| /* |
| * (C) Copyright 2001 |
| * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com. |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| /* |
| * I2C Functions similar to the standard memory functions. |
| * |
| * There are several parameters in many of the commands that bear further |
| * explanations: |
| * |
| * Two of the commands (imm and imw) take a byte/word/long modifier |
| * (e.g. imm.w specifies the word-length modifier). This was done to |
| * allow manipulating word-length registers. It was not done on any other |
| * commands because it was not deemed useful. |
| * |
| * {i2c_chip} is the I2C chip address (the first byte sent on the bus). |
| * Each I2C chip on the bus has a unique address. On the I2C data bus, |
| * the address is the upper seven bits and the LSB is the "read/write" |
| * bit. Note that the {i2c_chip} address specified on the command |
| * line is not shifted up: e.g. a typical EEPROM memory chip may have |
| * an I2C address of 0x50, but the data put on the bus will be 0xA0 |
| * for write and 0xA1 for read. This "non shifted" address notation |
| * matches at least half of the data sheets :-/. |
| * |
| * {addr} is the address (or offset) within the chip. Small memory |
| * chips have 8 bit addresses. Large memory chips have 16 bit |
| * addresses. Other memory chips have 9, 10, or 11 bit addresses. |
| * Many non-memory chips have multiple registers and {addr} is used |
| * as the register index. Some non-memory chips have only one register |
| * and therefore don't need any {addr} parameter. |
| * |
| * The default {addr} parameter is one byte (.1) which works well for |
| * memories and registers with 8 bits of address space. |
| * |
| * You can specify the length of the {addr} field with the optional .0, |
| * .1, or .2 modifier (similar to the .b, .w, .l modifier). If you are |
| * manipulating a single register device which doesn't use an address |
| * field, use "0.0" for the address and the ".0" length field will |
| * suppress the address in the I2C data stream. This also works for |
| * successive reads using the I2C auto-incrementing memory pointer. |
| * |
| * If you are manipulating a large memory with 2-byte addresses, use |
| * the .2 address modifier, e.g. 210.2 addresses location 528 (decimal). |
| * |
| * Then there are the unfortunate memory chips that spill the most |
| * significant 1, 2, or 3 bits of address into the chip address byte. |
| * This effectively makes one chip (logically) look like 2, 4, or |
| * 8 chips. This is handled (awkwardly) by #defining |
| * CFG_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the |
| * {addr} field (since .1 is the default, it doesn't actually have to |
| * be specified). Examples: given a memory chip at I2C chip address |
| * 0x50, the following would happen... |
| * imd 50 0 10 display 16 bytes starting at 0x000 |
| * On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd> |
| * imd 50 100 10 display 16 bytes starting at 0x100 |
| * On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd> |
| * imd 50 210 10 display 16 bytes starting at 0x210 |
| * On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd> |
| * This is awfully ugly. It would be nice if someone would think up |
| * a better way of handling this. |
| * |
| * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de). |
| */ |
| |
| #include <common.h> |
| #include <command.h> |
| #include <i2c.h> |
| #include <asm/byteorder.h> |
| |
| #if (CONFIG_COMMANDS & CFG_CMD_I2C) |
| |
| |
| /* Display values from last command. |
| * Memory modify remembered values are different from display memory. |
| */ |
| static uchar i2c_dp_last_chip; |
| static uint i2c_dp_last_addr; |
| static uint i2c_dp_last_alen; |
| static uint i2c_dp_last_length = 0x10; |
| |
| static uchar i2c_mm_last_chip; |
| static uint i2c_mm_last_addr; |
| static uint i2c_mm_last_alen; |
| |
| #if defined(CFG_I2C_NOPROBES) |
| static uchar i2c_no_probes[] = CFG_I2C_NOPROBES; |
| #endif |
| |
| static int |
| mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[]); |
| extern int cmd_get_data_size(char* arg, int default_size); |
| |
| /* |
| * Syntax: |
| * imd {i2c_chip} {addr}{.0, .1, .2} {len} |
| */ |
| #define DISP_LINE_LEN 16 |
| |
| int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| { |
| u_char chip; |
| uint addr, alen, length; |
| int j, nbytes, linebytes; |
| |
| /* We use the last specified parameters, unless new ones are |
| * entered. |
| */ |
| chip = i2c_dp_last_chip; |
| addr = i2c_dp_last_addr; |
| alen = i2c_dp_last_alen; |
| length = i2c_dp_last_length; |
| |
| if (argc < 3) { |
| printf ("Usage:\n%s\n", cmdtp->usage); |
| return 1; |
| } |
| |
| if ((flag & CMD_FLAG_REPEAT) == 0) { |
| /* |
| * New command specified. |
| */ |
| alen = 1; |
| |
| /* |
| * I2C chip address |
| */ |
| chip = simple_strtoul(argv[1], NULL, 16); |
| |
| /* |
| * I2C data address within the chip. This can be 1 or |
| * 2 bytes long. Some day it might be 3 bytes long :-). |
| */ |
| addr = simple_strtoul(argv[2], NULL, 16); |
| alen = 1; |
| for(j = 0; j < 8; j++) { |
| if (argv[2][j] == '.') { |
| alen = argv[2][j+1] - '0'; |
| if (alen > 4) { |
| printf ("Usage:\n%s\n", cmdtp->usage); |
| return 1; |
| } |
| break; |
| } else if (argv[2][j] == '\0') { |
| break; |
| } |
| } |
| |
| /* |
| * If another parameter, it is the length to display. |
| * Length is the number of objects, not number of bytes. |
| */ |
| if (argc > 3) |
| length = simple_strtoul(argv[3], NULL, 16); |
| } |
| |
| /* |
| * Print the lines. |
| * |
| * We buffer all read data, so we can make sure data is read only |
| * once. |
| */ |
| nbytes = length; |
| do { |
| unsigned char linebuf[DISP_LINE_LEN]; |
| unsigned char *cp; |
| |
| linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes; |
| |
| if(i2c_read(chip, addr, alen, linebuf, linebytes) != 0) { |
| printf("Error reading the chip.\n"); |
| } else { |
| printf("%04x:", addr); |
| cp = linebuf; |
| for (j=0; j<linebytes; j++) { |
| printf(" %02x", *cp++); |
| addr++; |
| } |
| printf(" "); |
| cp = linebuf; |
| for (j=0; j<linebytes; j++) { |
| if ((*cp < 0x20) || (*cp > 0x7e)) |
| printf("."); |
| else |
| printf("%c", *cp); |
| cp++; |
| } |
| printf("\n"); |
| } |
| nbytes -= linebytes; |
| } while (nbytes > 0); |
| |
| i2c_dp_last_chip = chip; |
| i2c_dp_last_addr = addr; |
| i2c_dp_last_alen = alen; |
| i2c_dp_last_length = length; |
| |
| return 0; |
| } |
| |
| int do_i2c_mm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| { |
| return mod_i2c_mem (cmdtp, 1, flag, argc, argv); |
| } |
| |
| |
| int do_i2c_nm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| { |
| return mod_i2c_mem (cmdtp, 0, flag, argc, argv); |
| } |
| |
| /* Write (fill) memory |
| * |
| * Syntax: |
| * imw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}] |
| */ |
| int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| { |
| uchar chip; |
| ulong addr; |
| uint alen; |
| uchar byte; |
| int count; |
| int j; |
| |
| if ((argc < 4) || (argc > 5)) { |
| printf ("Usage:\n%s\n", cmdtp->usage); |
| return 1; |
| } |
| |
| /* |
| * Chip is always specified. |
| */ |
| chip = simple_strtoul(argv[1], NULL, 16); |
| |
| /* |
| * Address is always specified. |
| */ |
| addr = simple_strtoul(argv[2], NULL, 16); |
| alen = 1; |
| for(j = 0; j < 8; j++) { |
| if (argv[2][j] == '.') { |
| alen = argv[2][j+1] - '0'; |
| if(alen > 4) { |
| printf ("Usage:\n%s\n", cmdtp->usage); |
| return 1; |
| } |
| break; |
| } else if (argv[2][j] == '\0') { |
| break; |
| } |
| } |
| |
| /* |
| * Value to write is always specified. |
| */ |
| byte = simple_strtoul(argv[3], NULL, 16); |
| |
| /* |
| * Optional count |
| */ |
| if(argc == 5) { |
| count = simple_strtoul(argv[4], NULL, 16); |
| } else { |
| count = 1; |
| } |
| |
| while (count-- > 0) { |
| if(i2c_write(chip, addr++, alen, &byte, 1) != 0) { |
| printf("Error writing the chip.\n"); |
| } |
| /* |
| * Wait for the write to complete. The write can take |
| * up to 10mSec (we allow a little more time). |
| * |
| * On some chips, while the write is in progress, the |
| * chip doesn't respond. This apparently isn't a |
| * universal feature so we don't take advantage of it. |
| */ |
| udelay(11000); |
| #if 0 |
| for(timeout = 0; timeout < 10; timeout++) { |
| udelay(2000); |
| if(i2c_probe(chip) == 0) |
| break; |
| } |
| #endif |
| } |
| |
| return (0); |
| } |
| |
| |
| /* Calculate a CRC on memory |
| * |
| * Syntax: |
| * icrc32 {i2c_chip} {addr}{.0, .1, .2} {count} |
| */ |
| int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| { |
| uchar chip; |
| ulong addr; |
| uint alen; |
| int count; |
| uchar byte; |
| ulong crc; |
| ulong err; |
| int j; |
| |
| if (argc < 4) { |
| printf ("Usage:\n%s\n", cmdtp->usage); |
| return 1; |
| } |
| |
| /* |
| * Chip is always specified. |
| */ |
| chip = simple_strtoul(argv[1], NULL, 16); |
| |
| /* |
| * Address is always specified. |
| */ |
| addr = simple_strtoul(argv[2], NULL, 16); |
| alen = 1; |
| for(j = 0; j < 8; j++) { |
| if (argv[2][j] == '.') { |
| alen = argv[2][j+1] - '0'; |
| if(alen > 4) { |
| printf ("Usage:\n%s\n", cmdtp->usage); |
| return 1; |
| } |
| break; |
| } else if (argv[2][j] == '\0') { |
| break; |
| } |
| } |
| |
| /* |
| * Count is always specified |
| */ |
| count = simple_strtoul(argv[3], NULL, 16); |
| |
| printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1); |
| /* |
| * CRC a byte at a time. This is going to be slooow, but hey, the |
| * memories are small and slow too so hopefully nobody notices. |
| */ |
| crc = 0; |
| err = 0; |
| while(count-- > 0) { |
| if(i2c_read(chip, addr, alen, &byte, 1) != 0) { |
| err++; |
| } |
| crc = crc32 (crc, &byte, 1); |
| addr++; |
| } |
| if(err > 0) |
| { |
| printf("Error reading the chip,\n"); |
| } else { |
| printf ("%08lx\n", crc); |
| } |
| |
| return 0; |
| } |
| |
| |
| /* Modify memory. |
| * |
| * Syntax: |
| * imm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2} |
| * inm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2} |
| */ |
| |
| static int |
| mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[]) |
| { |
| uchar chip; |
| ulong addr; |
| uint alen; |
| ulong data; |
| int size = 1; |
| int nbytes; |
| int j; |
| extern char console_buffer[]; |
| |
| if (argc != 3) { |
| printf ("Usage:\n%s\n", cmdtp->usage); |
| return 1; |
| } |
| |
| #ifdef CONFIG_BOOT_RETRY_TIME |
| reset_cmd_timeout(); /* got a good command to get here */ |
| #endif |
| /* |
| * We use the last specified parameters, unless new ones are |
| * entered. |
| */ |
| chip = i2c_mm_last_chip; |
| addr = i2c_mm_last_addr; |
| alen = i2c_mm_last_alen; |
| |
| if ((flag & CMD_FLAG_REPEAT) == 0) { |
| /* |
| * New command specified. Check for a size specification. |
| * Defaults to byte if no or incorrect specification. |
| */ |
| size = cmd_get_data_size(argv[0], 1); |
| |
| /* |
| * Chip is always specified. |
| */ |
| chip = simple_strtoul(argv[1], NULL, 16); |
| |
| /* |
| * Address is always specified. |
| */ |
| addr = simple_strtoul(argv[2], NULL, 16); |
| alen = 1; |
| for(j = 0; j < 8; j++) { |
| if (argv[2][j] == '.') { |
| alen = argv[2][j+1] - '0'; |
| if(alen > 4) { |
| printf ("Usage:\n%s\n", cmdtp->usage); |
| return 1; |
| } |
| break; |
| } else if (argv[2][j] == '\0') { |
| break; |
| } |
| } |
| } |
| |
| /* |
| * Print the address, followed by value. Then accept input for |
| * the next value. A non-converted value exits. |
| */ |
| do { |
| printf("%08lx:", addr); |
| if(i2c_read(chip, addr, alen, (char *)&data, size) != 0) { |
| printf("\nError reading the chip,\n"); |
| } else { |
| data = cpu_to_be32(data); |
| if(size == 1) { |
| printf(" %02lx", (data >> 24) & 0x000000FF); |
| } else if(size == 2) { |
| printf(" %04lx", (data >> 16) & 0x0000FFFF); |
| } else { |
| printf(" %08lx", data); |
| } |
| } |
| |
| nbytes = readline (" ? "); |
| if (nbytes == 0) { |
| /* |
| * <CR> pressed as only input, don't modify current |
| * location and move to next. |
| */ |
| if (incrflag) |
| addr += size; |
| nbytes = size; |
| #ifdef CONFIG_BOOT_RETRY_TIME |
| reset_cmd_timeout(); /* good enough to not time out */ |
| #endif |
| } |
| #ifdef CONFIG_BOOT_RETRY_TIME |
| else if (nbytes == -2) { |
| break; /* timed out, exit the command */ |
| } |
| #endif |
| else { |
| char *endp; |
| |
| data = simple_strtoul(console_buffer, &endp, 16); |
| if(size == 1) { |
| data = data << 24; |
| } else if(size == 2) { |
| data = data << 16; |
| } |
| data = be32_to_cpu(data); |
| nbytes = endp - console_buffer; |
| if (nbytes) { |
| #ifdef CONFIG_BOOT_RETRY_TIME |
| /* |
| * good enough to not time out |
| */ |
| reset_cmd_timeout(); |
| #endif |
| if(i2c_write(chip, addr, alen, (char *)&data, size) != 0) { |
| printf("Error writing the chip.\n"); |
| } |
| if (incrflag) |
| addr += size; |
| } |
| } |
| } while (nbytes); |
| |
| chip = i2c_mm_last_chip; |
| addr = i2c_mm_last_addr; |
| alen = i2c_mm_last_alen; |
| |
| return 0; |
| } |
| |
| /* |
| * Syntax: |
| * iprobe {addr}{.0, .1, .2} |
| */ |
| int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| { |
| int j; |
| #if defined(CFG_I2C_NOPROBES) |
| int k, skip; |
| #endif |
| |
| printf("Valid chip addresses:"); |
| for(j = 0; j < 128; j++) { |
| #if defined(CFG_I2C_NOPROBES) |
| skip = 0; |
| for (k = 0; k < sizeof(i2c_no_probes); k++){ |
| if (j == i2c_no_probes[k]){ |
| skip = 1; |
| break; |
| } |
| } |
| if (skip) |
| continue; |
| #endif |
| if(i2c_probe(j) == 0) { |
| printf(" %02X", j); |
| } |
| } |
| printf("\n"); |
| |
| #if defined(CFG_I2C_NOPROBES) |
| puts ("Excluded chip addresses:"); |
| for( k = 0; k < sizeof(i2c_no_probes); k++ ) |
| printf(" %02X", i2c_no_probes[k] ); |
| puts ("\n"); |
| #endif |
| |
| return 0; |
| } |
| |
| |
| /* |
| * Syntax: |
| * iloop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}] |
| * {length} - Number of bytes to read |
| * {delay} - A DECIMAL number and defaults to 1000 uSec |
| */ |
| int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| { |
| u_char chip; |
| ulong alen; |
| uint addr; |
| uint length; |
| u_char bytes[16]; |
| int delay; |
| int j; |
| |
| if (argc < 3) { |
| printf ("Usage:\n%s\n", cmdtp->usage); |
| return 1; |
| } |
| |
| /* |
| * Chip is always specified. |
| */ |
| chip = simple_strtoul(argv[1], NULL, 16); |
| |
| /* |
| * Address is always specified. |
| */ |
| addr = simple_strtoul(argv[2], NULL, 16); |
| alen = 1; |
| for(j = 0; j < 8; j++) { |
| if (argv[2][j] == '.') { |
| alen = argv[2][j+1] - '0'; |
| if (alen > 4) { |
| printf ("Usage:\n%s\n", cmdtp->usage); |
| return 1; |
| } |
| break; |
| } else if (argv[2][j] == '\0') { |
| break; |
| } |
| } |
| |
| /* |
| * Length is the number of objects, not number of bytes. |
| */ |
| length = 1; |
| length = simple_strtoul(argv[3], NULL, 16); |
| if(length > sizeof(bytes)) { |
| length = sizeof(bytes); |
| } |
| |
| /* |
| * The delay time (uSec) is optional. |
| */ |
| delay = 1000; |
| if (argc > 3) { |
| delay = simple_strtoul(argv[4], NULL, 10); |
| } |
| /* |
| * Run the loop... |
| */ |
| while(1) { |
| if(i2c_read(chip, addr, alen, bytes, length) != 0) { |
| printf("Error reading the chip.\n"); |
| } |
| udelay(delay); |
| } |
| |
| /* NOTREACHED */ |
| return 0; |
| } |
| |
| |
| /* |
| * The SDRAM command is separately configured because many |
| * (most?) embedded boards don't use SDRAM DIMMs. |
| */ |
| #if (CONFIG_COMMANDS & CFG_CMD_SDRAM) |
| |
| /* |
| * Syntax: |
| * sdram {i2c_chip} |
| */ |
| int do_sdram ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| { |
| u_char chip; |
| u_char data[128]; |
| u_char cksum; |
| int j; |
| |
| if (argc < 2) { |
| printf ("Usage:\n%s\n", cmdtp->usage); |
| return 1; |
| } |
| /* |
| * Chip is always specified. |
| */ |
| chip = simple_strtoul(argv[1], NULL, 16); |
| |
| if(i2c_read(chip, 0, 1, data, sizeof(data)) != 0) { |
| printf("No SDRAM Serial Presence Detect found.\n"); |
| return 1; |
| } |
| |
| cksum = 0; |
| for (j = 0; j < 63; j++) { |
| cksum += data[j]; |
| } |
| if(cksum != data[63]) { |
| printf ("WARNING: Configuration data checksum failure:\n" |
| " is 0x%02x, calculated 0x%02x\n", |
| data[63], cksum); |
| } |
| printf("SPD data revision %d.%d\n", |
| (data[62] >> 4) & 0x0F, data[62] & 0x0F); |
| printf("Bytes used 0x%02X\n", data[0]); |
| printf("Serial memory size 0x%02X\n", 1 << data[1]); |
| printf("Memory type "); |
| switch(data[2]) { |
| case 2: printf("EDO\n"); break; |
| case 4: printf("SDRAM\n"); break; |
| default: printf("unknown\n"); break; |
| } |
| printf("Row address bits "); |
| if((data[3] & 0x00F0) == 0) { |
| printf("%d\n", data[3] & 0x0F); |
| } else { |
| printf("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F); |
| } |
| printf("Column address bits "); |
| if((data[4] & 0x00F0) == 0) { |
| printf("%d\n", data[4] & 0x0F); |
| } else { |
| printf("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F); |
| } |
| printf("Module rows %d\n", data[5]); |
| printf("Module data width %d bits\n", (data[7] << 8) | data[6]); |
| printf("Interface signal levels "); |
| switch(data[8]) { |
| case 0: printf("5.0v/TTL\n"); break; |
| case 1: printf("LVTTL\n"); break; |
| case 2: printf("HSTL 1.5\n"); break; |
| case 3: printf("SSTL 3.3\n"); break; |
| case 4: printf("SSTL 2.5\n"); break; |
| default: printf("unknown\n"); break; |
| } |
| printf("SDRAM cycle time %d.%d nS\n", |
| (data[9] >> 4) & 0x0F, data[9] & 0x0F); |
| printf("SDRAM access time %d.%d nS\n", |
| (data[10] >> 4) & 0x0F, data[10] & 0x0F); |
| printf("EDC configuration "); |
| switch(data[11]) { |
| case 0: printf("None\n"); break; |
| case 1: printf("Parity\n"); break; |
| case 2: printf("ECC\n"); break; |
| default: printf("unknown\n"); break; |
| } |
| if((data[12] & 0x80) == 0) { |
| printf("No self refresh, rate "); |
| } else { |
| printf("Self refresh, rate "); |
| } |
| switch(data[12] & 0x7F) { |
| case 0: printf("15.625uS\n"); break; |
| case 1: printf("3.9uS\n"); break; |
| case 2: printf("7.8uS\n"); break; |
| case 3: printf("31.3uS\n"); break; |
| case 4: printf("62.5uS\n"); break; |
| case 5: printf("125uS\n"); break; |
| default: printf("unknown\n"); break; |
| } |
| printf("SDRAM width (primary) %d\n", data[13] & 0x7F); |
| if((data[13] & 0x80) != 0) { |
| printf(" (second bank) %d\n", |
| 2 * (data[13] & 0x7F)); |
| } |
| if(data[14] != 0) { |
| printf("EDC width %d\n", |
| data[14] & 0x7F); |
| if((data[14] & 0x80) != 0) { |
| printf(" (second bank) %d\n", |
| 2 * (data[14] & 0x7F)); |
| } |
| } |
| printf("Min clock delay, back-to-back random column addresses %d\n", |
| data[15]); |
| printf("Burst length(s) "); |
| if(data[16] & 0x80) printf(" Page"); |
| if(data[16] & 0x08) printf(" 8"); |
| if(data[16] & 0x04) printf(" 4"); |
| if(data[16] & 0x02) printf(" 2"); |
| if(data[16] & 0x01) printf(" 1"); |
| printf("\n"); |
| printf("Number of banks %d\n", data[17]); |
| printf("CAS latency(s) "); |
| if(data[18] & 0x80) printf(" TBD"); |
| if(data[18] & 0x40) printf(" 7"); |
| if(data[18] & 0x20) printf(" 6"); |
| if(data[18] & 0x10) printf(" 5"); |
| if(data[18] & 0x08) printf(" 4"); |
| if(data[18] & 0x04) printf(" 3"); |
| if(data[18] & 0x02) printf(" 2"); |
| if(data[18] & 0x01) printf(" 1"); |
| printf("\n"); |
| printf("CS latency(s) "); |
| if(data[19] & 0x80) printf(" TBD"); |
| if(data[19] & 0x40) printf(" 6"); |
| if(data[19] & 0x20) printf(" 5"); |
| if(data[19] & 0x10) printf(" 4"); |
| if(data[19] & 0x08) printf(" 3"); |
| if(data[19] & 0x04) printf(" 2"); |
| if(data[19] & 0x02) printf(" 1"); |
| if(data[19] & 0x01) printf(" 0"); |
| printf("\n"); |
| printf("WE latency(s) "); |
| if(data[20] & 0x80) printf(" TBD"); |
| if(data[20] & 0x40) printf(" 6"); |
| if(data[20] & 0x20) printf(" 5"); |
| if(data[20] & 0x10) printf(" 4"); |
| if(data[20] & 0x08) printf(" 3"); |
| if(data[20] & 0x04) printf(" 2"); |
| if(data[20] & 0x02) printf(" 1"); |
| if(data[20] & 0x01) printf(" 0"); |
| printf("\n"); |
| printf("Module attributes:\n"); |
| if(!data[21]) printf(" (none)\n"); |
| if(data[21] & 0x80) printf(" TBD (bit 7)\n"); |
| if(data[21] & 0x40) printf(" Redundant row address\n"); |
| if(data[21] & 0x20) printf(" Differential clock input\n"); |
| if(data[21] & 0x10) printf(" Registerd DQMB inputs\n"); |
| if(data[21] & 0x08) printf(" Buffered DQMB inputs\n"); |
| if(data[21] & 0x04) printf(" On-card PLL\n"); |
| if(data[21] & 0x02) printf(" Registered address/control lines\n"); |
| if(data[21] & 0x01) printf(" Buffered address/control lines\n"); |
| printf("Device attributes:\n"); |
| if(data[22] & 0x80) printf(" TBD (bit 7)\n"); |
| if(data[22] & 0x40) printf(" TBD (bit 6)\n"); |
| if(data[22] & 0x20) printf(" Upper Vcc tolerance 5%%\n"); |
| else printf(" Upper Vcc tolerance 10%%\n"); |
| if(data[22] & 0x10) printf(" Lower Vcc tolerance 5%%\n"); |
| else printf(" Lower Vcc tolerance 10%%\n"); |
| if(data[22] & 0x08) printf(" Supports write1/read burst\n"); |
| if(data[22] & 0x04) printf(" Supports precharge all\n"); |
| if(data[22] & 0x02) printf(" Supports auto precharge\n"); |
| if(data[22] & 0x01) printf(" Supports early RAS# precharge\n"); |
| printf("SDRAM cycle time (2nd highest CAS latency) %d.%d nS\n", |
| (data[23] >> 4) & 0x0F, data[23] & 0x0F); |
| printf("SDRAM access from clock (2nd highest CAS latency) %d.%d nS\n", |
| (data[24] >> 4) & 0x0F, data[24] & 0x0F); |
| printf("SDRAM cycle time (3rd highest CAS latency) %d.%d nS\n", |
| (data[25] >> 4) & 0x0F, data[25] & 0x0F); |
| printf("SDRAM access from clock (3rd highest CAS latency) %d.%d nS\n", |
| (data[26] >> 4) & 0x0F, data[26] & 0x0F); |
| printf("Minimum row precharge %d nS\n", data[27]); |
| printf("Row active to row active min %d nS\n", data[28]); |
| printf("RAS to CAS delay min %d nS\n", data[29]); |
| printf("Minimum RAS pulse width %d nS\n", data[30]); |
| printf("Density of each row "); |
| if(data[31] & 0x80) printf(" 512MByte"); |
| if(data[31] & 0x40) printf(" 256MByte"); |
| if(data[31] & 0x20) printf(" 128MByte"); |
| if(data[31] & 0x10) printf(" 64MByte"); |
| if(data[31] & 0x08) printf(" 32MByte"); |
| if(data[31] & 0x04) printf(" 16MByte"); |
| if(data[31] & 0x02) printf(" 8MByte"); |
| if(data[31] & 0x01) printf(" 4MByte"); |
| printf("\n"); |
| printf("Command and Address setup %c%d.%d nS\n", |
| (data[32] & 0x80) ? '-' : '+', |
| (data[32] >> 4) & 0x07, data[32] & 0x0F); |
| printf("Command and Address hold %c%d.%d nS\n", |
| (data[33] & 0x80) ? '-' : '+', |
| (data[33] >> 4) & 0x07, data[33] & 0x0F); |
| printf("Data signal input setup %c%d.%d nS\n", |
| (data[34] & 0x80) ? '-' : '+', |
| (data[34] >> 4) & 0x07, data[34] & 0x0F); |
| printf("Data signal input hold %c%d.%d nS\n", |
| (data[35] & 0x80) ? '-' : '+', |
| (data[35] >> 4) & 0x07, data[35] & 0x0F); |
| printf("Manufacturer's JEDEC ID "); |
| for(j = 64; j <= 71; j++) |
| printf("%02X ", data[j]); |
| printf("\n"); |
| printf("Manufacturing Location %02X\n", data[72]); |
| printf("Manufacturer's Part Number "); |
| for(j = 73; j <= 90; j++) |
| printf("%02X ", data[j]); |
| printf("\n"); |
| printf("Revision Code %02X %02X\n", data[91], data[92]); |
| printf("Manufacturing Date %02X %02X\n", data[93], data[94]); |
| printf("Assembly Serial Number "); |
| for(j = 95; j <= 98; j++) |
| printf("%02X ", data[j]); |
| printf("\n"); |
| printf("Speed rating PC%d\n", |
| data[126] == 0x66 ? 66 : data[126]); |
| |
| return 0; |
| } |
| #endif /* CFG_CMD_SDRAM */ |
| |
| |
| /***************************************************/ |
| |
| U_BOOT_CMD( |
| imd, 4, 1, do_i2c_md, \ |
| "imd - i2c memory display\n", \ |
| "chip address[.0, .1, .2] [# of objects]\n - i2c memory display\n" \ |
| ); |
| |
| U_BOOT_CMD( |
| imm, 3, 1, do_i2c_mm, |
| "imm - i2c memory modify (auto-incrementing)\n", |
| "chip address[.0, .1, .2]\n" |
| " - memory modify, auto increment address\n" |
| ); |
| U_BOOT_CMD( |
| inm, 3, 1, do_i2c_nm, |
| "inm - memory modify (constant address)\n", |
| "chip address[.0, .1, .2]\n - memory modify, read and keep address\n" |
| ); |
| |
| U_BOOT_CMD( |
| imw, 5, 1, do_i2c_mw, |
| "imw - memory write (fill)\n", |
| "chip address[.0, .1, .2] value [count]\n - memory write (fill)\n" |
| ); |
| |
| U_BOOT_CMD( |
| icrc32, 5, 1, do_i2c_crc, |
| "icrc32 - checksum calculation\n", |
| "chip address[.0, .1, .2] count\n - compute CRC32 checksum\n" |
| ); |
| |
| U_BOOT_CMD( |
| iprobe, 1, 1, do_i2c_probe, |
| "iprobe - probe to discover valid I2C chip addresses\n", |
| "\n -discover valid I2C chip addresses\n" |
| ); |
| |
| /* |
| * Require full name for "iloop" because it is an infinite loop! |
| */ |
| U_BOOT_CMD( |
| iloop, 5, 1, do_i2c_loop, |
| "iloop - infinite loop on address range\n", |
| "chip address[.0, .1, .2] [# of objects]\n" |
| " - loop, reading a set of addresses\n" |
| ); |
| |
| #if (CONFIG_COMMANDS & CFG_CMD_SDRAM) |
| U_BOOT_CMD( |
| isdram, 2, 1, do_sdram, |
| "isdram - print SDRAM configuration information\n", |
| "chip\n - print SDRAM configuration information\n" |
| " (valid chip values 50..57)\n" |
| ); |
| #endif |
| #endif /* CFG_CMD_I2C */ |