blob: 40fd6afc08c115334cc7dcf6c8058610999f3ce8 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2007, 2010-2011 Freescale Semiconductor, Inc
* Copyright 2019 NXP Semiconductors
* Andy Fleming
*
* Based vaguely on the pxa mmc code:
* (C) Copyright 2003
* Kyle Harris, Nexus Technologies, Inc. kharris@nexus-tech.net
*/
#include <config.h>
#include <common.h>
#include <command.h>
#include <clk.h>
#include <errno.h>
#include <hwconfig.h>
#include <mmc.h>
#include <part.h>
#include <malloc.h>
#include <fsl_esdhc.h>
#include <fdt_support.h>
#include <asm/io.h>
#include <dm.h>
DECLARE_GLOBAL_DATA_PTR;
struct fsl_esdhc {
uint dsaddr; /* SDMA system address register */
uint blkattr; /* Block attributes register */
uint cmdarg; /* Command argument register */
uint xfertyp; /* Transfer type register */
uint cmdrsp0; /* Command response 0 register */
uint cmdrsp1; /* Command response 1 register */
uint cmdrsp2; /* Command response 2 register */
uint cmdrsp3; /* Command response 3 register */
uint datport; /* Buffer data port register */
uint prsstat; /* Present state register */
uint proctl; /* Protocol control register */
uint sysctl; /* System Control Register */
uint irqstat; /* Interrupt status register */
uint irqstaten; /* Interrupt status enable register */
uint irqsigen; /* Interrupt signal enable register */
uint autoc12err; /* Auto CMD error status register */
uint hostcapblt; /* Host controller capabilities register */
uint wml; /* Watermark level register */
char reserved1[8]; /* reserved */
uint fevt; /* Force event register */
uint admaes; /* ADMA error status register */
uint adsaddr; /* ADMA system address register */
char reserved2[160];
uint hostver; /* Host controller version register */
char reserved3[4]; /* reserved */
uint dmaerraddr; /* DMA error address register */
char reserved4[4]; /* reserved */
uint dmaerrattr; /* DMA error attribute register */
char reserved5[4]; /* reserved */
uint hostcapblt2; /* Host controller capabilities register 2 */
char reserved6[756]; /* reserved */
uint esdhcctl; /* eSDHC control register */
};
struct fsl_esdhc_plat {
struct mmc_config cfg;
struct mmc mmc;
};
/**
* struct fsl_esdhc_priv
*
* @esdhc_regs: registers of the sdhc controller
* @sdhc_clk: Current clk of the sdhc controller
* @bus_width: bus width, 1bit, 4bit or 8bit
* @cfg: mmc config
* @mmc: mmc
* Following is used when Driver Model is enabled for MMC
* @dev: pointer for the device
* @non_removable: 0: removable; 1: non-removable
* @wp_enable: 1: enable checking wp; 0: no check
* @cd_gpio: gpio for card detection
* @wp_gpio: gpio for write protection
*/
struct fsl_esdhc_priv {
struct fsl_esdhc *esdhc_regs;
unsigned int sdhc_clk;
struct clk per_clk;
unsigned int clock;
unsigned int bus_width;
#if !CONFIG_IS_ENABLED(DM_MMC)
struct mmc *mmc;
#endif
struct udevice *dev;
int non_removable;
int wp_enable;
};
/* Return the XFERTYP flags for a given command and data packet */
static uint esdhc_xfertyp(struct mmc_cmd *cmd, struct mmc_data *data)
{
uint xfertyp = 0;
if (data) {
xfertyp |= XFERTYP_DPSEL;
#ifndef CONFIG_SYS_FSL_ESDHC_USE_PIO
xfertyp |= XFERTYP_DMAEN;
#endif
if (data->blocks > 1) {
xfertyp |= XFERTYP_MSBSEL;
xfertyp |= XFERTYP_BCEN;
#ifdef CONFIG_SYS_FSL_ERRATUM_ESDHC111
xfertyp |= XFERTYP_AC12EN;
#endif
}
if (data->flags & MMC_DATA_READ)
xfertyp |= XFERTYP_DTDSEL;
}
if (cmd->resp_type & MMC_RSP_CRC)
xfertyp |= XFERTYP_CCCEN;
if (cmd->resp_type & MMC_RSP_OPCODE)
xfertyp |= XFERTYP_CICEN;
if (cmd->resp_type & MMC_RSP_136)
xfertyp |= XFERTYP_RSPTYP_136;
else if (cmd->resp_type & MMC_RSP_BUSY)
xfertyp |= XFERTYP_RSPTYP_48_BUSY;
else if (cmd->resp_type & MMC_RSP_PRESENT)
xfertyp |= XFERTYP_RSPTYP_48;
if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
xfertyp |= XFERTYP_CMDTYP_ABORT;
return XFERTYP_CMD(cmd->cmdidx) | xfertyp;
}
#ifdef CONFIG_SYS_FSL_ESDHC_USE_PIO
/*
* PIO Read/Write Mode reduce the performace as DMA is not used in this mode.
*/
static void esdhc_pio_read_write(struct fsl_esdhc_priv *priv,
struct mmc_data *data)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
uint blocks;
char *buffer;
uint databuf;
uint size;
uint irqstat;
ulong start;
if (data->flags & MMC_DATA_READ) {
blocks = data->blocks;
buffer = data->dest;
while (blocks) {
start = get_timer(0);
size = data->blocksize;
irqstat = esdhc_read32(&regs->irqstat);
while (!(esdhc_read32(&regs->prsstat) & PRSSTAT_BREN)) {
if (get_timer(start) > PIO_TIMEOUT) {
printf("\nData Read Failed in PIO Mode.");
return;
}
}
while (size && (!(irqstat & IRQSTAT_TC))) {
udelay(100); /* Wait before last byte transfer complete */
irqstat = esdhc_read32(&regs->irqstat);
databuf = in_le32(&regs->datport);
*((uint *)buffer) = databuf;
buffer += 4;
size -= 4;
}
blocks--;
}
} else {
blocks = data->blocks;
buffer = (char *)data->src;
while (blocks) {
start = get_timer(0);
size = data->blocksize;
irqstat = esdhc_read32(&regs->irqstat);
while (!(esdhc_read32(&regs->prsstat) & PRSSTAT_BWEN)) {
if (get_timer(start) > PIO_TIMEOUT) {
printf("\nData Write Failed in PIO Mode.");
return;
}
}
while (size && (!(irqstat & IRQSTAT_TC))) {
udelay(100); /* Wait before last byte transfer complete */
databuf = *((uint *)buffer);
buffer += 4;
size -= 4;
irqstat = esdhc_read32(&regs->irqstat);
out_le32(&regs->datport, databuf);
}
blocks--;
}
}
}
#endif
static int esdhc_setup_data(struct fsl_esdhc_priv *priv, struct mmc *mmc,
struct mmc_data *data)
{
int timeout;
struct fsl_esdhc *regs = priv->esdhc_regs;
#if defined(CONFIG_FSL_LAYERSCAPE)
dma_addr_t addr;
#endif
uint wml_value;
wml_value = data->blocksize/4;
if (data->flags & MMC_DATA_READ) {
if (wml_value > WML_RD_WML_MAX)
wml_value = WML_RD_WML_MAX_VAL;
esdhc_clrsetbits32(&regs->wml, WML_RD_WML_MASK, wml_value);
#ifndef CONFIG_SYS_FSL_ESDHC_USE_PIO
#if defined(CONFIG_FSL_LAYERSCAPE)
addr = virt_to_phys((void *)(data->dest));
if (upper_32_bits(addr))
printf("Error found for upper 32 bits\n");
else
esdhc_write32(&regs->dsaddr, lower_32_bits(addr));
#else
esdhc_write32(&regs->dsaddr, (u32)data->dest);
#endif
#endif
} else {
#ifndef CONFIG_SYS_FSL_ESDHC_USE_PIO
flush_dcache_range((ulong)data->src,
(ulong)data->src+data->blocks
*data->blocksize);
#endif
if (wml_value > WML_WR_WML_MAX)
wml_value = WML_WR_WML_MAX_VAL;
if (priv->wp_enable) {
if ((esdhc_read32(&regs->prsstat) &
PRSSTAT_WPSPL) == 0) {
printf("\nThe SD card is locked. Can not write to a locked card.\n\n");
return -ETIMEDOUT;
}
}
esdhc_clrsetbits32(&regs->wml, WML_WR_WML_MASK,
wml_value << 16);
#ifndef CONFIG_SYS_FSL_ESDHC_USE_PIO
#if defined(CONFIG_FSL_LAYERSCAPE)
addr = virt_to_phys((void *)(data->src));
if (upper_32_bits(addr))
printf("Error found for upper 32 bits\n");
else
esdhc_write32(&regs->dsaddr, lower_32_bits(addr));
#else
esdhc_write32(&regs->dsaddr, (u32)data->src);
#endif
#endif
}
esdhc_write32(&regs->blkattr, data->blocks << 16 | data->blocksize);
/* Calculate the timeout period for data transactions */
/*
* 1)Timeout period = (2^(timeout+13)) SD Clock cycles
* 2)Timeout period should be minimum 0.250sec as per SD Card spec
* So, Number of SD Clock cycles for 0.25sec should be minimum
* (SD Clock/sec * 0.25 sec) SD Clock cycles
* = (mmc->clock * 1/4) SD Clock cycles
* As 1) >= 2)
* => (2^(timeout+13)) >= mmc->clock * 1/4
* Taking log2 both the sides
* => timeout + 13 >= log2(mmc->clock/4)
* Rounding up to next power of 2
* => timeout + 13 = log2(mmc->clock/4) + 1
* => timeout + 13 = fls(mmc->clock/4)
*
* However, the MMC spec "It is strongly recommended for hosts to
* implement more than 500ms timeout value even if the card
* indicates the 250ms maximum busy length." Even the previous
* value of 300ms is known to be insufficient for some cards.
* So, we use
* => timeout + 13 = fls(mmc->clock/2)
*/
timeout = fls(mmc->clock/2);
timeout -= 13;
if (timeout > 14)
timeout = 14;
if (timeout < 0)
timeout = 0;
#ifdef CONFIG_SYS_FSL_ERRATUM_ESDHC_A001
if ((timeout == 4) || (timeout == 8) || (timeout == 12))
timeout++;
#endif
#ifdef ESDHCI_QUIRK_BROKEN_TIMEOUT_VALUE
timeout = 0xE;
#endif
esdhc_clrsetbits32(&regs->sysctl, SYSCTL_TIMEOUT_MASK, timeout << 16);
return 0;
}
static void check_and_invalidate_dcache_range
(struct mmc_cmd *cmd,
struct mmc_data *data) {
unsigned start = 0;
unsigned end = 0;
unsigned size = roundup(ARCH_DMA_MINALIGN,
data->blocks*data->blocksize);
#if defined(CONFIG_FSL_LAYERSCAPE)
dma_addr_t addr;
addr = virt_to_phys((void *)(data->dest));
if (upper_32_bits(addr))
printf("Error found for upper 32 bits\n");
else
start = lower_32_bits(addr);
#else
start = (unsigned)data->dest;
#endif
end = start + size;
invalidate_dcache_range(start, end);
}
/*
* Sends a command out on the bus. Takes the mmc pointer,
* a command pointer, and an optional data pointer.
*/
static int esdhc_send_cmd_common(struct fsl_esdhc_priv *priv, struct mmc *mmc,
struct mmc_cmd *cmd, struct mmc_data *data)
{
int err = 0;
uint xfertyp;
uint irqstat;
u32 flags = IRQSTAT_CC | IRQSTAT_CTOE;
struct fsl_esdhc *regs = priv->esdhc_regs;
unsigned long start;
#ifdef CONFIG_SYS_FSL_ERRATUM_ESDHC111
if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
return 0;
#endif
esdhc_write32(&regs->irqstat, -1);
sync();
/* Wait for the bus to be idle */
while ((esdhc_read32(&regs->prsstat) & PRSSTAT_CICHB) ||
(esdhc_read32(&regs->prsstat) & PRSSTAT_CIDHB))
;
while (esdhc_read32(&regs->prsstat) & PRSSTAT_DLA)
;
/* Wait at least 8 SD clock cycles before the next command */
/*
* Note: This is way more than 8 cycles, but 1ms seems to
* resolve timing issues with some cards
*/
udelay(1000);
/* Set up for a data transfer if we have one */
if (data) {
err = esdhc_setup_data(priv, mmc, data);
if(err)
return err;
if (data->flags & MMC_DATA_READ)
check_and_invalidate_dcache_range(cmd, data);
}
/* Figure out the transfer arguments */
xfertyp = esdhc_xfertyp(cmd, data);
/* Mask all irqs */
esdhc_write32(&regs->irqsigen, 0);
/* Send the command */
esdhc_write32(&regs->cmdarg, cmd->cmdarg);
esdhc_write32(&regs->xfertyp, xfertyp);
/* Wait for the command to complete */
start = get_timer(0);
while (!(esdhc_read32(&regs->irqstat) & flags)) {
if (get_timer(start) > 1000) {
err = -ETIMEDOUT;
goto out;
}
}
irqstat = esdhc_read32(&regs->irqstat);
if (irqstat & CMD_ERR) {
err = -ECOMM;
goto out;
}
if (irqstat & IRQSTAT_CTOE) {
err = -ETIMEDOUT;
goto out;
}
/* Workaround for ESDHC errata ENGcm03648 */
if (!data && (cmd->resp_type & MMC_RSP_BUSY)) {
int timeout = 6000;
/* Poll on DATA0 line for cmd with busy signal for 600 ms */
while (timeout > 0 && !(esdhc_read32(&regs->prsstat) &
PRSSTAT_DAT0)) {
udelay(100);
timeout--;
}
if (timeout <= 0) {
printf("Timeout waiting for DAT0 to go high!\n");
err = -ETIMEDOUT;
goto out;
}
}
/* Copy the response to the response buffer */
if (cmd->resp_type & MMC_RSP_136) {
u32 cmdrsp3, cmdrsp2, cmdrsp1, cmdrsp0;
cmdrsp3 = esdhc_read32(&regs->cmdrsp3);
cmdrsp2 = esdhc_read32(&regs->cmdrsp2);
cmdrsp1 = esdhc_read32(&regs->cmdrsp1);
cmdrsp0 = esdhc_read32(&regs->cmdrsp0);
cmd->response[0] = (cmdrsp3 << 8) | (cmdrsp2 >> 24);
cmd->response[1] = (cmdrsp2 << 8) | (cmdrsp1 >> 24);
cmd->response[2] = (cmdrsp1 << 8) | (cmdrsp0 >> 24);
cmd->response[3] = (cmdrsp0 << 8);
} else
cmd->response[0] = esdhc_read32(&regs->cmdrsp0);
/* Wait until all of the blocks are transferred */
if (data) {
#ifdef CONFIG_SYS_FSL_ESDHC_USE_PIO
esdhc_pio_read_write(priv, data);
#else
do {
irqstat = esdhc_read32(&regs->irqstat);
if (irqstat & IRQSTAT_DTOE) {
err = -ETIMEDOUT;
goto out;
}
if (irqstat & DATA_ERR) {
err = -ECOMM;
goto out;
}
} while ((irqstat & DATA_COMPLETE) != DATA_COMPLETE);
/*
* Need invalidate the dcache here again to avoid any
* cache-fill during the DMA operations such as the
* speculative pre-fetching etc.
*/
if (data->flags & MMC_DATA_READ) {
check_and_invalidate_dcache_range(cmd, data);
}
#endif
}
out:
/* Reset CMD and DATA portions on error */
if (err) {
esdhc_write32(&regs->sysctl, esdhc_read32(&regs->sysctl) |
SYSCTL_RSTC);
while (esdhc_read32(&regs->sysctl) & SYSCTL_RSTC)
;
if (data) {
esdhc_write32(&regs->sysctl,
esdhc_read32(&regs->sysctl) |
SYSCTL_RSTD);
while ((esdhc_read32(&regs->sysctl) & SYSCTL_RSTD))
;
}
}
esdhc_write32(&regs->irqstat, -1);
return err;
}
static void set_sysctl(struct fsl_esdhc_priv *priv, struct mmc *mmc, uint clock)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
int div = 1;
int pre_div = 2;
unsigned int sdhc_clk = priv->sdhc_clk;
u32 time_out;
u32 value;
uint clk;
if (clock < mmc->cfg->f_min)
clock = mmc->cfg->f_min;
while (sdhc_clk / (16 * pre_div) > clock && pre_div < 256)
pre_div *= 2;
while (sdhc_clk / (div * pre_div) > clock && div < 16)
div++;
pre_div >>= 1;
div -= 1;
clk = (pre_div << 8) | (div << 4);
esdhc_clrbits32(&regs->sysctl, SYSCTL_CKEN);
esdhc_clrsetbits32(&regs->sysctl, SYSCTL_CLOCK_MASK, clk);
time_out = 20;
value = PRSSTAT_SDSTB;
while (!(esdhc_read32(&regs->prsstat) & value)) {
if (time_out == 0) {
printf("fsl_esdhc: Internal clock never stabilised.\n");
break;
}
time_out--;
mdelay(1);
}
esdhc_setbits32(&regs->sysctl, SYSCTL_PEREN | SYSCTL_CKEN);
}
#ifdef CONFIG_FSL_ESDHC_USE_PERIPHERAL_CLK
static void esdhc_clock_control(struct fsl_esdhc_priv *priv, bool enable)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
u32 value;
u32 time_out;
value = esdhc_read32(&regs->sysctl);
if (enable)
value |= SYSCTL_CKEN;
else
value &= ~SYSCTL_CKEN;
esdhc_write32(&regs->sysctl, value);
time_out = 20;
value = PRSSTAT_SDSTB;
while (!(esdhc_read32(&regs->prsstat) & value)) {
if (time_out == 0) {
printf("fsl_esdhc: Internal clock never stabilised.\n");
break;
}
time_out--;
mdelay(1);
}
}
#endif
static int esdhc_set_ios_common(struct fsl_esdhc_priv *priv, struct mmc *mmc)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
#ifdef CONFIG_FSL_ESDHC_USE_PERIPHERAL_CLK
/* Select to use peripheral clock */
esdhc_clock_control(priv, false);
esdhc_setbits32(&regs->esdhcctl, ESDHCCTL_PCS);
esdhc_clock_control(priv, true);
#endif
/* Set the clock speed */
if (priv->clock != mmc->clock)
set_sysctl(priv, mmc, mmc->clock);
/* Set the bus width */
esdhc_clrbits32(&regs->proctl, PROCTL_DTW_4 | PROCTL_DTW_8);
if (mmc->bus_width == 4)
esdhc_setbits32(&regs->proctl, PROCTL_DTW_4);
else if (mmc->bus_width == 8)
esdhc_setbits32(&regs->proctl, PROCTL_DTW_8);
return 0;
}
static int esdhc_init_common(struct fsl_esdhc_priv *priv, struct mmc *mmc)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
ulong start;
/* Reset the entire host controller */
esdhc_setbits32(&regs->sysctl, SYSCTL_RSTA);
/* Wait until the controller is available */
start = get_timer(0);
while ((esdhc_read32(&regs->sysctl) & SYSCTL_RSTA)) {
if (get_timer(start) > 1000)
return -ETIMEDOUT;
}
/* Enable cache snooping */
esdhc_write32(&regs->esdhcctl, 0x00000040);
esdhc_setbits32(&regs->sysctl, SYSCTL_HCKEN | SYSCTL_IPGEN);
/* Set the initial clock speed */
mmc_set_clock(mmc, 400000, MMC_CLK_ENABLE);
/* Disable the BRR and BWR bits in IRQSTAT */
esdhc_clrbits32(&regs->irqstaten, IRQSTATEN_BRR | IRQSTATEN_BWR);
/* Put the PROCTL reg back to the default */
esdhc_write32(&regs->proctl, PROCTL_INIT);
/* Set timout to the maximum value */
esdhc_clrsetbits32(&regs->sysctl, SYSCTL_TIMEOUT_MASK, 14 << 16);
return 0;
}
static int esdhc_getcd_common(struct fsl_esdhc_priv *priv)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
int timeout = 1000;
#ifdef CONFIG_ESDHC_DETECT_QUIRK
if (CONFIG_ESDHC_DETECT_QUIRK)
return 1;
#endif
#if CONFIG_IS_ENABLED(DM_MMC)
if (priv->non_removable)
return 1;
#endif
while (!(esdhc_read32(&regs->prsstat) & PRSSTAT_CINS) && --timeout)
udelay(1000);
return timeout > 0;
}
#if !CONFIG_IS_ENABLED(DM_MMC)
static int esdhc_getcd(struct mmc *mmc)
{
struct fsl_esdhc_priv *priv = mmc->priv;
return esdhc_getcd_common(priv);
}
static int esdhc_init(struct mmc *mmc)
{
struct fsl_esdhc_priv *priv = mmc->priv;
return esdhc_init_common(priv, mmc);
}
static int esdhc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct fsl_esdhc_priv *priv = mmc->priv;
return esdhc_send_cmd_common(priv, mmc, cmd, data);
}
static int esdhc_set_ios(struct mmc *mmc)
{
struct fsl_esdhc_priv *priv = mmc->priv;
return esdhc_set_ios_common(priv, mmc);
}
static const struct mmc_ops esdhc_ops = {
.getcd = esdhc_getcd,
.init = esdhc_init,
.send_cmd = esdhc_send_cmd,
.set_ios = esdhc_set_ios,
};
#endif
static int fsl_esdhc_init(struct fsl_esdhc_priv *priv,
struct fsl_esdhc_plat *plat)
{
struct mmc_config *cfg;
struct fsl_esdhc *regs;
u32 caps;
if (!priv)
return -EINVAL;
regs = priv->esdhc_regs;
cfg = &plat->cfg;
#ifndef CONFIG_DM_MMC
memset(cfg, '\0', sizeof(*cfg));
#endif
caps = esdhc_read32(&regs->hostcapblt);
#ifdef CONFIG_SYS_FSL_ERRATUM_ESDHC135
caps &= ~(HOSTCAPBLT_SRS | HOSTCAPBLT_VS18 | HOSTCAPBLT_VS30);
#endif
#ifdef CONFIG_SYS_FSL_MMC_HAS_CAPBLT_VS33
caps |= HOSTCAPBLT_VS33;
#endif
if (caps & HOSTCAPBLT_VS18)
cfg->voltages |= MMC_VDD_165_195;
if (caps & HOSTCAPBLT_VS30)
cfg->voltages |= MMC_VDD_29_30 | MMC_VDD_30_31;
if (caps & HOSTCAPBLT_VS33)
cfg->voltages |= MMC_VDD_32_33 | MMC_VDD_33_34;
cfg->name = "FSL_SDHC";
#if !CONFIG_IS_ENABLED(DM_MMC)
cfg->ops = &esdhc_ops;
#endif
if (priv->bus_width == 8)
cfg->host_caps = MMC_MODE_4BIT | MMC_MODE_8BIT;
else if (priv->bus_width == 4)
cfg->host_caps = MMC_MODE_4BIT;
cfg->host_caps = MMC_MODE_4BIT | MMC_MODE_8BIT;
if (priv->bus_width > 0) {
if (priv->bus_width < 8)
cfg->host_caps &= ~MMC_MODE_8BIT;
if (priv->bus_width < 4)
cfg->host_caps &= ~MMC_MODE_4BIT;
}
if (caps & HOSTCAPBLT_HSS)
cfg->host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
#ifdef CONFIG_ESDHC_DETECT_8_BIT_QUIRK
if (CONFIG_ESDHC_DETECT_8_BIT_QUIRK)
cfg->host_caps &= ~MMC_MODE_8BIT;
#endif
cfg->f_min = 400000;
cfg->f_max = min(priv->sdhc_clk, (u32)200000000);
cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
return 0;
}
#if !CONFIG_IS_ENABLED(DM_MMC)
static int fsl_esdhc_cfg_to_priv(struct fsl_esdhc_cfg *cfg,
struct fsl_esdhc_priv *priv)
{
if (!cfg || !priv)
return -EINVAL;
priv->esdhc_regs = (struct fsl_esdhc *)(unsigned long)(cfg->esdhc_base);
priv->bus_width = cfg->max_bus_width;
priv->sdhc_clk = cfg->sdhc_clk;
priv->wp_enable = cfg->wp_enable;
return 0;
};
int fsl_esdhc_initialize(bd_t *bis, struct fsl_esdhc_cfg *cfg)
{
struct fsl_esdhc_plat *plat;
struct fsl_esdhc_priv *priv;
struct mmc *mmc;
int ret;
if (!cfg)
return -EINVAL;
priv = calloc(sizeof(struct fsl_esdhc_priv), 1);
if (!priv)
return -ENOMEM;
plat = calloc(sizeof(struct fsl_esdhc_plat), 1);
if (!plat) {
free(priv);
return -ENOMEM;
}
ret = fsl_esdhc_cfg_to_priv(cfg, priv);
if (ret) {
debug("%s xlate failure\n", __func__);
free(plat);
free(priv);
return ret;
}
ret = fsl_esdhc_init(priv, plat);
if (ret) {
debug("%s init failure\n", __func__);
free(plat);
free(priv);
return ret;
}
mmc = mmc_create(&plat->cfg, priv);
if (!mmc)
return -EIO;
priv->mmc = mmc;
return 0;
}
int fsl_esdhc_mmc_init(bd_t *bis)
{
struct fsl_esdhc_cfg *cfg;
cfg = calloc(sizeof(struct fsl_esdhc_cfg), 1);
cfg->esdhc_base = CONFIG_SYS_FSL_ESDHC_ADDR;
cfg->sdhc_clk = gd->arch.sdhc_clk;
return fsl_esdhc_initialize(bis, cfg);
}
#endif
#ifdef CONFIG_FSL_ESDHC_ADAPTER_IDENT
void mmc_adapter_card_type_ident(void)
{
u8 card_id;
u8 value;
card_id = QIXIS_READ(present) & QIXIS_SDID_MASK;
gd->arch.sdhc_adapter = card_id;
switch (card_id) {
case QIXIS_ESDHC_ADAPTER_TYPE_EMMC45:
value = QIXIS_READ(brdcfg[5]);
value |= (QIXIS_DAT4 | QIXIS_DAT5_6_7);
QIXIS_WRITE(brdcfg[5], value);
break;
case QIXIS_ESDHC_ADAPTER_TYPE_SDMMC_LEGACY:
value = QIXIS_READ(pwr_ctl[1]);
value |= QIXIS_EVDD_BY_SDHC_VS;
QIXIS_WRITE(pwr_ctl[1], value);
break;
case QIXIS_ESDHC_ADAPTER_TYPE_EMMC44:
value = QIXIS_READ(brdcfg[5]);
value |= (QIXIS_SDCLKIN | QIXIS_SDCLKOUT);
QIXIS_WRITE(brdcfg[5], value);
break;
case QIXIS_ESDHC_ADAPTER_TYPE_RSV:
break;
case QIXIS_ESDHC_ADAPTER_TYPE_MMC:
break;
case QIXIS_ESDHC_ADAPTER_TYPE_SD:
break;
case QIXIS_ESDHC_NO_ADAPTER:
break;
default:
break;
}
}
#endif
#ifdef CONFIG_OF_LIBFDT
__weak int esdhc_status_fixup(void *blob, const char *compat)
{
#ifdef CONFIG_FSL_ESDHC_PIN_MUX
if (!hwconfig("esdhc")) {
do_fixup_by_compat(blob, compat, "status", "disabled",
sizeof("disabled"), 1);
return 1;
}
#endif
return 0;
}
void fdt_fixup_esdhc(void *blob, bd_t *bd)
{
const char *compat = "fsl,esdhc";
if (esdhc_status_fixup(blob, compat))
return;
#ifdef CONFIG_FSL_ESDHC_USE_PERIPHERAL_CLK
do_fixup_by_compat_u32(blob, compat, "peripheral-frequency",
gd->arch.sdhc_clk, 1);
#else
do_fixup_by_compat_u32(blob, compat, "clock-frequency",
gd->arch.sdhc_clk, 1);
#endif
#ifdef CONFIG_FSL_ESDHC_ADAPTER_IDENT
do_fixup_by_compat_u32(blob, compat, "adapter-type",
(u32)(gd->arch.sdhc_adapter), 1);
#endif
}
#endif
#if CONFIG_IS_ENABLED(DM_MMC)
#ifndef CONFIG_PPC
#include <asm/arch/clock.h>
#endif
static int fsl_esdhc_probe(struct udevice *dev)
{
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
struct fsl_esdhc_plat *plat = dev_get_platdata(dev);
struct fsl_esdhc_priv *priv = dev_get_priv(dev);
fdt_addr_t addr;
unsigned int val;
struct mmc *mmc;
int ret;
addr = dev_read_addr(dev);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
#ifdef CONFIG_PPC
priv->esdhc_regs = (struct fsl_esdhc *)lower_32_bits(addr);
#else
priv->esdhc_regs = (struct fsl_esdhc *)addr;
#endif
priv->dev = dev;
val = dev_read_u32_default(dev, "bus-width", -1);
if (val == 8)
priv->bus_width = 8;
else if (val == 4)
priv->bus_width = 4;
else
priv->bus_width = 1;
if (dev_read_bool(dev, "non-removable")) {
priv->non_removable = 1;
} else {
priv->non_removable = 0;
}
priv->wp_enable = 1;
if (IS_ENABLED(CONFIG_CLK)) {
/* Assigned clock already set clock */
ret = clk_get_by_name(dev, "per", &priv->per_clk);
if (ret) {
printf("Failed to get per_clk\n");
return ret;
}
ret = clk_enable(&priv->per_clk);
if (ret) {
printf("Failed to enable per_clk\n");
return ret;
}
priv->sdhc_clk = clk_get_rate(&priv->per_clk);
} else {
#ifndef CONFIG_PPC
priv->sdhc_clk = mxc_get_clock(MXC_ESDHC_CLK + dev->seq);
#else
priv->sdhc_clk = gd->arch.sdhc_clk;
#endif
if (priv->sdhc_clk <= 0) {
dev_err(dev, "Unable to get clk for %s\n", dev->name);
return -EINVAL;
}
}
ret = fsl_esdhc_init(priv, plat);
if (ret) {
dev_err(dev, "fsl_esdhc_init failure\n");
return ret;
}
mmc_of_parse(dev, &plat->cfg);
mmc = &plat->mmc;
mmc->cfg = &plat->cfg;
mmc->dev = dev;
upriv->mmc = mmc;
return esdhc_init_common(priv, mmc);
}
static int fsl_esdhc_get_cd(struct udevice *dev)
{
struct fsl_esdhc_priv *priv = dev_get_priv(dev);
return esdhc_getcd_common(priv);
}
static int fsl_esdhc_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct fsl_esdhc_plat *plat = dev_get_platdata(dev);
struct fsl_esdhc_priv *priv = dev_get_priv(dev);
return esdhc_send_cmd_common(priv, &plat->mmc, cmd, data);
}
static int fsl_esdhc_set_ios(struct udevice *dev)
{
struct fsl_esdhc_plat *plat = dev_get_platdata(dev);
struct fsl_esdhc_priv *priv = dev_get_priv(dev);
return esdhc_set_ios_common(priv, &plat->mmc);
}
static const struct dm_mmc_ops fsl_esdhc_ops = {
.get_cd = fsl_esdhc_get_cd,
.send_cmd = fsl_esdhc_send_cmd,
.set_ios = fsl_esdhc_set_ios,
#ifdef MMC_SUPPORTS_TUNING
.execute_tuning = fsl_esdhc_execute_tuning,
#endif
};
static const struct udevice_id fsl_esdhc_ids[] = {
{ .compatible = "fsl,esdhc", },
{ /* sentinel */ }
};
static int fsl_esdhc_bind(struct udevice *dev)
{
struct fsl_esdhc_plat *plat = dev_get_platdata(dev);
return mmc_bind(dev, &plat->mmc, &plat->cfg);
}
U_BOOT_DRIVER(fsl_esdhc) = {
.name = "fsl-esdhc-mmc",
.id = UCLASS_MMC,
.of_match = fsl_esdhc_ids,
.ops = &fsl_esdhc_ops,
.bind = fsl_esdhc_bind,
.probe = fsl_esdhc_probe,
.platdata_auto_alloc_size = sizeof(struct fsl_esdhc_plat),
.priv_auto_alloc_size = sizeof(struct fsl_esdhc_priv),
};
#endif