| /* |
| * Copyright (C) 2013 Altera Corporation <www.altera.com> |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <common.h> |
| #include <asm/io.h> |
| #include <asm/arch/clock_manager.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| static const struct socfpga_clock_manager *clock_manager_base = |
| (struct socfpga_clock_manager *)SOCFPGA_CLKMGR_ADDRESS; |
| |
| static void cm_wait_for_lock(uint32_t mask) |
| { |
| register uint32_t inter_val; |
| uint32_t retry = 0; |
| do { |
| inter_val = readl(&clock_manager_base->inter) & mask; |
| if (inter_val == mask) |
| retry++; |
| else |
| retry = 0; |
| if (retry >= 10) |
| break; |
| } while (1); |
| } |
| |
| /* function to poll in the fsm busy bit */ |
| static void cm_wait_for_fsm(void) |
| { |
| while (readl(&clock_manager_base->stat) & CLKMGR_STAT_BUSY) |
| ; |
| } |
| |
| /* |
| * function to write the bypass register which requires a poll of the |
| * busy bit |
| */ |
| static void cm_write_bypass(uint32_t val) |
| { |
| writel(val, &clock_manager_base->bypass); |
| cm_wait_for_fsm(); |
| } |
| |
| /* function to write the ctrl register which requires a poll of the busy bit */ |
| static void cm_write_ctrl(uint32_t val) |
| { |
| writel(val, &clock_manager_base->ctrl); |
| cm_wait_for_fsm(); |
| } |
| |
| /* function to write a clock register that has phase information */ |
| static void cm_write_with_phase(uint32_t value, |
| uint32_t reg_address, uint32_t mask) |
| { |
| /* poll until phase is zero */ |
| while (readl(reg_address) & mask) |
| ; |
| |
| writel(value, reg_address); |
| |
| while (readl(reg_address) & mask) |
| ; |
| } |
| |
| /* |
| * Setup clocks while making no assumptions about previous state of the clocks. |
| * |
| * Start by being paranoid and gate all sw managed clocks |
| * Put all plls in bypass |
| * Put all plls VCO registers back to reset value (bandgap power down). |
| * Put peripheral and main pll src to reset value to avoid glitch. |
| * Delay 5 us. |
| * Deassert bandgap power down and set numerator and denominator |
| * Start 7 us timer. |
| * set internal dividers |
| * Wait for 7 us timer. |
| * Enable plls |
| * Set external dividers while plls are locking |
| * Wait for pll lock |
| * Assert/deassert outreset all. |
| * Take all pll's out of bypass |
| * Clear safe mode |
| * set source main and peripheral clocks |
| * Ungate clocks |
| */ |
| |
| void cm_basic_init(const struct cm_config * const cfg) |
| { |
| unsigned long end; |
| |
| /* Start by being paranoid and gate all sw managed clocks */ |
| |
| /* |
| * We need to disable nandclk |
| * and then do another apb access before disabling |
| * gatting off the rest of the periperal clocks. |
| */ |
| writel(~CLKMGR_PERPLLGRP_EN_NANDCLK_MASK & |
| readl(&clock_manager_base->per_pll.en), |
| &clock_manager_base->per_pll.en); |
| |
| /* DO NOT GATE OFF DEBUG CLOCKS & BRIDGE CLOCKS */ |
| writel(CLKMGR_MAINPLLGRP_EN_DBGTIMERCLK_MASK | |
| CLKMGR_MAINPLLGRP_EN_DBGTRACECLK_MASK | |
| CLKMGR_MAINPLLGRP_EN_DBGCLK_MASK | |
| CLKMGR_MAINPLLGRP_EN_DBGATCLK_MASK | |
| CLKMGR_MAINPLLGRP_EN_S2FUSER0CLK_MASK | |
| CLKMGR_MAINPLLGRP_EN_L4MPCLK_MASK, |
| &clock_manager_base->main_pll.en); |
| |
| writel(0, &clock_manager_base->sdr_pll.en); |
| |
| /* now we can gate off the rest of the peripheral clocks */ |
| writel(0, &clock_manager_base->per_pll.en); |
| |
| /* Put all plls in bypass */ |
| cm_write_bypass(CLKMGR_BYPASS_PERPLL | CLKMGR_BYPASS_SDRPLL | |
| CLKMGR_BYPASS_MAINPLL); |
| |
| /* Put all plls VCO registers back to reset value. */ |
| writel(CLKMGR_MAINPLLGRP_VCO_RESET_VALUE & |
| ~CLKMGR_MAINPLLGRP_VCO_REGEXTSEL_MASK, |
| &clock_manager_base->main_pll.vco); |
| writel(CLKMGR_PERPLLGRP_VCO_RESET_VALUE & |
| ~CLKMGR_PERPLLGRP_VCO_REGEXTSEL_MASK, |
| &clock_manager_base->per_pll.vco); |
| writel(CLKMGR_SDRPLLGRP_VCO_RESET_VALUE & |
| ~CLKMGR_SDRPLLGRP_VCO_REGEXTSEL_MASK, |
| &clock_manager_base->sdr_pll.vco); |
| |
| /* |
| * The clocks to the flash devices and the L4_MAIN clocks can |
| * glitch when coming out of safe mode if their source values |
| * are different from their reset value. So the trick it to |
| * put them back to their reset state, and change input |
| * after exiting safe mode but before ungating the clocks. |
| */ |
| writel(CLKMGR_PERPLLGRP_SRC_RESET_VALUE, |
| &clock_manager_base->per_pll.src); |
| writel(CLKMGR_MAINPLLGRP_L4SRC_RESET_VALUE, |
| &clock_manager_base->main_pll.l4src); |
| |
| /* read back for the required 5 us delay. */ |
| readl(&clock_manager_base->main_pll.vco); |
| readl(&clock_manager_base->per_pll.vco); |
| readl(&clock_manager_base->sdr_pll.vco); |
| |
| |
| /* |
| * We made sure bgpwr down was assert for 5 us. Now deassert BG PWR DN |
| * with numerator and denominator. |
| */ |
| writel(cfg->main_vco_base, &clock_manager_base->main_pll.vco); |
| writel(cfg->peri_vco_base, &clock_manager_base->per_pll.vco); |
| writel(cfg->sdram_vco_base, &clock_manager_base->sdr_pll.vco); |
| |
| /* |
| * Time starts here. Must wait 7 us from |
| * BGPWRDN_SET(0) to VCO_ENABLE_SET(1). |
| */ |
| end = timer_get_us() + 7; |
| |
| /* main mpu */ |
| writel(cfg->mpuclk, &clock_manager_base->main_pll.mpuclk); |
| |
| /* main main clock */ |
| writel(cfg->mainclk, &clock_manager_base->main_pll.mainclk); |
| |
| /* main for dbg */ |
| writel(cfg->dbgatclk, &clock_manager_base->main_pll.dbgatclk); |
| |
| /* main for cfgs2fuser0clk */ |
| writel(cfg->cfg2fuser0clk, |
| &clock_manager_base->main_pll.cfgs2fuser0clk); |
| |
| /* Peri emac0 50 MHz default to RMII */ |
| writel(cfg->emac0clk, &clock_manager_base->per_pll.emac0clk); |
| |
| /* Peri emac1 50 MHz default to RMII */ |
| writel(cfg->emac1clk, &clock_manager_base->per_pll.emac1clk); |
| |
| /* Peri QSPI */ |
| writel(cfg->mainqspiclk, &clock_manager_base->main_pll.mainqspiclk); |
| |
| writel(cfg->perqspiclk, &clock_manager_base->per_pll.perqspiclk); |
| |
| /* Peri pernandsdmmcclk */ |
| writel(cfg->mainnandsdmmcclk, |
| &clock_manager_base->main_pll.mainnandsdmmcclk); |
| |
| writel(cfg->pernandsdmmcclk, |
| &clock_manager_base->per_pll.pernandsdmmcclk); |
| |
| /* Peri perbaseclk */ |
| writel(cfg->perbaseclk, &clock_manager_base->per_pll.perbaseclk); |
| |
| /* Peri s2fuser1clk */ |
| writel(cfg->s2fuser1clk, &clock_manager_base->per_pll.s2fuser1clk); |
| |
| /* 7 us must have elapsed before we can enable the VCO */ |
| while (timer_get_us() < end) |
| ; |
| |
| /* Enable vco */ |
| /* main pll vco */ |
| writel(cfg->main_vco_base | CLKMGR_MAINPLLGRP_VCO_EN, |
| &clock_manager_base->main_pll.vco); |
| |
| /* periferal pll */ |
| writel(cfg->peri_vco_base | CLKMGR_MAINPLLGRP_VCO_EN, |
| &clock_manager_base->per_pll.vco); |
| |
| /* sdram pll vco */ |
| writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN, |
| &clock_manager_base->sdr_pll.vco); |
| |
| /* L3 MP and L3 SP */ |
| writel(cfg->maindiv, &clock_manager_base->main_pll.maindiv); |
| |
| writel(cfg->dbgdiv, &clock_manager_base->main_pll.dbgdiv); |
| |
| writel(cfg->tracediv, &clock_manager_base->main_pll.tracediv); |
| |
| /* L4 MP, L4 SP, can0, and can1 */ |
| writel(cfg->perdiv, &clock_manager_base->per_pll.div); |
| |
| writel(cfg->gpiodiv, &clock_manager_base->per_pll.gpiodiv); |
| |
| #define LOCKED_MASK \ |
| (CLKMGR_INTER_SDRPLLLOCKED_MASK | \ |
| CLKMGR_INTER_PERPLLLOCKED_MASK | \ |
| CLKMGR_INTER_MAINPLLLOCKED_MASK) |
| |
| cm_wait_for_lock(LOCKED_MASK); |
| |
| /* write the sdram clock counters before toggling outreset all */ |
| writel(cfg->ddrdqsclk & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK, |
| &clock_manager_base->sdr_pll.ddrdqsclk); |
| |
| writel(cfg->ddr2xdqsclk & CLKMGR_SDRPLLGRP_DDR2XDQSCLK_CNT_MASK, |
| &clock_manager_base->sdr_pll.ddr2xdqsclk); |
| |
| writel(cfg->ddrdqclk & CLKMGR_SDRPLLGRP_DDRDQCLK_CNT_MASK, |
| &clock_manager_base->sdr_pll.ddrdqclk); |
| |
| writel(cfg->s2fuser2clk & CLKMGR_SDRPLLGRP_S2FUSER2CLK_CNT_MASK, |
| &clock_manager_base->sdr_pll.s2fuser2clk); |
| |
| /* |
| * after locking, but before taking out of bypass |
| * assert/deassert outresetall |
| */ |
| uint32_t mainvco = readl(&clock_manager_base->main_pll.vco); |
| |
| /* assert main outresetall */ |
| writel(mainvco | CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK, |
| &clock_manager_base->main_pll.vco); |
| |
| uint32_t periphvco = readl(&clock_manager_base->per_pll.vco); |
| |
| /* assert pheriph outresetall */ |
| writel(periphvco | CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK, |
| &clock_manager_base->per_pll.vco); |
| |
| /* assert sdram outresetall */ |
| writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN| |
| CLKMGR_SDRPLLGRP_VCO_OUTRESETALL, |
| &clock_manager_base->sdr_pll.vco); |
| |
| /* deassert main outresetall */ |
| writel(mainvco & ~CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK, |
| &clock_manager_base->main_pll.vco); |
| |
| /* deassert pheriph outresetall */ |
| writel(periphvco & ~CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK, |
| &clock_manager_base->per_pll.vco); |
| |
| /* deassert sdram outresetall */ |
| writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN, |
| &clock_manager_base->sdr_pll.vco); |
| |
| /* |
| * now that we've toggled outreset all, all the clocks |
| * are aligned nicely; so we can change any phase. |
| */ |
| cm_write_with_phase(cfg->ddrdqsclk, |
| (uint32_t)&clock_manager_base->sdr_pll.ddrdqsclk, |
| CLKMGR_SDRPLLGRP_DDRDQSCLK_PHASE_MASK); |
| |
| /* SDRAM DDR2XDQSCLK */ |
| cm_write_with_phase(cfg->ddr2xdqsclk, |
| (uint32_t)&clock_manager_base->sdr_pll.ddr2xdqsclk, |
| CLKMGR_SDRPLLGRP_DDR2XDQSCLK_PHASE_MASK); |
| |
| cm_write_with_phase(cfg->ddrdqclk, |
| (uint32_t)&clock_manager_base->sdr_pll.ddrdqclk, |
| CLKMGR_SDRPLLGRP_DDRDQCLK_PHASE_MASK); |
| |
| cm_write_with_phase(cfg->s2fuser2clk, |
| (uint32_t)&clock_manager_base->sdr_pll.s2fuser2clk, |
| CLKMGR_SDRPLLGRP_S2FUSER2CLK_PHASE_MASK); |
| |
| /* Take all three PLLs out of bypass when safe mode is cleared. */ |
| cm_write_bypass(0); |
| |
| /* clear safe mode */ |
| cm_write_ctrl(readl(&clock_manager_base->ctrl) | CLKMGR_CTRL_SAFEMODE); |
| |
| /* |
| * now that safe mode is clear with clocks gated |
| * it safe to change the source mux for the flashes the the L4_MAIN |
| */ |
| writel(cfg->persrc, &clock_manager_base->per_pll.src); |
| writel(cfg->l4src, &clock_manager_base->main_pll.l4src); |
| |
| /* Now ungate non-hw-managed clocks */ |
| writel(~0, &clock_manager_base->main_pll.en); |
| writel(~0, &clock_manager_base->per_pll.en); |
| writel(~0, &clock_manager_base->sdr_pll.en); |
| |
| /* Clear the loss of lock bits (write 1 to clear) */ |
| writel(CLKMGR_INTER_SDRPLLLOST_MASK | CLKMGR_INTER_PERPLLLOST_MASK | |
| CLKMGR_INTER_MAINPLLLOST_MASK, |
| &clock_manager_base->inter); |
| } |
| |
| static unsigned int cm_get_main_vco_clk_hz(void) |
| { |
| uint32_t reg, clock; |
| |
| /* get the main VCO clock */ |
| reg = readl(&clock_manager_base->main_pll.vco); |
| clock = cm_get_osc_clk_hz(1); |
| clock /= ((reg & CLKMGR_MAINPLLGRP_VCO_DENOM_MASK) >> |
| CLKMGR_MAINPLLGRP_VCO_DENOM_OFFSET) + 1; |
| clock *= ((reg & CLKMGR_MAINPLLGRP_VCO_NUMER_MASK) >> |
| CLKMGR_MAINPLLGRP_VCO_NUMER_OFFSET) + 1; |
| |
| return clock; |
| } |
| |
| static unsigned int cm_get_per_vco_clk_hz(void) |
| { |
| uint32_t reg, clock = 0; |
| |
| /* identify PER PLL clock source */ |
| reg = readl(&clock_manager_base->per_pll.vco); |
| reg = (reg & CLKMGR_PERPLLGRP_VCO_SSRC_MASK) >> |
| CLKMGR_PERPLLGRP_VCO_SSRC_OFFSET; |
| if (reg == CLKMGR_VCO_SSRC_EOSC1) |
| clock = cm_get_osc_clk_hz(1); |
| else if (reg == CLKMGR_VCO_SSRC_EOSC2) |
| clock = cm_get_osc_clk_hz(2); |
| else if (reg == CLKMGR_VCO_SSRC_F2S) |
| clock = cm_get_f2s_per_ref_clk_hz(); |
| |
| /* get the PER VCO clock */ |
| reg = readl(&clock_manager_base->per_pll.vco); |
| clock /= ((reg & CLKMGR_PERPLLGRP_VCO_DENOM_MASK) >> |
| CLKMGR_PERPLLGRP_VCO_DENOM_OFFSET) + 1; |
| clock *= ((reg & CLKMGR_PERPLLGRP_VCO_NUMER_MASK) >> |
| CLKMGR_PERPLLGRP_VCO_NUMER_OFFSET) + 1; |
| |
| return clock; |
| } |
| |
| unsigned long cm_get_mpu_clk_hz(void) |
| { |
| uint32_t reg, clock; |
| |
| clock = cm_get_main_vco_clk_hz(); |
| |
| /* get the MPU clock */ |
| reg = readl(&clock_manager_base->altera.mpuclk); |
| clock /= (reg + 1); |
| reg = readl(&clock_manager_base->main_pll.mpuclk); |
| clock /= (reg + 1); |
| return clock; |
| } |
| |
| unsigned long cm_get_sdram_clk_hz(void) |
| { |
| uint32_t reg, clock = 0; |
| |
| /* identify SDRAM PLL clock source */ |
| reg = readl(&clock_manager_base->sdr_pll.vco); |
| reg = (reg & CLKMGR_SDRPLLGRP_VCO_SSRC_MASK) >> |
| CLKMGR_SDRPLLGRP_VCO_SSRC_OFFSET; |
| if (reg == CLKMGR_VCO_SSRC_EOSC1) |
| clock = cm_get_osc_clk_hz(1); |
| else if (reg == CLKMGR_VCO_SSRC_EOSC2) |
| clock = cm_get_osc_clk_hz(2); |
| else if (reg == CLKMGR_VCO_SSRC_F2S) |
| clock = cm_get_f2s_sdr_ref_clk_hz(); |
| |
| /* get the SDRAM VCO clock */ |
| reg = readl(&clock_manager_base->sdr_pll.vco); |
| clock /= ((reg & CLKMGR_SDRPLLGRP_VCO_DENOM_MASK) >> |
| CLKMGR_SDRPLLGRP_VCO_DENOM_OFFSET) + 1; |
| clock *= ((reg & CLKMGR_SDRPLLGRP_VCO_NUMER_MASK) >> |
| CLKMGR_SDRPLLGRP_VCO_NUMER_OFFSET) + 1; |
| |
| /* get the SDRAM (DDR_DQS) clock */ |
| reg = readl(&clock_manager_base->sdr_pll.ddrdqsclk); |
| reg = (reg & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK) >> |
| CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_OFFSET; |
| clock /= (reg + 1); |
| |
| return clock; |
| } |
| |
| unsigned int cm_get_l4_sp_clk_hz(void) |
| { |
| uint32_t reg, clock = 0; |
| |
| /* identify the source of L4 SP clock */ |
| reg = readl(&clock_manager_base->main_pll.l4src); |
| reg = (reg & CLKMGR_MAINPLLGRP_L4SRC_L4SP) >> |
| CLKMGR_MAINPLLGRP_L4SRC_L4SP_OFFSET; |
| |
| if (reg == CLKMGR_L4_SP_CLK_SRC_MAINPLL) { |
| clock = cm_get_main_vco_clk_hz(); |
| |
| /* get the clock prior L4 SP divider (main clk) */ |
| reg = readl(&clock_manager_base->altera.mainclk); |
| clock /= (reg + 1); |
| reg = readl(&clock_manager_base->main_pll.mainclk); |
| clock /= (reg + 1); |
| } else if (reg == CLKMGR_L4_SP_CLK_SRC_PERPLL) { |
| clock = cm_get_per_vco_clk_hz(); |
| |
| /* get the clock prior L4 SP divider (periph_base_clk) */ |
| reg = readl(&clock_manager_base->per_pll.perbaseclk); |
| clock /= (reg + 1); |
| } |
| |
| /* get the L4 SP clock which supplied to UART */ |
| reg = readl(&clock_manager_base->main_pll.maindiv); |
| reg = (reg & CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_MASK) >> |
| CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_OFFSET; |
| clock = clock / (1 << reg); |
| |
| return clock; |
| } |
| |
| unsigned int cm_get_mmc_controller_clk_hz(void) |
| { |
| uint32_t reg, clock = 0; |
| |
| /* identify the source of MMC clock */ |
| reg = readl(&clock_manager_base->per_pll.src); |
| reg = (reg & CLKMGR_PERPLLGRP_SRC_SDMMC_MASK) >> |
| CLKMGR_PERPLLGRP_SRC_SDMMC_OFFSET; |
| |
| if (reg == CLKMGR_SDMMC_CLK_SRC_F2S) { |
| clock = cm_get_f2s_per_ref_clk_hz(); |
| } else if (reg == CLKMGR_SDMMC_CLK_SRC_MAIN) { |
| clock = cm_get_main_vco_clk_hz(); |
| |
| /* get the SDMMC clock */ |
| reg = readl(&clock_manager_base->main_pll.mainnandsdmmcclk); |
| clock /= (reg + 1); |
| } else if (reg == CLKMGR_SDMMC_CLK_SRC_PER) { |
| clock = cm_get_per_vco_clk_hz(); |
| |
| /* get the SDMMC clock */ |
| reg = readl(&clock_manager_base->per_pll.pernandsdmmcclk); |
| clock /= (reg + 1); |
| } |
| |
| /* further divide by 4 as we have fixed divider at wrapper */ |
| clock /= 4; |
| return clock; |
| } |
| |
| unsigned int cm_get_qspi_controller_clk_hz(void) |
| { |
| uint32_t reg, clock = 0; |
| |
| /* identify the source of QSPI clock */ |
| reg = readl(&clock_manager_base->per_pll.src); |
| reg = (reg & CLKMGR_PERPLLGRP_SRC_QSPI_MASK) >> |
| CLKMGR_PERPLLGRP_SRC_QSPI_OFFSET; |
| |
| if (reg == CLKMGR_QSPI_CLK_SRC_F2S) { |
| clock = cm_get_f2s_per_ref_clk_hz(); |
| } else if (reg == CLKMGR_QSPI_CLK_SRC_MAIN) { |
| clock = cm_get_main_vco_clk_hz(); |
| |
| /* get the qspi clock */ |
| reg = readl(&clock_manager_base->main_pll.mainqspiclk); |
| clock /= (reg + 1); |
| } else if (reg == CLKMGR_QSPI_CLK_SRC_PER) { |
| clock = cm_get_per_vco_clk_hz(); |
| |
| /* get the qspi clock */ |
| reg = readl(&clock_manager_base->per_pll.perqspiclk); |
| clock /= (reg + 1); |
| } |
| |
| return clock; |
| } |
| |
| unsigned int cm_get_spi_controller_clk_hz(void) |
| { |
| uint32_t reg, clock = 0; |
| |
| clock = cm_get_per_vco_clk_hz(); |
| |
| /* get the clock prior L4 SP divider (periph_base_clk) */ |
| reg = readl(&clock_manager_base->per_pll.perbaseclk); |
| clock /= (reg + 1); |
| |
| return clock; |
| } |
| |
| static void cm_print_clock_quick_summary(void) |
| { |
| printf("MPU %10ld kHz\n", cm_get_mpu_clk_hz() / 1000); |
| printf("DDR %10ld kHz\n", cm_get_sdram_clk_hz() / 1000); |
| printf("EOSC1 %8d kHz\n", cm_get_osc_clk_hz(1) / 1000); |
| printf("EOSC2 %8d kHz\n", cm_get_osc_clk_hz(2) / 1000); |
| printf("F2S_SDR_REF %8d kHz\n", cm_get_f2s_sdr_ref_clk_hz() / 1000); |
| printf("F2S_PER_REF %8d kHz\n", cm_get_f2s_per_ref_clk_hz() / 1000); |
| printf("MMC %8d kHz\n", cm_get_mmc_controller_clk_hz() / 1000); |
| printf("QSPI %8d kHz\n", cm_get_qspi_controller_clk_hz() / 1000); |
| printf("UART %8d kHz\n", cm_get_l4_sp_clk_hz() / 1000); |
| printf("SPI %8d kHz\n", cm_get_spi_controller_clk_hz() / 1000); |
| } |
| |
| int set_cpu_clk_info(void) |
| { |
| /* Calculate the clock frequencies required for drivers */ |
| cm_get_l4_sp_clk_hz(); |
| cm_get_mmc_controller_clk_hz(); |
| |
| gd->bd->bi_arm_freq = cm_get_mpu_clk_hz() / 1000000; |
| gd->bd->bi_dsp_freq = 0; |
| gd->bd->bi_ddr_freq = cm_get_sdram_clk_hz() / 1000000; |
| |
| return 0; |
| } |
| |
| int do_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) |
| { |
| cm_print_clock_quick_summary(); |
| return 0; |
| } |
| |
| U_BOOT_CMD( |
| clocks, CONFIG_SYS_MAXARGS, 1, do_showclocks, |
| "display clocks", |
| "" |
| ); |