| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) 2019-20 Sean Anderson <seanga2@gmail.com> |
| */ |
| #define LOG_CATEGORY UCLASS_CLK |
| |
| #include <common.h> |
| #include <clk.h> |
| #include <clk-uclass.h> |
| #include <div64.h> |
| #include <dm.h> |
| #include <log.h> |
| #include <mapmem.h> |
| #include <serial.h> |
| #include <dt-bindings/clock/k210-sysctl.h> |
| #include <dt-bindings/mfd/k210-sysctl.h> |
| #include <kendryte/pll.h> |
| #include <linux/bitfield.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| /** |
| * struct k210_clk_priv - K210 clock driver private data |
| * @base: The base address of the sysctl device |
| * @in0: The "in0" external oscillator |
| */ |
| struct k210_clk_priv { |
| void __iomem *base; |
| struct clk in0; |
| }; |
| |
| /* |
| * All parameters for different sub-clocks are collected into parameter arrays. |
| * These parameters are then initialized by the clock which uses them during |
| * probe. To save space, ids are automatically generated for each sub-clock by |
| * using an enum. Instead of storing a parameter struct for each clock, even for |
| * those clocks which don't use a particular type of sub-clock, we can just |
| * store the parameters for the clocks which need them. |
| * |
| * So why do it like this? Arranging all the sub-clocks together makes it very |
| * easy to find bugs in the code. |
| */ |
| |
| /** |
| * enum k210_clk_div_type - The type of divider |
| * @K210_DIV_ONE: freq = parent / (reg + 1) |
| * @K210_DIV_EVEN: freq = parent / 2 / (reg + 1) |
| * @K210_DIV_POWER: freq = parent / (2 << reg) |
| * @K210_DIV_FIXED: freq = parent / factor |
| */ |
| enum k210_clk_div_type { |
| K210_DIV_ONE, |
| K210_DIV_EVEN, |
| K210_DIV_POWER, |
| K210_DIV_FIXED, |
| }; |
| |
| /** |
| * struct k210_div_params - Parameters for dividing clocks |
| * @type: An &enum k210_clk_div_type specifying the dividing formula |
| * @off: The offset of the divider from the sysctl base address |
| * @shift: The offset of the LSB of the divider |
| * @width: The number of bits in the divider |
| * @div: The fixed divisor for this divider |
| */ |
| struct k210_div_params { |
| u8 type; |
| union { |
| struct { |
| u8 off; |
| u8 shift; |
| u8 width; |
| }; |
| u8 div; |
| }; |
| }; |
| |
| #define DIV_LIST \ |
| DIV(K210_CLK_ACLK, K210_SYSCTL_SEL0, 1, 2, K210_DIV_POWER) \ |
| DIV(K210_CLK_APB0, K210_SYSCTL_SEL0, 3, 3, K210_DIV_ONE) \ |
| DIV(K210_CLK_APB1, K210_SYSCTL_SEL0, 6, 3, K210_DIV_ONE) \ |
| DIV(K210_CLK_APB2, K210_SYSCTL_SEL0, 9, 3, K210_DIV_ONE) \ |
| DIV(K210_CLK_SRAM0, K210_SYSCTL_THR0, 0, 4, K210_DIV_ONE) \ |
| DIV(K210_CLK_SRAM1, K210_SYSCTL_THR0, 4, 4, K210_DIV_ONE) \ |
| DIV(K210_CLK_AI, K210_SYSCTL_THR0, 8, 4, K210_DIV_ONE) \ |
| DIV(K210_CLK_DVP, K210_SYSCTL_THR0, 12, 4, K210_DIV_ONE) \ |
| DIV(K210_CLK_ROM, K210_SYSCTL_THR0, 16, 4, K210_DIV_ONE) \ |
| DIV(K210_CLK_SPI0, K210_SYSCTL_THR1, 0, 8, K210_DIV_EVEN) \ |
| DIV(K210_CLK_SPI1, K210_SYSCTL_THR1, 8, 8, K210_DIV_EVEN) \ |
| DIV(K210_CLK_SPI2, K210_SYSCTL_THR1, 16, 8, K210_DIV_EVEN) \ |
| DIV(K210_CLK_SPI3, K210_SYSCTL_THR1, 24, 8, K210_DIV_EVEN) \ |
| DIV(K210_CLK_TIMER0, K210_SYSCTL_THR2, 0, 8, K210_DIV_EVEN) \ |
| DIV(K210_CLK_TIMER1, K210_SYSCTL_THR2, 8, 8, K210_DIV_EVEN) \ |
| DIV(K210_CLK_TIMER2, K210_SYSCTL_THR2, 16, 8, K210_DIV_EVEN) \ |
| DIV(K210_CLK_I2S0, K210_SYSCTL_THR3, 0, 16, K210_DIV_EVEN) \ |
| DIV(K210_CLK_I2S1, K210_SYSCTL_THR3, 16, 16, K210_DIV_EVEN) \ |
| DIV(K210_CLK_I2S2, K210_SYSCTL_THR4, 0, 16, K210_DIV_EVEN) \ |
| DIV(K210_CLK_I2S0_M, K210_SYSCTL_THR4, 16, 8, K210_DIV_EVEN) \ |
| DIV(K210_CLK_I2S1_M, K210_SYSCTL_THR4, 24, 8, K210_DIV_EVEN) \ |
| DIV(K210_CLK_I2S2_M, K210_SYSCTL_THR4, 0, 8, K210_DIV_EVEN) \ |
| DIV(K210_CLK_I2C0, K210_SYSCTL_THR5, 8, 8, K210_DIV_EVEN) \ |
| DIV(K210_CLK_I2C1, K210_SYSCTL_THR5, 16, 8, K210_DIV_EVEN) \ |
| DIV(K210_CLK_I2C2, K210_SYSCTL_THR5, 24, 8, K210_DIV_EVEN) \ |
| DIV(K210_CLK_WDT0, K210_SYSCTL_THR6, 0, 8, K210_DIV_EVEN) \ |
| DIV(K210_CLK_WDT1, K210_SYSCTL_THR6, 8, 8, K210_DIV_EVEN) \ |
| DIV_FIXED(K210_CLK_CLINT, 50) \ |
| |
| #define _DIVIFY(id) K210_CLK_DIV_##id |
| #define DIVIFY(id) _DIVIFY(id) |
| |
| enum k210_div_id { |
| #define DIV(id, ...) DIVIFY(id), |
| #define DIV_FIXED DIV |
| DIV_LIST |
| #undef DIV |
| #undef DIV_FIXED |
| K210_CLK_DIV_NONE, |
| }; |
| |
| static const struct k210_div_params k210_divs[] = { |
| #define DIV(id, _off, _shift, _width, _type) \ |
| [DIVIFY(id)] = { \ |
| .type = (_type), \ |
| .off = (_off), \ |
| .shift = (_shift), \ |
| .width = (_width), \ |
| }, |
| #define DIV_FIXED(id, _div) \ |
| [DIVIFY(id)] = { \ |
| .type = K210_DIV_FIXED, \ |
| .div = (_div) \ |
| }, |
| DIV_LIST |
| #undef DIV |
| #undef DIV_FIXED |
| }; |
| |
| #undef DIV |
| #undef DIV_LIST |
| |
| /** |
| * struct k210_gate_params - Parameters for gated clocks |
| * @off: The offset of the gate from the sysctl base address |
| * @bit_idx: The index of the bit within the register |
| */ |
| struct k210_gate_params { |
| u8 off; |
| u8 bit_idx; |
| }; |
| |
| #define GATE_LIST \ |
| GATE(K210_CLK_CPU, K210_SYSCTL_EN_CENT, 0) \ |
| GATE(K210_CLK_SRAM0, K210_SYSCTL_EN_CENT, 1) \ |
| GATE(K210_CLK_SRAM1, K210_SYSCTL_EN_CENT, 2) \ |
| GATE(K210_CLK_APB0, K210_SYSCTL_EN_CENT, 3) \ |
| GATE(K210_CLK_APB1, K210_SYSCTL_EN_CENT, 4) \ |
| GATE(K210_CLK_APB2, K210_SYSCTL_EN_CENT, 5) \ |
| GATE(K210_CLK_ROM, K210_SYSCTL_EN_PERI, 0) \ |
| GATE(K210_CLK_DMA, K210_SYSCTL_EN_PERI, 1) \ |
| GATE(K210_CLK_AI, K210_SYSCTL_EN_PERI, 2) \ |
| GATE(K210_CLK_DVP, K210_SYSCTL_EN_PERI, 3) \ |
| GATE(K210_CLK_FFT, K210_SYSCTL_EN_PERI, 4) \ |
| GATE(K210_CLK_GPIO, K210_SYSCTL_EN_PERI, 5) \ |
| GATE(K210_CLK_SPI0, K210_SYSCTL_EN_PERI, 6) \ |
| GATE(K210_CLK_SPI1, K210_SYSCTL_EN_PERI, 7) \ |
| GATE(K210_CLK_SPI2, K210_SYSCTL_EN_PERI, 8) \ |
| GATE(K210_CLK_SPI3, K210_SYSCTL_EN_PERI, 9) \ |
| GATE(K210_CLK_I2S0, K210_SYSCTL_EN_PERI, 10) \ |
| GATE(K210_CLK_I2S1, K210_SYSCTL_EN_PERI, 11) \ |
| GATE(K210_CLK_I2S2, K210_SYSCTL_EN_PERI, 12) \ |
| GATE(K210_CLK_I2C0, K210_SYSCTL_EN_PERI, 13) \ |
| GATE(K210_CLK_I2C1, K210_SYSCTL_EN_PERI, 14) \ |
| GATE(K210_CLK_I2C2, K210_SYSCTL_EN_PERI, 15) \ |
| GATE(K210_CLK_UART1, K210_SYSCTL_EN_PERI, 16) \ |
| GATE(K210_CLK_UART2, K210_SYSCTL_EN_PERI, 17) \ |
| GATE(K210_CLK_UART3, K210_SYSCTL_EN_PERI, 18) \ |
| GATE(K210_CLK_AES, K210_SYSCTL_EN_PERI, 19) \ |
| GATE(K210_CLK_FPIOA, K210_SYSCTL_EN_PERI, 20) \ |
| GATE(K210_CLK_TIMER0, K210_SYSCTL_EN_PERI, 21) \ |
| GATE(K210_CLK_TIMER1, K210_SYSCTL_EN_PERI, 22) \ |
| GATE(K210_CLK_TIMER2, K210_SYSCTL_EN_PERI, 23) \ |
| GATE(K210_CLK_WDT0, K210_SYSCTL_EN_PERI, 24) \ |
| GATE(K210_CLK_WDT1, K210_SYSCTL_EN_PERI, 25) \ |
| GATE(K210_CLK_SHA, K210_SYSCTL_EN_PERI, 26) \ |
| GATE(K210_CLK_OTP, K210_SYSCTL_EN_PERI, 27) \ |
| GATE(K210_CLK_RTC, K210_SYSCTL_EN_PERI, 29) |
| |
| #define _GATEIFY(id) K210_CLK_GATE_##id |
| #define GATEIFY(id) _GATEIFY(id) |
| |
| enum k210_gate_id { |
| #define GATE(id, ...) GATEIFY(id), |
| GATE_LIST |
| #undef GATE |
| K210_CLK_GATE_NONE, |
| }; |
| |
| static const struct k210_gate_params k210_gates[] = { |
| #define GATE(id, _off, _idx) \ |
| [GATEIFY(id)] = { \ |
| .off = (_off), \ |
| .bit_idx = (_idx), \ |
| }, |
| GATE_LIST |
| #undef GATE |
| }; |
| |
| #undef GATE_LIST |
| |
| /* The most parents is PLL2 */ |
| #define K210_CLK_MAX_PARENTS 3 |
| |
| /** |
| * struct k210_mux_params - Parameters for muxed clocks |
| * @parents: A list of parent clock ids |
| * @num_parents: The number of parent clocks |
| * @off: The offset of the mux from the base sysctl address |
| * @shift: The offset of the LSB of the mux selector |
| * @width: The number of bits in the mux selector |
| */ |
| struct k210_mux_params { |
| u8 parents[K210_CLK_MAX_PARENTS]; |
| u8 num_parents; |
| u8 off; |
| u8 shift; |
| u8 width; |
| }; |
| |
| #define MUX(id, reg, shift, width) \ |
| MUX_PARENTS(id, reg, shift, width, K210_CLK_IN0, K210_CLK_PLL0) |
| #define MUX_LIST \ |
| MUX_PARENTS(K210_CLK_PLL2, K210_SYSCTL_PLL2, 26, 2, \ |
| K210_CLK_IN0, K210_CLK_PLL0, K210_CLK_PLL1) \ |
| MUX(K210_CLK_ACLK, K210_SYSCTL_SEL0, 0, 1) \ |
| MUX(K210_CLK_SPI3, K210_SYSCTL_SEL0, 12, 1) \ |
| MUX(K210_CLK_TIMER0, K210_SYSCTL_SEL0, 13, 1) \ |
| MUX(K210_CLK_TIMER1, K210_SYSCTL_SEL0, 14, 1) \ |
| MUX(K210_CLK_TIMER2, K210_SYSCTL_SEL0, 15, 1) |
| |
| #define _MUXIFY(id) K210_CLK_MUX_##id |
| #define MUXIFY(id) _MUXIFY(id) |
| |
| enum k210_mux_id { |
| #define MUX_PARENTS(id, ...) MUXIFY(id), |
| MUX_LIST |
| #undef MUX_PARENTS |
| K210_CLK_MUX_NONE, |
| }; |
| |
| static const struct k210_mux_params k210_muxes[] = { |
| #define MUX_PARENTS(id, _off, _shift, _width, ...) \ |
| [MUXIFY(id)] = { \ |
| .parents = { __VA_ARGS__ }, \ |
| .num_parents = __count_args(__VA_ARGS__), \ |
| .off = (_off), \ |
| .shift = (_shift), \ |
| .width = (_width), \ |
| }, |
| MUX_LIST |
| #undef MUX_PARENTS |
| }; |
| |
| #undef MUX |
| #undef MUX_LIST |
| |
| /** |
| * struct k210_pll_params - K210 PLL parameters |
| * @off: The offset of the PLL from the base sysctl address |
| * @shift: The offset of the LSB of the lock status |
| * @width: The number of bits in the lock status |
| */ |
| struct k210_pll_params { |
| u8 off; |
| u8 shift; |
| u8 width; |
| }; |
| |
| static const struct k210_pll_params k210_plls[] = { |
| #define PLL(_off, _shift, _width) { \ |
| .off = (_off), \ |
| .shift = (_shift), \ |
| .width = (_width), \ |
| } |
| [0] = PLL(K210_SYSCTL_PLL0, 0, 2), |
| [1] = PLL(K210_SYSCTL_PLL1, 8, 1), |
| [2] = PLL(K210_SYSCTL_PLL2, 16, 1), |
| #undef PLL |
| }; |
| |
| /** |
| * enum k210_clk_flags - The type of a K210 clock |
| * @K210_CLKF_MUX: This clock has a mux and not a static parent |
| * @K210_CLKF_PLL: This clock is a PLL |
| */ |
| enum k210_clk_flags { |
| K210_CLKF_MUX = BIT(0), |
| K210_CLKF_PLL = BIT(1), |
| }; |
| |
| /** |
| * struct k210_clk_params - The parameters defining a K210 clock |
| * @name: The name of the clock |
| * @flags: A set of &enum k210_clk_flags defining which fields are valid |
| * @mux: An &enum k210_mux_id of this clock's mux |
| * @parent: The clock id of this clock's parent |
| * @pll: The id of the PLL (if this clock is a PLL) |
| * @div: An &enum k210_div_id of this clock's divider |
| * @gate: An &enum k210_gate_id of this clock's gate |
| */ |
| struct k210_clk_params { |
| #if CONFIG_IS_ENABLED(CMD_CLK) |
| const char *name; |
| #endif |
| u8 flags; |
| union { |
| u8 parent; |
| u8 mux; |
| }; |
| union { |
| u8 pll; |
| struct { |
| u8 div; |
| u8 gate; |
| }; |
| }; |
| }; |
| |
| static const struct k210_clk_params k210_clks[] = { |
| #if CONFIG_IS_ENABLED(CMD_CLK) |
| #define NAME(_name) .name = (_name), |
| #else |
| #define NAME(name) |
| #endif |
| #define CLK(id, _name, _parent, _div, _gate) \ |
| [id] = { \ |
| NAME(_name) \ |
| .parent = (_parent), \ |
| .div = (_div), \ |
| .gate = (_gate), \ |
| } |
| #define CLK_MUX(id, _name, _mux, _div, _gate) \ |
| [id] = { \ |
| NAME(_name) \ |
| .flags = K210_CLKF_MUX, \ |
| .mux = (_mux), \ |
| .div = (_div), \ |
| .gate = (_gate), \ |
| } |
| #define CLK_PLL(id, _pll, _parent) \ |
| [id] = { \ |
| NAME("pll" #_pll) \ |
| .flags = K210_CLKF_PLL, \ |
| .parent = (_parent), \ |
| .pll = (_pll), \ |
| } |
| #define CLK_FULL(id, name) \ |
| CLK_MUX(id, name, MUXIFY(id), DIVIFY(id), GATEIFY(id)) |
| #define CLK_NOMUX(id, name, parent) \ |
| CLK(id, name, parent, DIVIFY(id), GATEIFY(id)) |
| #define CLK_DIV(id, name, parent) \ |
| CLK(id, name, parent, DIVIFY(id), K210_CLK_GATE_NONE) |
| #define CLK_GATE(id, name, parent) \ |
| CLK(id, name, parent, K210_CLK_DIV_NONE, GATEIFY(id)) |
| CLK_PLL(K210_CLK_PLL0, 0, K210_CLK_IN0), |
| CLK_PLL(K210_CLK_PLL1, 1, K210_CLK_IN0), |
| [K210_CLK_PLL2] = { |
| NAME("pll2") |
| .flags = K210_CLKF_MUX | K210_CLKF_PLL, |
| .mux = MUXIFY(K210_CLK_PLL2), |
| .pll = 2, |
| }, |
| CLK_MUX(K210_CLK_ACLK, "aclk", MUXIFY(K210_CLK_ACLK), |
| DIVIFY(K210_CLK_ACLK), K210_CLK_GATE_NONE), |
| CLK_FULL(K210_CLK_SPI3, "spi3"), |
| CLK_FULL(K210_CLK_TIMER0, "timer0"), |
| CLK_FULL(K210_CLK_TIMER1, "timer1"), |
| CLK_FULL(K210_CLK_TIMER2, "timer2"), |
| CLK_NOMUX(K210_CLK_SRAM0, "sram0", K210_CLK_ACLK), |
| CLK_NOMUX(K210_CLK_SRAM1, "sram1", K210_CLK_ACLK), |
| CLK_NOMUX(K210_CLK_ROM, "rom", K210_CLK_ACLK), |
| CLK_NOMUX(K210_CLK_DVP, "dvp", K210_CLK_ACLK), |
| CLK_NOMUX(K210_CLK_APB0, "apb0", K210_CLK_ACLK), |
| CLK_NOMUX(K210_CLK_APB1, "apb1", K210_CLK_ACLK), |
| CLK_NOMUX(K210_CLK_APB2, "apb2", K210_CLK_ACLK), |
| CLK_NOMUX(K210_CLK_AI, "ai", K210_CLK_PLL1), |
| CLK_NOMUX(K210_CLK_I2S0, "i2s0", K210_CLK_PLL2), |
| CLK_NOMUX(K210_CLK_I2S1, "i2s1", K210_CLK_PLL2), |
| CLK_NOMUX(K210_CLK_I2S2, "i2s2", K210_CLK_PLL2), |
| CLK_NOMUX(K210_CLK_WDT0, "wdt0", K210_CLK_IN0), |
| CLK_NOMUX(K210_CLK_WDT1, "wdt1", K210_CLK_IN0), |
| CLK_NOMUX(K210_CLK_SPI0, "spi0", K210_CLK_PLL0), |
| CLK_NOMUX(K210_CLK_SPI1, "spi1", K210_CLK_PLL0), |
| CLK_NOMUX(K210_CLK_SPI2, "spi2", K210_CLK_PLL0), |
| CLK_NOMUX(K210_CLK_I2C0, "i2c0", K210_CLK_PLL0), |
| CLK_NOMUX(K210_CLK_I2C1, "i2c1", K210_CLK_PLL0), |
| CLK_NOMUX(K210_CLK_I2C2, "i2c2", K210_CLK_PLL0), |
| CLK_DIV(K210_CLK_I2S0_M, "i2s0_m", K210_CLK_PLL2), |
| CLK_DIV(K210_CLK_I2S1_M, "i2s1_m", K210_CLK_PLL2), |
| CLK_DIV(K210_CLK_I2S2_M, "i2s2_m", K210_CLK_PLL2), |
| CLK_DIV(K210_CLK_CLINT, "clint", K210_CLK_ACLK), |
| CLK_GATE(K210_CLK_CPU, "cpu", K210_CLK_ACLK), |
| CLK_GATE(K210_CLK_DMA, "dma", K210_CLK_ACLK), |
| CLK_GATE(K210_CLK_FFT, "fft", K210_CLK_ACLK), |
| CLK_GATE(K210_CLK_GPIO, "gpio", K210_CLK_APB0), |
| CLK_GATE(K210_CLK_UART1, "uart1", K210_CLK_APB0), |
| CLK_GATE(K210_CLK_UART2, "uart2", K210_CLK_APB0), |
| CLK_GATE(K210_CLK_UART3, "uart3", K210_CLK_APB0), |
| CLK_GATE(K210_CLK_FPIOA, "fpioa", K210_CLK_APB0), |
| CLK_GATE(K210_CLK_SHA, "sha", K210_CLK_APB0), |
| CLK_GATE(K210_CLK_AES, "aes", K210_CLK_APB1), |
| CLK_GATE(K210_CLK_OTP, "otp", K210_CLK_APB1), |
| CLK_GATE(K210_CLK_RTC, "rtc", K210_CLK_IN0), |
| #undef NAME |
| #undef CLK_PLL |
| #undef CLK |
| #undef CLK_FULL |
| #undef CLK_NOMUX |
| #undef CLK_DIV |
| #undef CLK_GATE |
| #undef CLK_LIST |
| }; |
| |
| #define K210_PLL_CLKR GENMASK(3, 0) |
| #define K210_PLL_CLKF GENMASK(9, 4) |
| #define K210_PLL_CLKOD GENMASK(13, 10) /* Output Divider */ |
| #define K210_PLL_BWADJ GENMASK(19, 14) /* BandWidth Adjust */ |
| #define K210_PLL_RESET BIT(20) |
| #define K210_PLL_PWRD BIT(21) /* PoWeReD */ |
| #define K210_PLL_INTFB BIT(22) /* Internal FeedBack */ |
| #define K210_PLL_BYPASS BIT(23) |
| #define K210_PLL_TEST BIT(24) |
| #define K210_PLL_EN BIT(25) |
| #define K210_PLL_TEST_EN BIT(26) |
| |
| #define K210_PLL_LOCK 0 |
| #define K210_PLL_CLEAR_SLIP 2 |
| #define K210_PLL_TEST_OUT 3 |
| |
| #ifdef CONFIG_CLK_K210_SET_RATE |
| static int k210_pll_enable(struct k210_clk_priv *priv, int id); |
| static int k210_pll_disable(struct k210_clk_priv *priv, int id); |
| static ulong k210_pll_get_rate(struct k210_clk_priv *priv, int id, ulong rate_in); |
| |
| /* |
| * The PLL included with the Kendryte K210 appears to be a True Circuits, Inc. |
| * General-Purpose PLL. The logical layout of the PLL with internal feedback is |
| * approximately the following: |
| * |
| * +---------------+ |
| * |reference clock| |
| * +---------------+ |
| * | |
| * v |
| * +--+ |
| * |/r| |
| * +--+ |
| * | |
| * v |
| * +-------------+ |
| * |divided clock| |
| * +-------------+ |
| * | |
| * v |
| * +--------------+ |
| * |phase detector|<---+ |
| * +--------------+ | |
| * | | |
| * v +--------------+ |
| * +---+ |feedback clock| |
| * |VCO| +--------------+ |
| * +---+ ^ |
| * | +--+ | |
| * +--->|/f|---+ |
| * | +--+ |
| * v |
| * +---+ |
| * |/od| |
| * +---+ |
| * | |
| * v |
| * +------+ |
| * |output| |
| * +------+ |
| * |
| * The k210 PLLs have three factors: r, f, and od. Because of the feedback mode, |
| * the effect of the division by f is to multiply the input frequency. The |
| * equation for the output rate is |
| * rate = (rate_in * f) / (r * od). |
| * Moving knowns to one side of the equation, we get |
| * rate / rate_in = f / (r * od) |
| * Rearranging slightly, |
| * abs_error = abs((rate / rate_in) - (f / (r * od))). |
| * To get relative, error, we divide by the expected ratio |
| * error = abs((rate / rate_in) - (f / (r * od))) / (rate / rate_in). |
| * Simplifying, |
| * error = abs(1 - f / (r * od)) / (rate / rate_in) |
| * error = abs(1 - (f * rate_in) / (r * od * rate)) |
| * Using the constants ratio = rate / rate_in and inv_ratio = rate_in / rate, |
| * error = abs((f * inv_ratio) / (r * od) - 1) |
| * This is the error used in evaluating parameters. |
| * |
| * r and od are four bits each, while f is six bits. Because r and od are |
| * multiplied together, instead of the full 256 values possible if both bits |
| * were used fully, there are only 97 distinct products. Combined with f, there |
| * are 6208 theoretical settings for the PLL. However, most of these settings |
| * can be ruled out immediately because they do not have the correct ratio. |
| * |
| * In addition to the constraint of approximating the desired ratio, parameters |
| * must also keep internal pll frequencies within acceptable ranges. The divided |
| * clock's minimum and maximum frequencies have a ratio of around 128. This |
| * leaves fairly substantial room to work with, especially since the only |
| * affected parameter is r. The VCO's minimum and maximum frequency have a ratio |
| * of 5, which is considerably more restrictive. |
| * |
| * The r and od factors are stored in a table. This is to make it easy to find |
| * the next-largest product. Some products have multiple factorizations, but |
| * only when one factor has at least a 2.5x ratio to the factors of the other |
| * factorization. This is because any smaller ratio would not make a difference |
| * when ensuring the VCO's frequency is within spec. |
| * |
| * Throughout the calculation function, fixed point arithmetic is used. Because |
| * the range of rate and rate_in may be up to 1.75 GHz, or around 2^30, 64-bit |
| * 32.32 fixed-point numbers are used to represent ratios. In general, to |
| * implement division, the numerator is first multiplied by 2^32. This gives a |
| * result where the whole number part is in the upper 32 bits, and the fraction |
| * is in the lower 32 bits. |
| * |
| * In general, rounding is done to the closest integer. This helps find the best |
| * approximation for the ratio. Rounding in one direction (e.g down) could cause |
| * the function to miss a better ratio with one of the parameters increased by |
| * one. |
| */ |
| |
| /* |
| * The factors table was generated with the following python code: |
| * |
| * def p(x, y): |
| * return (1.0*x/y > 2.5) or (1.0*y/x > 2.5) |
| * |
| * factors = {} |
| * for i in range(1, 17): |
| * for j in range(1, 17): |
| * fs = factors.get(i*j) or [] |
| * if fs == [] or all([ |
| * (p(i, x) and p(i, y)) or (p(j, x) and p(j, y)) |
| * for (x, y) in fs]): |
| * fs.append((i, j)) |
| * factors[i*j] = fs |
| * |
| * for k, l in sorted(factors.items()): |
| * for v in l: |
| * print("PACK(%s, %s)," % v) |
| */ |
| #define PACK(r, od) (((((r) - 1) & 0xF) << 4) | (((od) - 1) & 0xF)) |
| #define UNPACK_R(val) ((((val) >> 4) & 0xF) + 1) |
| #define UNPACK_OD(val) (((val) & 0xF) + 1) |
| static const u8 factors[] = { |
| PACK(1, 1), |
| PACK(1, 2), |
| PACK(1, 3), |
| PACK(1, 4), |
| PACK(1, 5), |
| PACK(1, 6), |
| PACK(1, 7), |
| PACK(1, 8), |
| PACK(1, 9), |
| PACK(3, 3), |
| PACK(1, 10), |
| PACK(1, 11), |
| PACK(1, 12), |
| PACK(3, 4), |
| PACK(1, 13), |
| PACK(1, 14), |
| PACK(1, 15), |
| PACK(3, 5), |
| PACK(1, 16), |
| PACK(4, 4), |
| PACK(2, 9), |
| PACK(2, 10), |
| PACK(3, 7), |
| PACK(2, 11), |
| PACK(2, 12), |
| PACK(5, 5), |
| PACK(2, 13), |
| PACK(3, 9), |
| PACK(2, 14), |
| PACK(2, 15), |
| PACK(2, 16), |
| PACK(3, 11), |
| PACK(5, 7), |
| PACK(3, 12), |
| PACK(3, 13), |
| PACK(4, 10), |
| PACK(3, 14), |
| PACK(4, 11), |
| PACK(3, 15), |
| PACK(3, 16), |
| PACK(7, 7), |
| PACK(5, 10), |
| PACK(4, 13), |
| PACK(6, 9), |
| PACK(5, 11), |
| PACK(4, 14), |
| PACK(4, 15), |
| PACK(7, 9), |
| PACK(4, 16), |
| PACK(5, 13), |
| PACK(6, 11), |
| PACK(5, 14), |
| PACK(6, 12), |
| PACK(5, 15), |
| PACK(7, 11), |
| PACK(6, 13), |
| PACK(5, 16), |
| PACK(9, 9), |
| PACK(6, 14), |
| PACK(8, 11), |
| PACK(6, 15), |
| PACK(7, 13), |
| PACK(6, 16), |
| PACK(7, 14), |
| PACK(9, 11), |
| PACK(10, 10), |
| PACK(8, 13), |
| PACK(7, 15), |
| PACK(9, 12), |
| PACK(10, 11), |
| PACK(7, 16), |
| PACK(9, 13), |
| PACK(8, 15), |
| PACK(11, 11), |
| PACK(9, 14), |
| PACK(8, 16), |
| PACK(10, 13), |
| PACK(11, 12), |
| PACK(9, 15), |
| PACK(10, 14), |
| PACK(11, 13), |
| PACK(9, 16), |
| PACK(10, 15), |
| PACK(11, 14), |
| PACK(12, 13), |
| PACK(10, 16), |
| PACK(11, 15), |
| PACK(12, 14), |
| PACK(13, 13), |
| PACK(11, 16), |
| PACK(12, 15), |
| PACK(13, 14), |
| PACK(12, 16), |
| PACK(13, 15), |
| PACK(14, 14), |
| PACK(13, 16), |
| PACK(14, 15), |
| PACK(14, 16), |
| PACK(15, 15), |
| PACK(15, 16), |
| PACK(16, 16), |
| }; |
| |
| TEST_STATIC int k210_pll_calc_config(u32 rate, u32 rate_in, |
| struct k210_pll_config *best) |
| { |
| int i; |
| s64 error, best_error; |
| u64 ratio, inv_ratio; /* fixed point 32.32 ratio of the rates */ |
| u64 max_r; |
| u64 r, f, od; |
| |
| /* |
| * Can't go over 1.75 GHz or under 21.25 MHz due to limitations on the |
| * VCO frequency. These are not the same limits as below because od can |
| * reduce the output frequency by 16. |
| */ |
| if (rate > 1750000000 || rate < 21250000) |
| return -EINVAL; |
| |
| /* Similar restrictions on the input rate */ |
| if (rate_in > 1750000000 || rate_in < 13300000) |
| return -EINVAL; |
| |
| ratio = DIV_ROUND_CLOSEST_ULL((u64)rate << 32, rate_in); |
| inv_ratio = DIV_ROUND_CLOSEST_ULL((u64)rate_in << 32, rate); |
| /* Can't increase by more than 64 or reduce by more than 256 */ |
| if (rate > rate_in && ratio > (64ULL << 32)) |
| return -EINVAL; |
| else if (rate <= rate_in && inv_ratio > (256ULL << 32)) |
| return -EINVAL; |
| |
| /* |
| * The divided clock (rate_in / r) must stay between 1.75 GHz and 13.3 |
| * MHz. There is no minimum, since the only way to get a higher input |
| * clock than 26 MHz is to use a clock generated by a PLL. Because PLLs |
| * cannot output frequencies greater than 1.75 GHz, the minimum would |
| * never be greater than one. |
| */ |
| max_r = DIV_ROUND_DOWN_ULL(rate_in, 13300000); |
| |
| /* Variables get immediately incremented, so start at -1th iteration */ |
| i = -1; |
| f = 0; |
| r = 0; |
| od = 0; |
| best_error = S64_MAX; |
| error = best_error; |
| /* do-while here so we always try at least one ratio */ |
| do { |
| /* |
| * Whether we swapped r and od while enforcing frequency limits |
| */ |
| bool swapped = false; |
| u64 last_od = od; |
| u64 last_r = r; |
| |
| /* |
| * Try the next largest value for f (or r and od) and |
| * recalculate the other parameters based on that |
| */ |
| if (rate > rate_in) { |
| /* |
| * Skip factors of the same product if we already tried |
| * out that product |
| */ |
| do { |
| i++; |
| r = UNPACK_R(factors[i]); |
| od = UNPACK_OD(factors[i]); |
| } while (i + 1 < ARRAY_SIZE(factors) && |
| r * od == last_r * last_od); |
| |
| /* Round close */ |
| f = (r * od * ratio + BIT(31)) >> 32; |
| if (f > 64) |
| f = 64; |
| } else { |
| u64 tmp = ++f * inv_ratio; |
| bool round_up = !!(tmp & BIT(31)); |
| u32 goal = (tmp >> 32) + round_up; |
| u32 err, last_err; |
| |
| /* Get the next r/od pair in factors */ |
| while (r * od < goal && i + 1 < ARRAY_SIZE(factors)) { |
| i++; |
| r = UNPACK_R(factors[i]); |
| od = UNPACK_OD(factors[i]); |
| } |
| |
| /* |
| * This is a case of double rounding. If we rounded up |
| * above, we need to round down (in cases of ties) here. |
| * This prevents off-by-one errors resulting from |
| * choosing X+2 over X when X.Y rounds up to X+1 and |
| * there is no r * od = X+1. For the converse, when X.Y |
| * is rounded down to X, we should choose X+1 over X-1. |
| */ |
| err = abs(r * od - goal); |
| last_err = abs(last_r * last_od - goal); |
| if (last_err < err || (round_up && last_err == err)) { |
| i--; |
| r = last_r; |
| od = last_od; |
| } |
| } |
| |
| /* |
| * Enforce limits on internal clock frequencies. If we |
| * aren't in spec, try swapping r and od. If everything is |
| * in-spec, calculate the relative error. |
| */ |
| while (true) { |
| /* |
| * Whether the intermediate frequencies are out-of-spec |
| */ |
| bool out_of_spec = false; |
| |
| if (r > max_r) { |
| out_of_spec = true; |
| } else { |
| /* |
| * There is no way to only divide once; we need |
| * to examine the frequency with and without the |
| * effect of od. |
| */ |
| u64 vco = DIV_ROUND_CLOSEST_ULL(rate_in * f, r); |
| |
| if (vco > 1750000000 || vco < 340000000) |
| out_of_spec = true; |
| } |
| |
| if (out_of_spec) { |
| if (!swapped) { |
| u64 tmp = r; |
| |
| r = od; |
| od = tmp; |
| swapped = true; |
| continue; |
| } else { |
| /* |
| * Try looking ahead to see if there are |
| * additional factors for the same |
| * product. |
| */ |
| if (i + 1 < ARRAY_SIZE(factors)) { |
| u64 new_r, new_od; |
| |
| i++; |
| new_r = UNPACK_R(factors[i]); |
| new_od = UNPACK_OD(factors[i]); |
| if (r * od == new_r * new_od) { |
| r = new_r; |
| od = new_od; |
| swapped = false; |
| continue; |
| } |
| i--; |
| } |
| break; |
| } |
| } |
| |
| error = DIV_ROUND_CLOSEST_ULL(f * inv_ratio, r * od); |
| /* The lower 16 bits are spurious */ |
| error = abs((error - BIT(32))) >> 16; |
| |
| if (error < best_error) { |
| best->r = r; |
| best->f = f; |
| best->od = od; |
| best_error = error; |
| } |
| break; |
| } |
| } while (f < 64 && i + 1 < ARRAY_SIZE(factors) && error != 0); |
| |
| if (best_error == S64_MAX) |
| return -EINVAL; |
| |
| log_debug("best error %lld\n", best_error); |
| return 0; |
| } |
| |
| static ulong k210_pll_set_rate(struct k210_clk_priv *priv, int id, ulong rate, |
| ulong rate_in) |
| { |
| int err; |
| const struct k210_pll_params *pll = &k210_plls[id]; |
| struct k210_pll_config config = {}; |
| u32 reg; |
| ulong calc_rate; |
| |
| if (rate_in < 0) |
| return rate_in; |
| |
| err = k210_pll_calc_config(rate, rate_in, &config); |
| if (err) |
| return err; |
| log_debug("Got r=%u f=%u od=%u\n", config.r, config.f, config.od); |
| |
| /* Don't bother setting the rate if we're already at that rate */ |
| calc_rate = DIV_ROUND_DOWN_ULL(((u64)rate_in) * config.f, |
| config.r * config.od); |
| if (calc_rate == k210_pll_get_rate(priv, id, rate)) |
| return calc_rate; |
| |
| k210_pll_disable(priv, id); |
| |
| reg = readl(priv->base + pll->off); |
| reg &= ~K210_PLL_CLKR |
| & ~K210_PLL_CLKF |
| & ~K210_PLL_CLKOD |
| & ~K210_PLL_BWADJ; |
| reg |= FIELD_PREP(K210_PLL_CLKR, config.r - 1) |
| | FIELD_PREP(K210_PLL_CLKF, config.f - 1) |
| | FIELD_PREP(K210_PLL_CLKOD, config.od - 1) |
| | FIELD_PREP(K210_PLL_BWADJ, config.f - 1); |
| writel(reg, priv->base + pll->off); |
| |
| k210_pll_enable(priv, id); |
| |
| serial_setbrg(); |
| return k210_pll_get_rate(priv, id, rate); |
| } |
| #else |
| static ulong k210_pll_set_rate(struct k210_clk_priv *priv, int id, ulong rate, |
| ulong rate_in) |
| { |
| return -ENOSYS; |
| } |
| #endif /* CONFIG_CLK_K210_SET_RATE */ |
| |
| static ulong k210_pll_get_rate(struct k210_clk_priv *priv, int id, |
| ulong rate_in) |
| { |
| u64 r, f, od; |
| u32 reg = readl(priv->base + k210_plls[id].off); |
| |
| if (rate_in < 0 || (reg & K210_PLL_BYPASS)) |
| return rate_in; |
| |
| if (!(reg & K210_PLL_PWRD)) |
| return 0; |
| |
| r = FIELD_GET(K210_PLL_CLKR, reg) + 1; |
| f = FIELD_GET(K210_PLL_CLKF, reg) + 1; |
| od = FIELD_GET(K210_PLL_CLKOD, reg) + 1; |
| |
| return DIV_ROUND_DOWN_ULL(((u64)rate_in) * f, r * od); |
| } |
| |
| /* |
| * Wait for the PLL to be locked. If the PLL is not locked, try clearing the |
| * slip before retrying |
| */ |
| static void k210_pll_waitfor_lock(struct k210_clk_priv *priv, int id) |
| { |
| const struct k210_pll_params *pll = &k210_plls[id]; |
| u32 mask = (BIT(pll->width) - 1) << pll->shift; |
| |
| while (true) { |
| u32 reg = readl(priv->base + K210_SYSCTL_PLL_LOCK); |
| |
| if ((reg & mask) == mask) |
| break; |
| |
| reg |= BIT(pll->shift + K210_PLL_CLEAR_SLIP); |
| writel(reg, priv->base + K210_SYSCTL_PLL_LOCK); |
| } |
| } |
| |
| static bool k210_pll_enabled(u32 reg) |
| { |
| return (reg & K210_PLL_PWRD) && (reg & K210_PLL_EN) && |
| !(reg & K210_PLL_RESET); |
| } |
| |
| /* Adapted from sysctl_pll_enable */ |
| static int k210_pll_enable(struct k210_clk_priv *priv, int id) |
| { |
| const struct k210_pll_params *pll = &k210_plls[id]; |
| u32 reg = readl(priv->base + pll->off); |
| |
| if (k210_pll_enabled(reg)) |
| return 0; |
| |
| reg |= K210_PLL_PWRD; |
| writel(reg, priv->base + pll->off); |
| |
| /* Ensure reset is low before asserting it */ |
| reg &= ~K210_PLL_RESET; |
| writel(reg, priv->base + pll->off); |
| reg |= K210_PLL_RESET; |
| writel(reg, priv->base + pll->off); |
| nop(); |
| nop(); |
| reg &= ~K210_PLL_RESET; |
| writel(reg, priv->base + pll->off); |
| |
| k210_pll_waitfor_lock(priv, id); |
| |
| reg &= ~K210_PLL_BYPASS; |
| reg |= K210_PLL_EN; |
| writel(reg, priv->base + pll->off); |
| |
| return 0; |
| } |
| |
| static int k210_pll_disable(struct k210_clk_priv *priv, int id) |
| { |
| const struct k210_pll_params *pll = &k210_plls[id]; |
| u32 reg = readl(priv->base + pll->off); |
| |
| /* |
| * Bypassing before powering off is important so child clocks don't stop |
| * working. This is especially important for pll0, the indirect parent |
| * of the cpu clock. |
| */ |
| reg |= K210_PLL_BYPASS; |
| writel(reg, priv->base + pll->off); |
| |
| reg &= ~K210_PLL_PWRD; |
| reg &= ~K210_PLL_EN; |
| writel(reg, priv->base + pll->off); |
| return 0; |
| } |
| |
| static u32 k210_clk_readl(struct k210_clk_priv *priv, u8 off, u8 shift, |
| u8 width) |
| { |
| u32 reg = readl(priv->base + off); |
| |
| return (reg >> shift) & (BIT(width) - 1); |
| } |
| |
| static void k210_clk_writel(struct k210_clk_priv *priv, u8 off, u8 shift, |
| u8 width, u32 val) |
| { |
| u32 reg = readl(priv->base + off); |
| u32 mask = (BIT(width) - 1) << shift; |
| |
| reg &= ~mask; |
| reg |= mask & (val << shift); |
| writel(reg, priv->base + off); |
| } |
| |
| static int k210_clk_get_parent(struct k210_clk_priv *priv, int id) |
| { |
| u32 sel; |
| const struct k210_mux_params *mux; |
| |
| if (!(k210_clks[id].flags & K210_CLKF_MUX)) |
| return k210_clks[id].parent; |
| mux = &k210_muxes[k210_clks[id].mux]; |
| |
| sel = k210_clk_readl(priv, mux->off, mux->shift, mux->width); |
| assert(sel < mux->num_parents); |
| return mux->parents[sel]; |
| } |
| |
| static ulong do_k210_clk_get_rate(struct k210_clk_priv *priv, int id) |
| { |
| int parent; |
| u32 val; |
| ulong parent_rate; |
| const struct k210_div_params *div; |
| |
| if (id == K210_CLK_IN0) |
| return clk_get_rate(&priv->in0); |
| |
| parent = k210_clk_get_parent(priv, id); |
| parent_rate = do_k210_clk_get_rate(priv, parent); |
| |
| if (k210_clks[id].flags & K210_CLKF_PLL) |
| return k210_pll_get_rate(priv, k210_clks[id].pll, parent_rate); |
| |
| if (k210_clks[id].div == K210_CLK_DIV_NONE) |
| return parent_rate; |
| div = &k210_divs[k210_clks[id].div]; |
| |
| if (div->type == K210_DIV_FIXED) |
| return parent_rate / div->div; |
| |
| val = k210_clk_readl(priv, div->off, div->shift, div->width); |
| switch (div->type) { |
| case K210_DIV_ONE: |
| return parent_rate / (val + 1); |
| case K210_DIV_EVEN: |
| return parent_rate / 2 / (val + 1); |
| case K210_DIV_POWER: |
| /* This is ACLK, which has no divider on IN0 */ |
| if (parent == K210_CLK_IN0) |
| return parent_rate; |
| return parent_rate / (2 << val); |
| default: |
| assert(false); |
| return -EINVAL; |
| }; |
| } |
| |
| static ulong k210_clk_get_rate(struct clk *clk) |
| { |
| return do_k210_clk_get_rate(dev_get_priv(clk->dev), clk->id); |
| } |
| |
| static int do_k210_clk_set_parent(struct k210_clk_priv *priv, int id, int new) |
| { |
| int i; |
| const struct k210_mux_params *mux; |
| |
| if (!(k210_clks[id].flags & K210_CLKF_MUX)) |
| return -ENOSYS; |
| mux = &k210_muxes[k210_clks[id].mux]; |
| |
| for (i = 0; i < mux->num_parents; i++) { |
| if (mux->parents[i] == new) { |
| k210_clk_writel(priv, mux->off, mux->shift, mux->width, |
| i); |
| return 0; |
| } |
| } |
| return -EINVAL; |
| } |
| |
| static int k210_clk_set_parent(struct clk *clk, struct clk *parent) |
| { |
| return do_k210_clk_set_parent(dev_get_priv(clk->dev), clk->id, |
| parent->id); |
| } |
| |
| static ulong k210_clk_set_rate(struct clk *clk, unsigned long rate) |
| { |
| int parent, ret, err; |
| ulong rate_in, val; |
| const struct k210_div_params *div; |
| struct k210_clk_priv *priv = dev_get_priv(clk->dev); |
| |
| if (clk->id == K210_CLK_IN0) |
| return clk_set_rate(&priv->in0, rate); |
| |
| parent = k210_clk_get_parent(priv, clk->id); |
| rate_in = do_k210_clk_get_rate(priv, parent); |
| |
| log_debug("id=%ld rate=%lu rate_in=%lu\n", clk->id, rate, rate_in); |
| |
| if (clk->id == K210_CLK_PLL0) { |
| /* Bypass ACLK so the CPU keeps going */ |
| ret = do_k210_clk_set_parent(priv, K210_CLK_ACLK, K210_CLK_IN0); |
| if (ret) |
| return ret; |
| } else if (clk->id == K210_CLK_PLL1 && gd->flags & GD_FLG_RELOC) { |
| /* |
| * We can't bypass the AI clock like we can ACLK, and after |
| * relocation we are using the AI ram. |
| */ |
| return -EPERM; |
| } |
| |
| if (k210_clks[clk->id].flags & K210_CLKF_PLL) { |
| ret = k210_pll_set_rate(priv, k210_clks[clk->id].pll, rate, |
| rate_in); |
| if (!IS_ERR_VALUE(ret) && clk->id == K210_CLK_PLL0) { |
| /* |
| * This may have the side effect of reparenting ACLK, |
| * but I don't really want to keep track of what the old |
| * parent was. |
| */ |
| err = do_k210_clk_set_parent(priv, K210_CLK_ACLK, |
| K210_CLK_PLL0); |
| if (err) |
| return err; |
| } |
| return ret; |
| } |
| |
| if (k210_clks[clk->id].div == K210_CLK_DIV_NONE) |
| return -ENOSYS; |
| div = &k210_divs[k210_clks[clk->id].div]; |
| |
| switch (div->type) { |
| case K210_DIV_ONE: |
| val = DIV_ROUND_CLOSEST_ULL((u64)rate_in, rate); |
| val = val ? val - 1 : 0; |
| break; |
| case K210_DIV_EVEN: |
| val = DIV_ROUND_CLOSEST_ULL((u64)rate_in, 2 * rate); |
| break; |
| case K210_DIV_POWER: |
| /* This is ACLK, which has no divider on IN0 */ |
| if (parent == K210_CLK_IN0) |
| return -ENOSYS; |
| |
| val = DIV_ROUND_CLOSEST_ULL((u64)rate_in, rate); |
| val = __ffs(val); |
| break; |
| default: |
| assert(false); |
| return -EINVAL; |
| }; |
| |
| val = val ? val - 1 : 0; |
| k210_clk_writel(priv, div->off, div->shift, div->width, val); |
| return do_k210_clk_get_rate(priv, clk->id); |
| } |
| |
| static int k210_clk_endisable(struct k210_clk_priv *priv, int id, bool enable) |
| { |
| int parent = k210_clk_get_parent(priv, id); |
| const struct k210_gate_params *gate; |
| |
| if (id == K210_CLK_IN0) { |
| if (enable) |
| return clk_enable(&priv->in0); |
| else |
| return clk_disable(&priv->in0); |
| } |
| |
| /* Only recursively enable clocks since we don't track refcounts */ |
| if (enable) { |
| int ret = k210_clk_endisable(priv, parent, true); |
| |
| if (ret && ret != -ENOSYS) |
| return ret; |
| } |
| |
| if (k210_clks[id].flags & K210_CLKF_PLL) { |
| if (enable) |
| return k210_pll_enable(priv, k210_clks[id].pll); |
| else |
| return k210_pll_disable(priv, k210_clks[id].pll); |
| } |
| |
| if (k210_clks[id].gate == K210_CLK_GATE_NONE) |
| return -ENOSYS; |
| gate = &k210_gates[k210_clks[id].gate]; |
| |
| k210_clk_writel(priv, gate->off, gate->bit_idx, 1, enable); |
| return 0; |
| } |
| |
| static int k210_clk_enable(struct clk *clk) |
| { |
| return k210_clk_endisable(dev_get_priv(clk->dev), clk->id, true); |
| } |
| |
| static int k210_clk_disable(struct clk *clk) |
| { |
| return k210_clk_endisable(dev_get_priv(clk->dev), clk->id, false); |
| } |
| |
| static int k210_clk_request(struct clk *clk) |
| { |
| if (clk->id >= ARRAY_SIZE(k210_clks)) |
| return -EINVAL; |
| return 0; |
| } |
| |
| static const struct clk_ops k210_clk_ops = { |
| .request = k210_clk_request, |
| .set_rate = k210_clk_set_rate, |
| .get_rate = k210_clk_get_rate, |
| .set_parent = k210_clk_set_parent, |
| .enable = k210_clk_enable, |
| .disable = k210_clk_disable, |
| }; |
| |
| static int k210_clk_probe(struct udevice *dev) |
| { |
| int ret; |
| struct k210_clk_priv *priv = dev_get_priv(dev); |
| |
| priv->base = dev_read_addr_ptr(dev_get_parent(dev)); |
| if (!priv->base) |
| return -EINVAL; |
| |
| ret = clk_get_by_index(dev, 0, &priv->in0); |
| if (ret) |
| return ret; |
| |
| /* |
| * Force setting defaults, even before relocation. This is so we can |
| * set the clock rate for PLL1 before we relocate into aisram. |
| */ |
| if (!(gd->flags & GD_FLG_RELOC)) |
| clk_set_defaults(dev, CLK_DEFAULTS_POST_FORCE); |
| |
| return 0; |
| } |
| |
| static const struct udevice_id k210_clk_ids[] = { |
| { .compatible = "kendryte,k210-clk" }, |
| { }, |
| }; |
| |
| U_BOOT_DRIVER(k210_clk) = { |
| .name = "k210_clk", |
| .id = UCLASS_CLK, |
| .of_match = k210_clk_ids, |
| .ops = &k210_clk_ops, |
| .probe = k210_clk_probe, |
| .priv_auto = sizeof(struct k210_clk_priv), |
| }; |
| |
| #if CONFIG_IS_ENABLED(CMD_CLK) |
| static char show_enabled(struct k210_clk_priv *priv, int id) |
| { |
| bool enabled; |
| |
| if (k210_clks[id].flags & K210_CLKF_PLL) { |
| const struct k210_pll_params *pll = |
| &k210_plls[k210_clks[id].pll]; |
| |
| enabled = k210_pll_enabled(readl(priv->base + pll->off)); |
| } else if (k210_clks[id].gate == K210_CLK_GATE_NONE) { |
| return '-'; |
| } else { |
| const struct k210_gate_params *gate = |
| &k210_gates[k210_clks[id].gate]; |
| |
| enabled = k210_clk_readl(priv, gate->off, gate->bit_idx, 1); |
| } |
| |
| return enabled ? 'y' : 'n'; |
| } |
| |
| static void show_clks(struct k210_clk_priv *priv, int id, int depth) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(k210_clks); i++) { |
| if (k210_clk_get_parent(priv, i) != id) |
| continue; |
| |
| printf(" %-9lu %-7c %*s%s\n", do_k210_clk_get_rate(priv, i), |
| show_enabled(priv, i), depth * 4, "", |
| k210_clks[i].name); |
| |
| show_clks(priv, i, depth + 1); |
| } |
| } |
| |
| int soc_clk_dump(void) |
| { |
| int ret; |
| struct udevice *dev; |
| struct k210_clk_priv *priv; |
| |
| ret = uclass_get_device_by_driver(UCLASS_CLK, DM_DRIVER_GET(k210_clk), |
| &dev); |
| if (ret) |
| return ret; |
| priv = dev_get_priv(dev); |
| |
| puts(" Rate Enabled Name\n"); |
| puts("------------------------\n"); |
| printf(" %-9lu %-7c %*s%s\n", clk_get_rate(&priv->in0), 'y', 0, "", |
| priv->in0.dev->name); |
| show_clks(priv, K210_CLK_IN0, 1); |
| return 0; |
| } |
| #endif |