blob: 44273c345f95896099dbec0a09d2d2b6bfbe0eb4 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2008-2014 Freescale Semiconductor, Inc.
*
* Based on CAAM driver in drivers/crypto/caam in Linux
*/
#include <common.h>
#include <cpu_func.h>
#include <linux/kernel.h>
#include <log.h>
#include <malloc.h>
#include "fsl_sec.h"
#include "jr.h"
#include "jobdesc.h"
#include "desc_constr.h"
#include <time.h>
#include <asm/cache.h>
#ifdef CONFIG_FSL_CORENET
#include <asm/cache.h>
#include <asm/fsl_pamu.h>
#endif
#include <dm/lists.h>
#define CIRC_CNT(head, tail, size) (((head) - (tail)) & (size - 1))
#define CIRC_SPACE(head, tail, size) CIRC_CNT((tail), (head) + 1, (size))
uint32_t sec_offset[CONFIG_SYS_FSL_MAX_NUM_OF_SEC] = {
0,
#if defined(CONFIG_ARCH_C29X)
CONFIG_SYS_FSL_SEC_IDX_OFFSET,
2 * CONFIG_SYS_FSL_SEC_IDX_OFFSET
#endif
};
#define SEC_ADDR(idx) \
((CONFIG_SYS_FSL_SEC_ADDR + sec_offset[idx]))
#define SEC_JR0_ADDR(idx) \
(SEC_ADDR(idx) + \
(CONFIG_SYS_FSL_JR0_OFFSET - CONFIG_SYS_FSL_SEC_OFFSET))
struct jobring jr0[CONFIG_SYS_FSL_MAX_NUM_OF_SEC];
static inline void start_jr0(uint8_t sec_idx)
{
ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
u32 ctpr_ms = sec_in32(&sec->ctpr_ms);
u32 scfgr = sec_in32(&sec->scfgr);
if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_INCL) {
/* VIRT_EN_INCL = 1 & VIRT_EN_POR = 1 or
* VIRT_EN_INCL = 1 & VIRT_EN_POR = 0 & SEC_SCFGR_VIRT_EN = 1
*/
if ((ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) ||
(scfgr & SEC_SCFGR_VIRT_EN))
sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0);
} else {
/* VIRT_EN_INCL = 0 && VIRT_EN_POR_VALUE = 1 */
if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR)
sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0);
}
}
static inline void jr_reset_liodn(uint8_t sec_idx)
{
ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
sec_out32(&sec->jrliodnr[0].ls, 0);
}
static inline void jr_disable_irq(uint8_t sec_idx)
{
struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
uint32_t jrcfg = sec_in32(&regs->jrcfg1);
jrcfg = jrcfg | JR_INTMASK;
sec_out32(&regs->jrcfg1, jrcfg);
}
static void jr_initregs(uint8_t sec_idx)
{
struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
struct jobring *jr = &jr0[sec_idx];
phys_addr_t ip_base = virt_to_phys((void *)jr->input_ring);
phys_addr_t op_base = virt_to_phys((void *)jr->output_ring);
#ifdef CONFIG_PHYS_64BIT
sec_out32(&regs->irba_h, ip_base >> 32);
#else
sec_out32(&regs->irba_h, 0x0);
#endif
sec_out32(&regs->irba_l, (uint32_t)ip_base);
#ifdef CONFIG_PHYS_64BIT
sec_out32(&regs->orba_h, op_base >> 32);
#else
sec_out32(&regs->orba_h, 0x0);
#endif
sec_out32(&regs->orba_l, (uint32_t)op_base);
sec_out32(&regs->ors, JR_SIZE);
sec_out32(&regs->irs, JR_SIZE);
if (!jr->irq)
jr_disable_irq(sec_idx);
}
static int jr_init(uint8_t sec_idx)
{
struct jobring *jr = &jr0[sec_idx];
memset(jr, 0, sizeof(struct jobring));
jr->jq_id = DEFAULT_JR_ID;
jr->irq = DEFAULT_IRQ;
#ifdef CONFIG_FSL_CORENET
jr->liodn = DEFAULT_JR_LIODN;
#endif
jr->size = JR_SIZE;
jr->input_ring = (dma_addr_t *)memalign(ARCH_DMA_MINALIGN,
JR_SIZE * sizeof(dma_addr_t));
if (!jr->input_ring)
return -1;
jr->op_size = roundup(JR_SIZE * sizeof(struct op_ring),
ARCH_DMA_MINALIGN);
jr->output_ring =
(struct op_ring *)memalign(ARCH_DMA_MINALIGN, jr->op_size);
if (!jr->output_ring)
return -1;
memset(jr->input_ring, 0, JR_SIZE * sizeof(dma_addr_t));
memset(jr->output_ring, 0, jr->op_size);
start_jr0(sec_idx);
jr_initregs(sec_idx);
return 0;
}
static int jr_sw_cleanup(uint8_t sec_idx)
{
struct jobring *jr = &jr0[sec_idx];
jr->head = 0;
jr->tail = 0;
jr->read_idx = 0;
jr->write_idx = 0;
memset(jr->info, 0, sizeof(jr->info));
memset(jr->input_ring, 0, jr->size * sizeof(dma_addr_t));
memset(jr->output_ring, 0, jr->size * sizeof(struct op_ring));
return 0;
}
static int jr_hw_reset(uint8_t sec_idx)
{
struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
uint32_t timeout = 100000;
uint32_t jrint, jrcr;
sec_out32(&regs->jrcr, JRCR_RESET);
do {
jrint = sec_in32(&regs->jrint);
} while (((jrint & JRINT_ERR_HALT_MASK) ==
JRINT_ERR_HALT_INPROGRESS) && --timeout);
jrint = sec_in32(&regs->jrint);
if (((jrint & JRINT_ERR_HALT_MASK) !=
JRINT_ERR_HALT_INPROGRESS) && timeout == 0)
return -1;
timeout = 100000;
sec_out32(&regs->jrcr, JRCR_RESET);
do {
jrcr = sec_in32(&regs->jrcr);
} while ((jrcr & JRCR_RESET) && --timeout);
if (timeout == 0)
return -1;
return 0;
}
/* -1 --- error, can't enqueue -- no space available */
static int jr_enqueue(uint32_t *desc_addr,
void (*callback)(uint32_t status, void *arg),
void *arg, uint8_t sec_idx)
{
struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
struct jobring *jr = &jr0[sec_idx];
int head = jr->head;
uint32_t desc_word;
int length = desc_len(desc_addr);
int i;
#ifdef CONFIG_PHYS_64BIT
uint32_t *addr_hi, *addr_lo;
#endif
/* The descriptor must be submitted to SEC block as per endianness
* of the SEC Block.
* So, if the endianness of Core and SEC block is different, each word
* of the descriptor will be byte-swapped.
*/
for (i = 0; i < length; i++) {
desc_word = desc_addr[i];
sec_out32((uint32_t *)&desc_addr[i], desc_word);
}
phys_addr_t desc_phys_addr = virt_to_phys(desc_addr);
jr->info[head].desc_phys_addr = desc_phys_addr;
jr->info[head].callback = (void *)callback;
jr->info[head].arg = arg;
jr->info[head].op_done = 0;
unsigned long start = (unsigned long)&jr->info[head] &
~(ARCH_DMA_MINALIGN - 1);
unsigned long end = ALIGN((unsigned long)&jr->info[head] +
sizeof(struct jr_info), ARCH_DMA_MINALIGN);
flush_dcache_range(start, end);
#ifdef CONFIG_PHYS_64BIT
/* Write the 64 bit Descriptor address on Input Ring.
* The 32 bit hign and low part of the address will
* depend on endianness of SEC block.
*/
#ifdef CONFIG_SYS_FSL_SEC_LE
addr_lo = (uint32_t *)(&jr->input_ring[head]);
addr_hi = (uint32_t *)(&jr->input_ring[head]) + 1;
#elif defined(CONFIG_SYS_FSL_SEC_BE)
addr_hi = (uint32_t *)(&jr->input_ring[head]);
addr_lo = (uint32_t *)(&jr->input_ring[head]) + 1;
#endif /* ifdef CONFIG_SYS_FSL_SEC_LE */
sec_out32(addr_hi, (uint32_t)(desc_phys_addr >> 32));
sec_out32(addr_lo, (uint32_t)(desc_phys_addr));
#else
/* Write the 32 bit Descriptor address on Input Ring. */
sec_out32(&jr->input_ring[head], desc_phys_addr);
#endif /* ifdef CONFIG_PHYS_64BIT */
start = (unsigned long)&jr->input_ring[head] & ~(ARCH_DMA_MINALIGN - 1);
end = ALIGN((unsigned long)&jr->input_ring[head] +
sizeof(dma_addr_t), ARCH_DMA_MINALIGN);
flush_dcache_range(start, end);
jr->head = (head + 1) & (jr->size - 1);
/* Invalidate output ring */
start = (unsigned long)jr->output_ring &
~(ARCH_DMA_MINALIGN - 1);
end = ALIGN((unsigned long)jr->output_ring + jr->op_size,
ARCH_DMA_MINALIGN);
invalidate_dcache_range(start, end);
sec_out32(&regs->irja, 1);
return 0;
}
static int jr_dequeue(int sec_idx)
{
struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
struct jobring *jr = &jr0[sec_idx];
int head = jr->head;
int tail = jr->tail;
int idx, i, found;
void (*callback)(uint32_t status, void *arg);
void *arg = NULL;
#ifdef CONFIG_PHYS_64BIT
uint32_t *addr_hi, *addr_lo;
#else
uint32_t *addr;
#endif
while (sec_in32(&regs->orsf) && CIRC_CNT(jr->head, jr->tail,
jr->size)) {
found = 0;
phys_addr_t op_desc;
#ifdef CONFIG_PHYS_64BIT
/* Read the 64 bit Descriptor address from Output Ring.
* The 32 bit hign and low part of the address will
* depend on endianness of SEC block.
*/
#ifdef CONFIG_SYS_FSL_SEC_LE
addr_lo = (uint32_t *)(&jr->output_ring[jr->tail].desc);
addr_hi = (uint32_t *)(&jr->output_ring[jr->tail].desc) + 1;
#elif defined(CONFIG_SYS_FSL_SEC_BE)
addr_hi = (uint32_t *)(&jr->output_ring[jr->tail].desc);
addr_lo = (uint32_t *)(&jr->output_ring[jr->tail].desc) + 1;
#endif /* ifdef CONFIG_SYS_FSL_SEC_LE */
op_desc = ((u64)sec_in32(addr_hi) << 32) |
((u64)sec_in32(addr_lo));
#else
/* Read the 32 bit Descriptor address from Output Ring. */
addr = (uint32_t *)&jr->output_ring[jr->tail].desc;
op_desc = sec_in32(addr);
#endif /* ifdef CONFIG_PHYS_64BIT */
uint32_t status = sec_in32(&jr->output_ring[jr->tail].status);
for (i = 0; CIRC_CNT(head, tail + i, jr->size) >= 1; i++) {
idx = (tail + i) & (jr->size - 1);
if (op_desc == jr->info[idx].desc_phys_addr) {
found = 1;
break;
}
}
/* Error condition if match not found */
if (!found)
return -1;
jr->info[idx].op_done = 1;
callback = (void *)jr->info[idx].callback;
arg = jr->info[idx].arg;
/* When the job on tail idx gets done, increment
* tail till the point where job completed out of oredr has
* been taken into account
*/
if (idx == tail)
do {
tail = (tail + 1) & (jr->size - 1);
} while (jr->info[tail].op_done);
jr->tail = tail;
jr->read_idx = (jr->read_idx + 1) & (jr->size - 1);
sec_out32(&regs->orjr, 1);
jr->info[idx].op_done = 0;
callback(status, arg);
}
return 0;
}
static void desc_done(uint32_t status, void *arg)
{
struct result *x = arg;
x->status = status;
#ifndef CONFIG_SPL_BUILD
caam_jr_strstatus(status);
#endif
x->done = 1;
}
static inline int run_descriptor_jr_idx(uint32_t *desc, uint8_t sec_idx)
{
unsigned long long timeval = get_ticks();
unsigned long long timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT);
struct result op;
int ret = 0;
memset(&op, 0, sizeof(op));
ret = jr_enqueue(desc, desc_done, &op, sec_idx);
if (ret) {
debug("Error in SEC enq\n");
ret = JQ_ENQ_ERR;
goto out;
}
timeval = get_ticks();
timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT);
while (op.done != 1) {
ret = jr_dequeue(sec_idx);
if (ret) {
debug("Error in SEC deq\n");
ret = JQ_DEQ_ERR;
goto out;
}
if ((get_ticks() - timeval) > timeout) {
debug("SEC Dequeue timed out\n");
ret = JQ_DEQ_TO_ERR;
goto out;
}
}
if (op.status) {
debug("Error %x\n", op.status);
ret = op.status;
}
out:
return ret;
}
int run_descriptor_jr(uint32_t *desc)
{
return run_descriptor_jr_idx(desc, 0);
}
static inline int jr_reset_sec(uint8_t sec_idx)
{
if (jr_hw_reset(sec_idx) < 0)
return -1;
/* Clean up the jobring structure maintained by software */
jr_sw_cleanup(sec_idx);
return 0;
}
int jr_reset(void)
{
return jr_reset_sec(0);
}
static inline int sec_reset_idx(uint8_t sec_idx)
{
ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
uint32_t mcfgr = sec_in32(&sec->mcfgr);
uint32_t timeout = 100000;
mcfgr |= MCFGR_SWRST;
sec_out32(&sec->mcfgr, mcfgr);
mcfgr |= MCFGR_DMA_RST;
sec_out32(&sec->mcfgr, mcfgr);
do {
mcfgr = sec_in32(&sec->mcfgr);
} while ((mcfgr & MCFGR_DMA_RST) == MCFGR_DMA_RST && --timeout);
if (timeout == 0)
return -1;
timeout = 100000;
do {
mcfgr = sec_in32(&sec->mcfgr);
} while ((mcfgr & MCFGR_SWRST) == MCFGR_SWRST && --timeout);
if (timeout == 0)
return -1;
return 0;
}
int sec_reset(void)
{
return sec_reset_idx(0);
}
#ifndef CONFIG_SPL_BUILD
static int deinstantiate_rng(u8 sec_idx, int state_handle_mask)
{
u32 *desc;
int sh_idx, ret = 0;
int desc_size = ALIGN(sizeof(u32) * 2, ARCH_DMA_MINALIGN);
desc = memalign(ARCH_DMA_MINALIGN, desc_size);
if (!desc) {
debug("cannot allocate RNG init descriptor memory\n");
return -ENOMEM;
}
for (sh_idx = 0; sh_idx < RNG4_MAX_HANDLES; sh_idx++) {
/*
* If the corresponding bit is set, then it means the state
* handle was initialized by us, and thus it needs to be
* deinitialized as well
*/
if (state_handle_mask & RDSTA_IF(sh_idx)) {
/*
* Create the descriptor for deinstantating this state
* handle.
*/
inline_cnstr_jobdesc_rng_deinstantiation(desc, sh_idx);
flush_dcache_range((unsigned long)desc,
(unsigned long)desc + desc_size);
ret = run_descriptor_jr_idx(desc, sec_idx);
if (ret) {
printf("SEC%u: RNG4 SH%d deinstantiation failed with error 0x%x\n",
sec_idx, sh_idx, ret);
ret = -EIO;
break;
}
printf("SEC%u: Deinstantiated RNG4 SH%d\n",
sec_idx, sh_idx);
}
}
free(desc);
return ret;
}
static int instantiate_rng(u8 sec_idx, int gen_sk)
{
u32 *desc;
u32 rdsta_val;
int ret = 0, sh_idx, size;
ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
struct rng4tst __iomem *rng =
(struct rng4tst __iomem *)&sec->rng;
desc = memalign(ARCH_DMA_MINALIGN, sizeof(uint32_t) * 6);
if (!desc) {
printf("cannot allocate RNG init descriptor memory\n");
return -1;
}
for (sh_idx = 0; sh_idx < RNG4_MAX_HANDLES; sh_idx++) {
/*
* If the corresponding bit is set, this state handle
* was initialized by somebody else, so it's left alone.
*/
rdsta_val = sec_in32(&rng->rdsta);
if (rdsta_val & (RDSTA_IF(sh_idx))) {
if (rdsta_val & RDSTA_PR(sh_idx))
continue;
printf("SEC%u: RNG4 SH%d was instantiated w/o prediction resistance. Tearing it down\n",
sec_idx, sh_idx);
ret = deinstantiate_rng(sec_idx, RDSTA_IF(sh_idx));
if (ret)
break;
}
inline_cnstr_jobdesc_rng_instantiation(desc, sh_idx, gen_sk);
size = roundup(sizeof(uint32_t) * 6, ARCH_DMA_MINALIGN);
flush_dcache_range((unsigned long)desc,
(unsigned long)desc + size);
ret = run_descriptor_jr_idx(desc, sec_idx);
if (ret)
printf("SEC%u: RNG4 SH%d instantiation failed with error 0x%x\n",
sec_idx, sh_idx, ret);
rdsta_val = sec_in32(&rng->rdsta);
if (!(rdsta_val & RDSTA_IF(sh_idx))) {
free(desc);
return -1;
}
memset(desc, 0, sizeof(uint32_t) * 6);
}
free(desc);
return ret;
}
static u8 get_rng_vid(uint8_t sec_idx)
{
ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
u8 vid;
if (caam_get_era() < 10) {
vid = (sec_in32(&sec->chavid_ls) & SEC_CHAVID_RNG_LS_MASK)
>> SEC_CHAVID_LS_RNG_SHIFT;
} else {
vid = (sec_in32(&sec->vreg.rng) & CHA_VER_VID_MASK)
>> CHA_VER_VID_SHIFT;
}
return vid;
}
/*
* By default, the TRNG runs for 200 clocks per sample;
* 1200 clocks per sample generates better entropy.
*/
static void kick_trng(int ent_delay, uint8_t sec_idx)
{
ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
struct rng4tst __iomem *rng =
(struct rng4tst __iomem *)&sec->rng;
u32 val;
/* put RNG4 into program mode */
sec_setbits32(&rng->rtmctl, RTMCTL_PRGM);
/* rtsdctl bits 0-15 contain "Entropy Delay, which defines the
* length (in system clocks) of each Entropy sample taken
* */
val = sec_in32(&rng->rtsdctl);
val = (val & ~RTSDCTL_ENT_DLY_MASK) |
(ent_delay << RTSDCTL_ENT_DLY_SHIFT);
sec_out32(&rng->rtsdctl, val);
/* min. freq. count, equal to 1/4 of the entropy sample length */
sec_out32(&rng->rtfreqmin, ent_delay >> 2);
/* disable maximum frequency count */
sec_out32(&rng->rtfreqmax, RTFRQMAX_DISABLE);
/*
* select raw sampling in both entropy shifter
* and statistical checker
*/
sec_setbits32(&rng->rtmctl, RTMCTL_SAMP_MODE_RAW_ES_SC);
/* put RNG4 into run mode */
sec_clrbits32(&rng->rtmctl, RTMCTL_PRGM);
}
static int rng_init(uint8_t sec_idx)
{
int ret, gen_sk, ent_delay = RTSDCTL_ENT_DLY_MIN;
ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
struct rng4tst __iomem *rng =
(struct rng4tst __iomem *)&sec->rng;
u32 inst_handles;
gen_sk = !(sec_in32(&rng->rdsta) & RDSTA_SKVN);
do {
inst_handles = sec_in32(&rng->rdsta) & RDSTA_MASK;
/*
* If either of the SH's were instantiated by somebody else
* then it is assumed that the entropy
* parameters are properly set and thus the function
* setting these (kick_trng(...)) is skipped.
* Also, if a handle was instantiated, do not change
* the TRNG parameters.
*/
if (!inst_handles) {
kick_trng(ent_delay, sec_idx);
ent_delay += 400;
}
/*
* if instantiate_rng(...) fails, the loop will rerun
* and the kick_trng(...) function will modfiy the
* upper and lower limits of the entropy sampling
* interval, leading to a sucessful initialization of
* the RNG.
*/
ret = instantiate_rng(sec_idx, gen_sk);
} while ((ret == -1) && (ent_delay < RTSDCTL_ENT_DLY_MAX));
if (ret) {
printf("SEC%u: Failed to instantiate RNG\n", sec_idx);
return ret;
}
/* Enable RDB bit so that RNG works faster */
sec_setbits32(&sec->scfgr, SEC_SCFGR_RDBENABLE);
return ret;
}
#endif
int sec_init_idx(uint8_t sec_idx)
{
ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
uint32_t mcr = sec_in32(&sec->mcfgr);
int ret = 0;
#ifdef CONFIG_FSL_CORENET
uint32_t liodnr;
uint32_t liodn_ns;
uint32_t liodn_s;
#endif
if (!(sec_idx < CONFIG_SYS_FSL_MAX_NUM_OF_SEC)) {
printf("SEC%u: initialization failed\n", sec_idx);
return -1;
}
/*
* Modifying CAAM Read/Write Attributes
* For LS2080A
* For AXI Write - Cacheable, Write Back, Write allocate
* For AXI Read - Cacheable, Read allocate
* Only For LS2080a, to solve CAAM coherency issues
*/
#ifdef CONFIG_ARCH_LS2080A
mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0xb << MCFGR_AWCACHE_SHIFT);
mcr = (mcr & ~MCFGR_ARCACHE_MASK) | (0x6 << MCFGR_ARCACHE_SHIFT);
#else
mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0x2 << MCFGR_AWCACHE_SHIFT);
#endif
#ifdef CONFIG_PHYS_64BIT
mcr |= (1 << MCFGR_PS_SHIFT);
#endif
sec_out32(&sec->mcfgr, mcr);
#ifdef CONFIG_FSL_CORENET
#ifdef CONFIG_SPL_BUILD
/*
* For SPL Build, Set the Liodns in SEC JR0 for
* creating PAMU entries corresponding to these.
* For normal build, these are set in set_liodns().
*/
liodn_ns = CONFIG_SPL_JR0_LIODN_NS & JRNSLIODN_MASK;
liodn_s = CONFIG_SPL_JR0_LIODN_S & JRSLIODN_MASK;
liodnr = sec_in32(&sec->jrliodnr[0].ls) &
~(JRNSLIODN_MASK | JRSLIODN_MASK);
liodnr = liodnr |
(liodn_ns << JRNSLIODN_SHIFT) |
(liodn_s << JRSLIODN_SHIFT);
sec_out32(&sec->jrliodnr[0].ls, liodnr);
#else
liodnr = sec_in32(&sec->jrliodnr[0].ls);
liodn_ns = (liodnr & JRNSLIODN_MASK) >> JRNSLIODN_SHIFT;
liodn_s = (liodnr & JRSLIODN_MASK) >> JRSLIODN_SHIFT;
#endif
#endif
ret = jr_init(sec_idx);
if (ret < 0) {
printf("SEC%u: initialization failed\n", sec_idx);
return -1;
}
#ifdef CONFIG_FSL_CORENET
ret = sec_config_pamu_table(liodn_ns, liodn_s);
if (ret < 0)
return -1;
pamu_enable();
#endif
#ifndef CONFIG_SPL_BUILD
if (get_rng_vid(sec_idx) >= 4) {
if (rng_init(sec_idx) < 0) {
printf("SEC%u: RNG instantiation failed\n", sec_idx);
return -1;
}
if (IS_ENABLED(CONFIG_DM_RNG)) {
ret = device_bind_driver(NULL, "caam-rng", "caam-rng",
NULL);
if (ret)
printf("Couldn't bind rng driver (%d)\n", ret);
}
printf("SEC%u: RNG instantiated\n", sec_idx);
}
#endif
return ret;
}
int sec_init(void)
{
return sec_init_idx(0);
}