priv, pdata->enetaddr);
}
void smsc95xx_eth_stop(struct udevice *dev)
{
debug("** %s()\n", __func__);
}
int smsc95xx_eth_send(struct udevice *dev, void *packet, int length)
{
struct smsc95xx_private *priv = dev_get_priv(dev);
return smsc95xx_send_common(&priv->ueth, packet, length);
}
int smsc95xx_eth_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct smsc95xx_private *priv = dev_get_priv(dev);
struct ueth_data *ueth = &priv->ueth;
uint8_t *ptr;
int ret, len;
u32 packet_len;
len = usb_ether_get_rx_bytes(ueth, &ptr);
debug("%s: first try, len=%d\n", __func__, len);
if (!len) {
if (!(flags & ETH_RECV_CHECK_DEVICE))
return -EAGAIN;
ret = usb_ether_receive(ueth, RX_URB_SIZE);
if (ret == -EAGAIN)
return ret;
len = usb_ether_get_rx_bytes(ueth, &ptr);
debug("%s: second try, len=%d\n", __func__, len);
}
/*
* 1st 4 bytes contain the length of the actual data plus error info.
* Extract data length.
*/
if (len < sizeof(packet_len)) {
debug("Rx: incomplete packet length\n");
goto err;
}
memcpy(&packet_len, ptr, sizeof(packet_len));
le32_to_cpus(&packet_len);
if (packet_len & RX_STS_ES_) {
debug("Rx: Error header=%#x", packet_len);
goto err;
}
packet_len = ((packet_len & RX_STS_FL_) >> 16);
if (packet_len > len - sizeof(packet_len)) {
debug("Rx: too large packet: %d\n", packet_len);
goto err;
}
*packetp = ptr + sizeof(packet_len);
return packet_len;
err:
usb_ether_advance_rxbuf(ueth, -1);
return -EINVAL;
}
static int smsc95xx_free_pkt(struct udevice *dev, uchar *packet, int packet_len)
{
struct smsc95xx_private *priv = dev_get_priv(dev);
packet_len = ALIGN(packet_len, 4);
usb_ether_advance_rxbuf(&priv->ueth, sizeof(u32) + packet_len);
return 0;
}
int smsc95xx_write_hwaddr(struct udevice *dev)
{
struct usb_device *udev = dev_get_parentdata(dev);
struct eth_pdata *pdata = dev_get_platdata(dev);
struct smsc95xx_private *priv = dev_get_priv(dev);
return smsc95xx_write_hwaddr_common(udev, priv, pdata->enetaddr);
}
static int smsc95xx_eth_probe(struct udevice *dev)
{
struct smsc95xx_private *priv = dev_get_priv(dev);
struct ueth_data *ueth = &priv->ueth;
return usb_ether_register(dev, ueth, RX_URB_SIZE);
}
static const struct eth_ops smsc95xx_eth_ops = {
.start = smsc95xx_eth_start,
.send = smsc95xx_eth_send,
.recv = smsc95xx_eth_recv,
.free_pkt = smsc95xx_free_pkt,
.stop = smsc95xx_eth_stop,
.write_hwaddr = smsc95xx_write_hwaddr,
};
U_BOOT_DRIVER(smsc95xx_eth) = {
.name = "smsc95xx_eth",
.id = UCLASS_ETH,
.probe = smsc95xx_eth_probe,
.ops = &smsc95xx_eth_ops,
.priv_auto_alloc_size = sizeof(struct smsc95xx_private),
.platdata_auto_alloc_size = sizeof(struct eth_pdata),
};
static const struct usb_device_id smsc95xx_eth_id_table[] = {
{ USB_DEVICE(0x05ac, 0x1402) },
{ USB_DEVICE(0x0424, 0xec00) }, /* LAN9512/LAN9514 Ethernet */
{ USB_DEVICE(0x0424, 0x9500) }, /* LAN9500 Ethernet */
{ USB_DEVICE(0x0424, 0x9730) }, /* LAN9730 Ethernet (HSIC) */
{ USB_DEVICE(0x0424, 0x9900) }, /* SMSC9500 USB Ethernet (SAL10) */
{ USB_DEVICE(0x0424, 0x9e00) }, /* LAN9500A Ethernet */
{ } /* Terminating entry */
};
U_BOOT_USB_DEVICE(smsc95xx_eth, smsc95xx_eth_id_table);
#endif