blob: 0d56f10d9fd718b0c364d29a24251a59b70944df [file] [log] [blame]
menu "SPL / TPL"
config SUPPORT_SPL
bool
config SUPPORT_TPL
bool
config SPL_DFU_NO_RESET
bool
config SPL
bool
depends on SUPPORT_SPL
prompt "Enable SPL"
help
If you want to build SPL as well as the normal image, say Y.
config SPL_RAW_IMAGE_SUPPORT
bool "Support SPL loading and booting of RAW images"
depends on SPL
default n if (ARCH_MX6 && (SPL_MMC_SUPPORT || SPL_SATA_SUPPORT))
default y if !TI_SECURE_DEVICE
help
SPL will support loading and booting a RAW image when this option
is y. If this is not set, SPL will move on to other available
boot media to find a suitable image.
config SPL_LEGACY_IMAGE_SUPPORT
bool "Support SPL loading and booting of Legacy images"
default y if !TI_SECURE_DEVICE
help
SPL will support loading and booting Legacy images when this option
is y. If this is not set, SPL will move on to other available
boot media to find a suitable image.
config SPL_SYS_MALLOC_SIMPLE
bool
depends on SPL
prompt "Only use malloc_simple functions in the SPL"
help
Say Y here to only use the *_simple malloc functions from
malloc_simple.c, rather then using the versions from dlmalloc.c;
this will make the SPL binary smaller at the cost of more heap
usage as the *_simple malloc functions do not re-use free-ed mem.
config SPL_STACK_R
depends on SPL
bool "Enable SDRAM location for SPL stack"
help
SPL starts off execution in SRAM and thus typically has only a small
stack available. Since SPL sets up DRAM while in its board_init_f()
function, it is possible for the stack to move there before
board_init_r() is reached. This option enables a special SDRAM
location for the SPL stack. U-Boot SPL switches to this after
board_init_f() completes, and before board_init_r() starts.
config SPL_STACK_R_ADDR
depends on SPL_STACK_R
hex "SDRAM location for SPL stack"
help
Specify the address in SDRAM for the SPL stack. This will be set up
before board_init_r() is called.
config SPL_STACK_R_MALLOC_SIMPLE_LEN
depends on SPL_STACK_R && SPL_SYS_MALLOC_SIMPLE
hex "Size of malloc_simple heap after switching to DRAM SPL stack"
default 0x100000
help
Specify the amount of the stack to use as memory pool for
malloc_simple after switching the stack to DRAM. This may be set
to give board_init_r() a larger heap then the initial heap in
SRAM which is limited to SYS_MALLOC_F_LEN bytes.
config SPL_SEPARATE_BSS
depends on SPL
bool "BSS section is in a different memory region from text"
help
Some platforms need a large BSS region in SPL and can provide this
because RAM is already set up. In this case BSS can be moved to RAM.
This option should then be enabled so that the correct device tree
location is used. Normally we put the device tree at the end of BSS
but with this option enabled, it goes at _image_binary_end.
config SPL_DISPLAY_PRINT
depends on SPL
bool "Display a board-specific message in SPL"
help
If this option is enabled, U-Boot will call the function
spl_display_print() immediately after displaying the SPL console
banner ("U-Boot SPL ..."). This function should be provided by
the board.
config SYS_MMCSD_RAW_MODE_U_BOOT_USE_SECTOR
bool "MMC raw mode: by sector"
depends on SPL
default y if ARCH_SUNXI || ARCH_DAVINCI || ARCH_UNIPHIER ||ARCH_MX6 || \
ARCH_ROCKCHIP || ARCH_MVEBU || ARCH_SOCFPGA || \
ARCH_AT91 || ARCH_ZYNQ || ARCH_KEYSTONE || OMAP34XX || \
OMAP44XX || OMAP54XX || AM33XX || AM43XX
help
Use sector number for specifying U-Boot location on MMC/SD in
raw mode.
config SYS_MMCSD_RAW_MODE_U_BOOT_SECTOR
hex "Address on the MMC to load U-Boot from"
depends on SPL && SYS_MMCSD_RAW_MODE_U_BOOT_USE_SECTOR
default 0x50 if ARCH_SUNXI
default 0x75 if ARCH_DAVINCI
default 0x8a if ARCH_MX6
default 0x100 if ARCH_ROCKCHIP || ARCH_UNIPHIER
default 0x140 if ARCH_MVEBU
default 0x200 if ARCH_SOCFPGA || ARCH_AT91
default 0x300 if ARCH_ZYNQ || ARCH_KEYSTONE || OMAP34XX || OMAP44XX || \
OMAP54XX || AM33XX || AM43XX
help
Address on the MMC to load U-Boot from, when the MMC is being used
in raw mode. Units: MMC sectors (1 sector = 512 bytes).
config SYS_MMCSD_RAW_MODE_U_BOOT_USE_PARTITION
bool "MMC Raw mode: by partition"
depends on SPL
help
Use a partition for loading U-Boot when using MMC/SD in raw mode.
config SYS_MMCSD_RAW_MODE_U_BOOT_PARTITION
hex "Partition to use to load U-Boot from"
depends on SPL && SYS_MMCSD_RAW_MODE_U_BOOT_USE_PARTITION
default 1
help
Partition on the MMC to load U-Boot from when the MMC is being
used in raw mode
config SYS_MMCSD_RAW_MODE_U_BOOT_USE_PARTITION_TYPE
bool "MMC raw mode: by partition type"
depends on SPL && DOS_PARTITION && \
SYS_MMCSD_RAW_MODE_U_BOOT_USE_PARTITION
help
Use partition type for specifying U-Boot partition on MMC/SD in
raw mode. U-Boot will be loaded from the first partition of this
type to be found.
config SYS_MMCSD_RAW_MODE_U_BOOT_PARTITION_TYPE
hex "Partition Type on the MMC to load U-Boot from"
depends on SPL && SYS_MMCSD_RAW_MODE_U_BOOT_USE_PARTITION_TYPE
help
Partition Type on the MMC to load U-Boot from, when the MMC is being
used in raw mode.
config TPL
bool
depends on SPL && SUPPORT_TPL
prompt "Enable TPL"
help
If you want to build TPL as well as the normal image and SPL, say Y.
config SPL_CRC32_SUPPORT
bool "Support CRC32"
depends on SPL_FIT
help
Enable this to support CRC32 in FIT images within SPL. This is a
32-bit checksum value that can be used to verify images. This is
the least secure type of checksum, suitable for detected
accidental image corruption. For secure applications you should
consider SHA1 or SHA256.
config SPL_MD5_SUPPORT
bool "Support MD5"
depends on SPL_FIT
help
Enable this to support MD5 in FIT images within SPL. An MD5
checksum is a 128-bit hash value used to check that the image
contents have not been corrupted. Note that MD5 is not considered
secure as it is possible (with a brute-force attack) to adjust the
image while still retaining the same MD5 hash value. For secure
applications where images may be changed maliciously, you should
consider SHA1 or SHA256.
config SPL_SHA1_SUPPORT
bool "Support SHA1"
depends on SPL_FIT
help
Enable this to support SHA1 in FIT images within SPL. A SHA1
checksum is a 160-bit (20-byte) hash value used to check that the
image contents have not been corrupted or maliciously altered.
While SHA1 is fairly secure it is coming to the end of its life
due to the expanding computing power avaiable to brute-force
attacks. For more security, consider SHA256.
config SPL_SHA256_SUPPORT
bool "Support SHA256"
depends on SPL_FIT
help
Enable this to support SHA256 in FIT images within SPL. A SHA256
checksum is a 256-bit (32-byte) hash value used to check that the
image contents have not been corrupted. SHA256 is recommended for
use in secure applications since (as at 2016) there is no known
feasible attack that could produce a 'collision' with differing
input data. Use this for the highest security. Note that only the
SHA256 variant is supported: SHA512 and others are not currently
supported in U-Boot.
config SPL_CPU_SUPPORT
bool "Support CPU drivers"
depends on SPL
help
Enable this to support CPU drivers in SPL. These drivers can set
up CPUs and provide information about them such as the model and
name. This can be useful in SPL since setting up the CPUs earlier
may improve boot performance. Enable this option to build the
drivers in drivers/cpu as part of an SPL build.
config SPL_CRYPTO_SUPPORT
bool "Support crypto drivers"
depends on SPL
help
Enable crypto drivers in SPL. These drivers can be used to
accelerate secure boot processing in secure applications. Enable
this option to build the drivers in drivers/crypto as part of an
SPL build.
config SPL_HASH_SUPPORT
bool "Support hashing drivers"
depends on SPL
help
Enable hashing drivers in SPL. These drivers can be used to
accelerate secure boot processing in secure applications. Enable
this option to build system-specific drivers for hash acceleration
as part of an SPL build.
config SPL_DMA_SUPPORT
bool "Support DMA drivers"
depends on SPL
help
Enable DMA (direct-memory-access) drivers in SPL. These drivers
can be used to handle memory-to-peripheral data transfer without
the CPU moving the data. Enable this option to build the drivers
in drivers/dma as part of an SPL build.
config SPL_DRIVERS_MISC_SUPPORT
bool "Support misc drivers"
depends on SPL
help
Enable miscellaneous drivers in SPL. These drivers perform various
tasks that don't fall nicely into other categories, Enable this
option to build the drivers in drivers/misc as part of an SPL
build, for those that support building in SPL (not all drivers do).
config SPL_ENV_SUPPORT
bool "Support an environment"
depends on SPL
help
Enable environment support in SPL. The U-Boot environment provides
a number of settings (essentially name/value pairs) which can
control many aspects of U-Boot's operation. Normally this is not
needed in SPL as it has a much simpler task with less
configuration. But some boards use this to support 'Falcon' boot
on EXT2 and FAT, where SPL boots directly into Linux without
starting U-Boot first. Enabling this option will make getenv()
and setenv() available in SPL.
config SPL_SAVEENV
bool "Support save environment"
depends on SPL && SPL_ENV_SUPPORT
help
Enable save environment support in SPL after setenv. By default
the saveenv option is not provided in SPL, but some boards need
this support in 'Falcon' boot, where SPL need to boot from
different images based on environment variable set by OS. For
example OS may set "reboot_image" environment variable to
"recovery" inorder to boot recovery image by SPL. The SPL read
"reboot_image" and act accordingly and change the reboot_image
to default mode using setenv and save the environemnt.
config SPL_ETH_SUPPORT
bool "Support Ethernet"
depends on SPL_ENV_SUPPORT
help
Enable access to the network subsystem and associated Ethernet
drivers in SPL. This permits SPL to load U-Boot over an Ethernet
link rather than from an on-board peripheral. Environment support
is required since the network stack uses a number of environment
variables. See also SPL_NET_SUPPORT.
config SPL_EXT_SUPPORT
bool "Support EXT filesystems"
depends on SPL
help
Enable support for EXT2/3/4 filesystems with SPL. This permits
U-Boot (or Linux in Falcon mode) to be loaded from an EXT
filesystem from within SPL. Support for the underlying block
device (e.g. MMC or USB) must be enabled separately.
config SPL_FAT_SUPPORT
bool "Support FAT filesystems"
depends on SPL
help
Enable support for FAT and VFAT filesystems with SPL. This
permits U-Boot (or Linux in Falcon mode) to be loaded from a FAT
filesystem from within SPL. Support for the underlying block
device (e.g. MMC or USB) must be enabled separately.
config SPL_FPGA_SUPPORT
bool "Support FPGAs"
depends on SPL
help
Enable support for FPGAs in SPL. Field-programmable Gate Arrays
provide software-configurable hardware which is typically used to
implement peripherals (such as UARTs, LCD displays, MMC) or
accelerate custom processing functions, such as image processing
or machine learning. Sometimes it is useful to program the FPGA
as early as possible during boot, and this option can enable that
within SPL.
config SPL_GPIO_SUPPORT
bool "Support GPIO"
depends on SPL
help
Enable support for GPIOs (General-purpose Input/Output) in SPL.
GPIOs allow U-Boot to read the state of an input line (high or
low) and set the state of an output line. This can be used to
drive LEDs, control power to various system parts and read user
input. GPIOs can be useful in SPL to enable a 'sign-of-life' LED,
for example. Enable this option to build the drivers in
drivers/gpio as part of an SPL build.
config SPL_I2C_SUPPORT
bool "Support I2C"
depends on SPL
help
Enable support for the I2C (Inter-Integrated Circuit) bus in SPL.
I2C works with a clock and data line which can be driven by a
one or more masters or slaves. It is a fairly complex bus but is
widely used as it only needs two lines for communication. Speeds of
400kbps are typical but up to 3.4Mbps is supported by some
hardware. I2C can be useful in SPL to configure power management
ICs (PMICs) before raising the CPU clock speed, for example.
Enable this option to build the drivers in drivers/i2c as part of
an SPL build.
config SPL_LIBCOMMON_SUPPORT
bool "Support common libraries"
depends on SPL
help
Enable support for common U-Boot libraries within SPL. These
libraries include common code to deal with U-Boot images,
environment and USB, for example. This option is enabled on many
boards. Enable this option to build the code in common/ as part of
an SPL build.
config SPL_LIBDISK_SUPPORT
bool "Support disk paritions"
depends on SPL
help
Enable support for disk partitions within SPL. 'Disk' is something
of a misnomer as it includes non-spinning media such as flash (as
used in MMC and USB sticks). Partitions provide a way for a disk
to be split up into separate regions, with a partition table placed
at the start or end which describes the location and size of each
'partition'. These partitions are typically uses as individual block
devices, typically with an EXT2 or FAT filesystem in each. This
option enables whatever partition support has been enabled in
U-Boot to also be used in SPL. It brings in the code in disk/.
config SPL_LIBGENERIC_SUPPORT
bool "Support generic libraries"
depends on SPL
help
Enable support for generic U-Boot libraries within SPL. These
libraries include generic code to deal with device tree, hashing,
printf(), compression and the like. This option is enabled on many
boards. Enable this option to build the code in lib/ as part of an
SPL build.
config SPL_MMC_SUPPORT
bool "Support MMC"
depends on SPL && MMC
help
Enable support for MMC (Multimedia Card) within SPL. This enables
the MMC protocol implementation and allows any enabled drivers to
be used within SPL. MMC can be used with or without disk partition
support depending on the application (SPL_LIBDISK_SUPPORT). Enable
this option to build the drivers in drivers/mmc as part of an SPL
build.
config SPL_MPC8XXX_INIT_DDR_SUPPORT
bool "Support MPC8XXX DDR init"
depends on SPL
help
Enable support for DDR-SDRAM (double-data-rate synchronous dynamic
random-access memory) on the MPC8XXX family within SPL. This
allows DRAM to be set up before loading U-Boot into that DRAM,
where it can run.
config SPL_MTD_SUPPORT
bool "Support MTD drivers"
depends on SPL
help
Enable support for MTD (Memory Technology Device) within SPL. MTD
provides a block interface over raw NAND and can also be used with
SPI flash. This allows SPL to load U-Boot from supported MTD
devices. See SPL_NAND_SUPPORT and SPL_ONENAND_SUPPORT for how
to enable specific MTD drivers.
config SPL_MUSB_NEW_SUPPORT
bool "Support new Mentor Graphics USB"
depends on SPL
help
Enable support for Mentor Graphics USB in SPL. This is a new
driver used by some boards. Enable this option to build
the drivers in drivers/usb/musb-new as part of an SPL build. The
old drivers are in drivers/usb/musb.
config SPL_NAND_SUPPORT
bool "Support NAND flash"
depends on SPL
help
Enable support for NAND (Negative AND) flash in SPL. NAND flash
can be used to allow SPL to load U-Boot from supported devices.
This enables the drivers in drivers/mtd/nand as part of an SPL
build.
config SPL_NET_SUPPORT
bool "Support networking"
depends on SPL
help
Enable support for network devices (such as Ethernet) in SPL.
This permits SPL to load U-Boot over a network link rather than
from an on-board peripheral. Environment support is required since
the network stack uses a number of environment variables. See also
SPL_ETH_SUPPORT.
if SPL_NET_SUPPORT
config SPL_NET_VCI_STRING
string "BOOTP Vendor Class Identifier string sent by SPL"
help
As defined by RFC 2132 the vendor class identifier field can be
sent by the client to identify the vendor type and configuration
of a client. This is often used in practice to allow for the DHCP
server to specify different files to load depending on if the ROM,
SPL or U-Boot itself makes the request
endif # if SPL_NET_SUPPORT
config SPL_NO_CPU_SUPPORT
bool "Drop CPU code in SPL"
depends on SPL
help
This is specific to the ARM926EJ-S CPU. It disables the standard
start.S start-up code, presumably so that a replacement can be
used on that CPU. You should not enable it unless you know what
you are doing.
config SPL_NOR_SUPPORT
bool "Support NOR flash"
depends on SPL
help
Enable support for loading U-Boot from memory-mapped NOR (Negative
OR) flash in SPL. NOR flash is slow to write but fast to read, and
a memory-mapped device makes it very easy to access. Loading from
NOR is typically achieved with just a memcpy().
config SPL_ONENAND_SUPPORT
bool "Support OneNAND flash"
depends on SPL
help
Enable support for OneNAND (Negative AND) flash in SPL. OneNAND is
a type of NAND flash and therefore can be used to allow SPL to
load U-Boot from supported devices. This enables the drivers in
drivers/mtd/onenand as part of an SPL build.
config SPL_OS_BOOT
bool "Activate Falcon Mode"
depends on SPL && !TI_SECURE_DEVICE
default n
help
Enable booting directly to an OS from SPL.
for more info read doc/README.falcon
if SPL_OS_BOOT
config SYS_OS_BASE
hex "addr, where OS is found"
depends on SPL && SPL_NOR_SUPPORT
help
Specify the address, where the OS image is found, which
gets booted.
endif # SPL_OS_BOOT
config SPL_PCI_SUPPORT
bool "Support PCI drivers"
depends on SPL
help
Enable support for PCI in SPL. For platforms that need PCI to boot,
or must perform some init using PCI in SPL, this provides the
necessary driver support. This enables the drivers in drivers/pci
as part of an SPL build.
config SPL_PCH_SUPPORT
bool "Support PCH drivers"
depends on SPL
help
Enable support for PCH (Platform Controller Hub) devices in SPL.
These are used to set up GPIOs and the SPI peripheral early in
boot. This enables the drivers in drivers/pch as part of an SPL
build.
config SPL_POST_MEM_SUPPORT
bool "Support POST drivers"
depends on SPL
help
Enable support for POST (Power-on Self Test) in SPL. POST is a
procedure that checks that the hardware (CPU or board) appears to
be functionally correctly. It is a sanity check that can be
performed before booting. This enables the drivers in post/drivers
as part of an SPL build.
config SPL_POWER_SUPPORT
bool "Support power drivers"
depends on SPL
help
Enable support for power control in SPL. This includes support
for PMICs (Power-management Integrated Circuits) and some of the
features provided by PMICs. In particular, voltage regulators can
be used to enable/disable power and vary its voltage. That can be
useful in SPL to turn on boot peripherals and adjust CPU voltage
so that the clock speed can be increased. This enables the drivers
in drivers/power, drivers/power/pmic and drivers/power/regulator
as part of an SPL build.
config SPL_RAM_SUPPORT
bool "Support booting from RAM"
depends on SPL
default y if MICROBLAZE || ARCH_SOCFPGA || TEGRA || ARCH_ZYNQ
help
Enable booting of an image in RAM. The image can be preloaded or
it can be loaded by SPL directly into RAM (e.g. using USB).
config SPL_RAM_DEVICE
bool "Support booting from preloaded image in RAM"
depends on SPL_RAM_SUPPORT
default y if MICROBLAZE || ARCH_SOCFPGA || TEGRA || ARCH_ZYNQ
help
Enable booting of an image already loaded in RAM. The image has to
be already in memory when SPL takes over, e.g. loaded by the boot
ROM.
config SPL_RTC_SUPPORT
bool "Support RTC drivers"
depends on SPL
help
Enable RTC (Real-time Clock) support in SPL. This includes support
for reading and setting the time. Some RTC devices also have some
non-volatile (battery-backed) memory which is accessible if
needed. This enables the drivers in drivers/rtc as part of an SPL
build.
config SPL_SATA_SUPPORT
bool "Support loading from SATA"
depends on SPL
help
Enable support for SATA (Serial AT attachment) in SPL. This allows
use of SATA devices such as hard drives and flash drivers for
loading U-Boot. SATA is used in higher-end embedded systems and
can provide higher performance than MMC , at somewhat higher
expense and power consumption. This enables loading from SATA
using a configured device.
config SPL_SERIAL_SUPPORT
bool "Support serial"
depends on SPL
help
Enable support for serial in SPL. This allows use of a serial UART
for displaying messages while SPL is running. It also brings in
printf() and panic() functions. This should normally be enabled
unless there are space reasons not to. Even then, consider
enabling USE_TINY_PRINTF which is a small printf() version.
config SPL_SPI_FLASH_SUPPORT
bool "Support SPI flash drivers"
depends on SPL
help
Enable support for using SPI flash in SPL, and loading U-Boot from
SPI flash. SPI flash (Serial Peripheral Bus flash) is named after
the SPI bus that is used to connect it to a system. It is a simple
but fast bidirectional 4-wire bus (clock, chip select and two data
lines). This enables the drivers in drivers/mtd/spi as part of an
SPL build. This normally requires SPL_SPI_SUPPORT.
config SPL_SPI_SUPPORT
bool "Support SPI drivers"
depends on SPL
help
Enable support for using SPI in SPL. This is used for connecting
to SPI flash for loading U-Boot. See SPL_SPI_FLASH_SUPPORT for
more details on that. The SPI driver provides the transport for
data between the SPI flash and the CPU. This option can be used to
enable SPI drivers that are needed for other purposes also, such
as a SPI PMIC.
config SPL_TIMER_SUPPORT
bool "Support timer drivers"
depends on SPL
help
Enable support for timer drivers in SPL. These can be used to get
a timer value when in SPL, or perhaps for implementing a delay
function. This enables the drivers in drivers/timer as part of an
SPL build.
config SPL_USB_HOST_SUPPORT
bool "Support USB host drivers"
depends on SPL
help
Enable access to USB (Universal Serial Bus) host devices so that
SPL can load U-Boot from a connected USB peripheral, such as a USB
flash stick. While USB takes a little longer to start up than most
buses, it is very flexible since many different types of storage
device can be attached. This option enables the drivers in
drivers/usb/host as part of an SPL build.
config SPL_USB_SUPPORT
bool "Support loading from USB"
depends on SPL_USB_HOST_SUPPORT
help
Enable support for USB devices in SPL. This allows use of USB
devices such as hard drives and flash drivers for loading U-Boot.
The actual drivers are enabled separately using the normal U-Boot
config options. This enables loading from USB using a configured
device.
config SPL_USB_GADGET_SUPPORT
bool "Suppport USB Gadget drivers"
depends on SPL
help
Enable USB Gadget API which allows to enable USB device functions
in SPL.
if SPL_USB_GADGET_SUPPORT
config SPL_USBETH_SUPPORT
bool "Support USB Ethernet drivers"
help
Enable access to the USB network subsystem and associated
drivers in SPL. This permits SPL to load U-Boot over a
USB-connected Ethernet link (such as a USB Ethernet dongle) rather
than from an onboard peripheral. Environment support is required
since the network stack uses a number of environment variables.
See also SPL_NET_SUPPORT and SPL_ETH_SUPPORT.
config SPL_DFU_SUPPORT
bool "Support DFU (Device Firmware Upgarde)"
select SPL_HASH_SUPPORT
select SPL_DFU_NO_RESET
depends on SPL_RAM_SUPPORT
help
This feature enables the DFU (Device Firmware Upgarde) in SPL with
RAM memory device support. The ROM code will load and execute
the SPL built with dfu. The user can load binaries (u-boot/kernel) to
selected device partition from host-pc using dfu-utils.
This feature is useful to flash the binaries to factory or bare-metal
boards using USB interface.
choice
bool "DFU device selection"
depends on SPL_DFU_SUPPORT
config SPL_DFU_RAM
bool "RAM device"
depends on SPL_DFU_SUPPORT && SPL_RAM_SUPPORT
help
select RAM/DDR memory device for loading binary images
(u-boot/kernel) to the selected device partition using
DFU and execute the u-boot/kernel from RAM.
endchoice
endif
config SPL_WATCHDOG_SUPPORT
bool "Support watchdog drivers"
depends on SPL
help
Enable support for watchdog drivers in SPL. A watchdog is
typically a hardware peripheral which can reset the system when it
detects no activity for a while (such as a software crash). This
enables the drivers in drivers/watchdog as part of an SPL build.
config SPL_YMODEM_SUPPORT
bool "Support loading using Ymodem"
depends on SPL
help
While loading from serial is slow it can be a useful backup when
there is no other option. The Ymodem protocol provides a reliable
means of transmitting U-Boot over a serial line for using in SPL,
with a checksum to ensure correctness.
config TPL_ENV_SUPPORT
bool "Support an environment"
depends on TPL
help
Enable environment support in TPL. See SPL_ENV_SUPPORT for details.
config TPL_I2C_SUPPORT
bool "Support I2C"
depends on TPL
help
Enable support for the I2C bus in SPL. See SPL_I2C_SUPPORT for
details.
config TPL_LIBCOMMON_SUPPORT
bool "Support common libraries"
depends on TPL
help
Enable support for common U-Boot libraries within TPL. See
SPL_LIBCOMMON_SUPPORT for details.
config TPL_LIBGENERIC_SUPPORT
bool "Support generic libraries"
depends on TPL
help
Enable support for generic U-Boot libraries within TPL. See
SPL_LIBGENERIC_SUPPORT for details.
config TPL_MPC8XXX_INIT_DDR_SUPPORT
bool "Support MPC8XXX DDR init"
depends on TPL
help
Enable support for DDR-SDRAM on the MPC8XXX family within TPL. See
SPL_MPC8XXX_INIT_DDR_SUPPORT for details.
config TPL_MMC_SUPPORT
bool "Support MMC"
depends on TPL
help
Enable support for MMC within TPL. See SPL_MMC_SUPPORT for details.
config TPL_NAND_SUPPORT
bool "Support NAND flash"
depends on TPL
help
Enable support for NAND in SPL. See SPL_NAND_SUPPORT for details.
config TPL_SERIAL_SUPPORT
bool "Support serial"
depends on TPL
help
Enable support for serial in SPL. See SPL_SERIAL_SUPPORT for
details.
config TPL_SPI_FLASH_SUPPORT
bool "Support SPI flash drivers"
depends on TPL
help
Enable support for using SPI flash in SPL. See SPL_SPI_FLASH_SUPPORT
for details.
config TPL_SPI_SUPPORT
bool "Support SPI drivers"
depends on TPL
help
Enable support for using SPI in SPL. See SPL_SPI_SUPPORT for
details.
endmenu