| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) 2015 Google, Inc |
| */ |
| |
| #include <common.h> |
| #include <dm.h> |
| #include <asm/io.h> |
| #include <asm/test.h> |
| #include <dm/test.h> |
| #include <test/test.h> |
| #include <test/ut.h> |
| |
| /* Test that sandbox PCI works correctly */ |
| static int dm_test_pci_base(struct unit_test_state *uts) |
| { |
| struct udevice *bus; |
| |
| ut_assertok(uclass_get_device(UCLASS_PCI, 0, &bus)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_pci_base, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| /* Test that sandbox PCI bus numbering and device works correctly */ |
| static int dm_test_pci_busdev(struct unit_test_state *uts) |
| { |
| struct udevice *bus; |
| struct udevice *swap; |
| u16 vendor, device; |
| |
| /* Test bus#0 and its devices */ |
| ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 0, &bus)); |
| |
| ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x00, 0), &swap)); |
| vendor = 0; |
| ut_assertok(dm_pci_read_config16(swap, PCI_VENDOR_ID, &vendor)); |
| ut_asserteq(SANDBOX_PCI_VENDOR_ID, vendor); |
| ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1f, 0), &swap)); |
| device = 0; |
| ut_assertok(dm_pci_read_config16(swap, PCI_DEVICE_ID, &device)); |
| ut_asserteq(SANDBOX_PCI_SWAP_CASE_EMUL_ID, device); |
| |
| /* Test bus#1 and its devices */ |
| ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 1, &bus)); |
| |
| ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x08, 0), &swap)); |
| vendor = 0; |
| ut_assertok(dm_pci_read_config16(swap, PCI_VENDOR_ID, &vendor)); |
| ut_asserteq(SANDBOX_PCI_VENDOR_ID, vendor); |
| ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x0c, 0), &swap)); |
| device = 0; |
| ut_assertok(dm_pci_read_config16(swap, PCI_DEVICE_ID, &device)); |
| ut_asserteq(SANDBOX_PCI_SWAP_CASE_EMUL_ID, device); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_pci_busdev, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| /* Test that we can use the swapcase device correctly */ |
| static int dm_test_pci_swapcase(struct unit_test_state *uts) |
| { |
| struct udevice *swap; |
| ulong io_addr, mem_addr; |
| char *ptr; |
| |
| /* Check that asking for the device 0 automatically fires up PCI */ |
| ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x00, 0), &swap)); |
| |
| /* First test I/O */ |
| io_addr = dm_pci_read_bar32(swap, 0); |
| outb(2, io_addr); |
| ut_asserteq(2, inb(io_addr)); |
| |
| /* |
| * Now test memory mapping - note we must unmap and remap to cause |
| * the swapcase emulation to see our data and response. |
| */ |
| mem_addr = dm_pci_read_bar32(swap, 1); |
| ptr = map_sysmem(mem_addr, 20); |
| strcpy(ptr, "This is a TesT"); |
| unmap_sysmem(ptr); |
| |
| ptr = map_sysmem(mem_addr, 20); |
| ut_asserteq_str("tHIS IS A tESt", ptr); |
| unmap_sysmem(ptr); |
| |
| /* Check that asking for the device 1 automatically fires up PCI */ |
| ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1f, 0), &swap)); |
| |
| /* First test I/O */ |
| io_addr = dm_pci_read_bar32(swap, 0); |
| outb(2, io_addr); |
| ut_asserteq(2, inb(io_addr)); |
| |
| /* |
| * Now test memory mapping - note we must unmap and remap to cause |
| * the swapcase emulation to see our data and response. |
| */ |
| mem_addr = dm_pci_read_bar32(swap, 1); |
| ptr = map_sysmem(mem_addr, 20); |
| strcpy(ptr, "This is a TesT"); |
| unmap_sysmem(ptr); |
| |
| ptr = map_sysmem(mem_addr, 20); |
| ut_asserteq_str("tHIS IS A tESt", ptr); |
| unmap_sysmem(ptr); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_pci_swapcase, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| /* Test that we can dynamically bind the device driver correctly */ |
| static int dm_test_pci_drvdata(struct unit_test_state *uts) |
| { |
| struct udevice *bus, *swap; |
| |
| /* Check that asking for the device automatically fires up PCI */ |
| ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 1, &bus)); |
| |
| ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x08, 0), &swap)); |
| ut_asserteq(SWAP_CASE_DRV_DATA, swap->driver_data); |
| ut_assertok(dev_has_ofnode(swap)); |
| ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x0c, 0), &swap)); |
| ut_asserteq(SWAP_CASE_DRV_DATA, swap->driver_data); |
| ut_assertok(dev_has_ofnode(swap)); |
| ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x10, 0), &swap)); |
| ut_asserteq(SWAP_CASE_DRV_DATA, swap->driver_data); |
| ut_assertok(!dev_has_ofnode(swap)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_pci_drvdata, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| /* Test that devices on PCI bus#2 can be accessed correctly */ |
| static int dm_test_pci_mixed(struct unit_test_state *uts) |
| { |
| /* PCI bus#2 has both statically and dynamic declared devices */ |
| struct udevice *bus, *swap; |
| u16 vendor, device; |
| ulong io_addr, mem_addr; |
| char *ptr; |
| |
| ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 2, &bus)); |
| |
| /* Test the dynamic device */ |
| ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(2, 0x08, 0), &swap)); |
| vendor = 0; |
| ut_assertok(dm_pci_read_config16(swap, PCI_VENDOR_ID, &vendor)); |
| ut_asserteq(SANDBOX_PCI_VENDOR_ID, vendor); |
| |
| /* First test I/O */ |
| io_addr = dm_pci_read_bar32(swap, 0); |
| outb(2, io_addr); |
| ut_asserteq(2, inb(io_addr)); |
| |
| /* |
| * Now test memory mapping - note we must unmap and remap to cause |
| * the swapcase emulation to see our data and response. |
| */ |
| mem_addr = dm_pci_read_bar32(swap, 1); |
| ptr = map_sysmem(mem_addr, 30); |
| strcpy(ptr, "This is a TesT oN dYNAMIc"); |
| unmap_sysmem(ptr); |
| |
| ptr = map_sysmem(mem_addr, 30); |
| ut_asserteq_str("tHIS IS A tESt On DynamiC", ptr); |
| unmap_sysmem(ptr); |
| |
| /* Test the static device */ |
| ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(2, 0x1f, 0), &swap)); |
| device = 0; |
| ut_assertok(dm_pci_read_config16(swap, PCI_DEVICE_ID, &device)); |
| ut_asserteq(SANDBOX_PCI_SWAP_CASE_EMUL_ID, device); |
| |
| /* First test I/O */ |
| io_addr = dm_pci_read_bar32(swap, 0); |
| outb(2, io_addr); |
| ut_asserteq(2, inb(io_addr)); |
| |
| /* |
| * Now test memory mapping - note we must unmap and remap to cause |
| * the swapcase emulation to see our data and response. |
| */ |
| mem_addr = dm_pci_read_bar32(swap, 1); |
| ptr = map_sysmem(mem_addr, 30); |
| strcpy(ptr, "This is a TesT oN sTATIc"); |
| unmap_sysmem(ptr); |
| |
| ptr = map_sysmem(mem_addr, 30); |
| ut_asserteq_str("tHIS IS A tESt On StatiC", ptr); |
| unmap_sysmem(ptr); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_pci_mixed, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| /* Test looking up PCI capability and extended capability */ |
| static int dm_test_pci_cap(struct unit_test_state *uts) |
| { |
| struct udevice *bus, *swap; |
| int cap; |
| |
| ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 0, &bus)); |
| ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1f, 0), &swap)); |
| |
| /* look up PCI_CAP_ID_EXP */ |
| cap = dm_pci_find_capability(swap, PCI_CAP_ID_EXP); |
| ut_asserteq(PCI_CAP_ID_EXP_OFFSET, cap); |
| |
| /* look up PCI_CAP_ID_PCIX */ |
| cap = dm_pci_find_capability(swap, PCI_CAP_ID_PCIX); |
| ut_asserteq(0, cap); |
| |
| /* look up PCI_CAP_ID_MSIX starting from PCI_CAP_ID_PM_OFFSET */ |
| cap = dm_pci_find_next_capability(swap, PCI_CAP_ID_PM_OFFSET, |
| PCI_CAP_ID_MSIX); |
| ut_asserteq(PCI_CAP_ID_MSIX_OFFSET, cap); |
| |
| /* look up PCI_CAP_ID_VNDR starting from PCI_CAP_ID_EXP_OFFSET */ |
| cap = dm_pci_find_next_capability(swap, PCI_CAP_ID_EXP_OFFSET, |
| PCI_CAP_ID_VNDR); |
| ut_asserteq(0, cap); |
| |
| ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 1, &bus)); |
| ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x08, 0), &swap)); |
| |
| /* look up PCI_EXT_CAP_ID_DSN */ |
| cap = dm_pci_find_ext_capability(swap, PCI_EXT_CAP_ID_DSN); |
| ut_asserteq(PCI_EXT_CAP_ID_DSN_OFFSET, cap); |
| |
| /* look up PCI_EXT_CAP_ID_SRIOV */ |
| cap = dm_pci_find_ext_capability(swap, PCI_EXT_CAP_ID_SRIOV); |
| ut_asserteq(0, cap); |
| |
| /* look up PCI_EXT_CAP_ID_DSN starting from PCI_EXT_CAP_ID_ERR_OFFSET */ |
| cap = dm_pci_find_next_ext_capability(swap, PCI_EXT_CAP_ID_ERR_OFFSET, |
| PCI_EXT_CAP_ID_DSN); |
| ut_asserteq(PCI_EXT_CAP_ID_DSN_OFFSET, cap); |
| |
| /* look up PCI_EXT_CAP_ID_RCRB starting from PCI_EXT_CAP_ID_VC_OFFSET */ |
| cap = dm_pci_find_next_ext_capability(swap, PCI_EXT_CAP_ID_VC_OFFSET, |
| PCI_EXT_CAP_ID_RCRB); |
| ut_asserteq(0, cap); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_pci_cap, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| /* Test looking up BARs in EA capability structure */ |
| static int dm_test_pci_ea(struct unit_test_state *uts) |
| { |
| struct udevice *bus, *swap; |
| void *bar; |
| int cap; |
| |
| /* |
| * use emulated device mapping function, we're not using real physical |
| * addresses in this test |
| */ |
| sandbox_set_enable_pci_map(true); |
| |
| ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 0, &bus)); |
| ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x01, 0), &swap)); |
| |
| /* look up PCI_CAP_ID_EA */ |
| cap = dm_pci_find_capability(swap, PCI_CAP_ID_EA); |
| ut_asserteq(PCI_CAP_ID_EA_OFFSET, cap); |
| |
| /* test swap case in BAR 1 */ |
| bar = dm_pci_map_bar(swap, PCI_BASE_ADDRESS_0, 0, 0, PCI_REGION_TYPE, 0); |
| ut_assertnonnull(bar); |
| *(int *)bar = 2; /* swap upper/lower */ |
| |
| bar = dm_pci_map_bar(swap, PCI_BASE_ADDRESS_1, 0, 0, PCI_REGION_TYPE, 0); |
| ut_assertnonnull(bar); |
| strcpy(bar, "ea TEST"); |
| unmap_sysmem(bar); |
| bar = dm_pci_map_bar(swap, PCI_BASE_ADDRESS_1, 0, 0, PCI_REGION_TYPE, 0); |
| ut_assertnonnull(bar); |
| ut_asserteq_str("EA test", bar); |
| |
| /* test magic values in BARs2, 4; BAR 3 is n/a */ |
| bar = dm_pci_map_bar(swap, PCI_BASE_ADDRESS_2, 0, 0, PCI_REGION_TYPE, 0); |
| ut_assertnonnull(bar); |
| ut_asserteq(PCI_EA_BAR2_MAGIC, *(u32 *)bar); |
| |
| bar = dm_pci_map_bar(swap, PCI_BASE_ADDRESS_3, 0, 0, PCI_REGION_TYPE, 0); |
| ut_assertnull(bar); |
| |
| bar = dm_pci_map_bar(swap, PCI_BASE_ADDRESS_4, 0, 0, PCI_REGION_TYPE, 0); |
| ut_assertnonnull(bar); |
| ut_asserteq(PCI_EA_BAR4_MAGIC, *(u32 *)bar); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_pci_ea, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| /* Test the dev_read_addr_pci() function */ |
| static int dm_test_pci_addr_flat(struct unit_test_state *uts) |
| { |
| struct udevice *swap1f, *swap1; |
| ulong io_addr, mem_addr; |
| fdt_addr_t size; |
| |
| ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1f, 0), &swap1f)); |
| io_addr = dm_pci_read_bar32(swap1f, 0); |
| ut_asserteq(io_addr, dev_read_addr_pci(swap1f, &size)); |
| ut_asserteq(0, size); |
| |
| /* |
| * This device has both I/O and MEM spaces but the MEM space appears |
| * first |
| */ |
| ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1, 0), &swap1)); |
| mem_addr = dm_pci_read_bar32(swap1, 1); |
| ut_asserteq(mem_addr, dev_read_addr_pci(swap1, &size)); |
| ut_asserteq(0, size); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_pci_addr_flat, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | |
| UT_TESTF_FLAT_TREE); |
| |
| /* |
| * Test the dev_read_addr_pci() function with livetree. That function is |
| * not currently fully implemented, in that it fails to return the BAR address. |
| * Once that is implemented this test can be removed and dm_test_pci_addr_flat() |
| * can be used for both flattree and livetree by removing the UT_TESTF_FLAT_TREE |
| * flag above. |
| */ |
| static int dm_test_pci_addr_live(struct unit_test_state *uts) |
| { |
| struct udevice *swap1f, *swap1; |
| fdt_size_t size; |
| |
| ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1f, 0), &swap1f)); |
| ut_asserteq_64(FDT_ADDR_T_NONE, dev_read_addr_pci(swap1f, &size)); |
| ut_asserteq(0, size); |
| |
| ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1, 0), &swap1)); |
| ut_asserteq_64(FDT_ADDR_T_NONE, dev_read_addr_pci(swap1, &size)); |
| ut_asserteq(0, size); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_pci_addr_live, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | |
| UT_TESTF_LIVE_TREE); |
| |
| /* Test device_is_on_pci_bus() */ |
| static int dm_test_pci_on_bus(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| |
| ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1f, 0), &dev)); |
| ut_asserteq(true, device_is_on_pci_bus(dev)); |
| ut_asserteq(false, device_is_on_pci_bus(dev_get_parent(dev))); |
| ut_asserteq(true, device_is_on_pci_bus(dev)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_pci_on_bus, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| /* |
| * Test support for multiple memory regions enabled via |
| * CONFIG_PCI_REGION_MULTI_ENTRY. When this feature is not enabled, |
| * only the last region of one type is stored. In this test-case, |
| * we have 2 memory regions, the first at 0x3000.0000 and the 2nd |
| * at 0x3100.0000. A correct test results now in BAR1 located at |
| * 0x3000.0000. |
| */ |
| static int dm_test_pci_region_multi(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| ulong mem_addr; |
| |
| /* Test memory BAR1 on bus#1 */ |
| ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x08, 0), &dev)); |
| mem_addr = dm_pci_read_bar32(dev, 1); |
| ut_asserteq(mem_addr, 0x30000000); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_pci_region_multi, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| /* |
| * Test the translation of PCI bus addresses to physical addresses using the |
| * ranges from bus#1. |
| */ |
| static int dm_test_pci_bus_to_phys(struct unit_test_state *uts) |
| { |
| unsigned long mask = PCI_REGION_TYPE; |
| unsigned long flags = PCI_REGION_MEM; |
| struct udevice *dev; |
| phys_addr_t phys_addr; |
| |
| ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x08, 0), &dev)); |
| |
| /* Before any of the ranges. */ |
| phys_addr = dm_pci_bus_to_phys(dev, 0x20000000, 0x400, mask, flags); |
| ut_asserteq(0, phys_addr); |
| |
| /* Identity range: whole, start, mid, end */ |
| phys_addr = dm_pci_bus_to_phys(dev, 0x2ffff000, 0x2000, mask, flags); |
| ut_asserteq(0, phys_addr); |
| phys_addr = dm_pci_bus_to_phys(dev, 0x30000000, 0x2000, mask, flags); |
| ut_asserteq(0x30000000, phys_addr); |
| phys_addr = dm_pci_bus_to_phys(dev, 0x30000000, 0x1000, mask, flags); |
| ut_asserteq(0x30000000, phys_addr); |
| phys_addr = dm_pci_bus_to_phys(dev, 0x30000abc, 0x12, mask, flags); |
| ut_asserteq(0x30000abc, phys_addr); |
| phys_addr = dm_pci_bus_to_phys(dev, 0x30000800, 0x1800, mask, flags); |
| ut_asserteq(0x30000800, phys_addr); |
| phys_addr = dm_pci_bus_to_phys(dev, 0x30008000, 0x1801, mask, flags); |
| ut_asserteq(0, phys_addr); |
| |
| /* Translated range: whole, start, mid, end */ |
| phys_addr = dm_pci_bus_to_phys(dev, 0x30fff000, 0x2000, mask, flags); |
| ut_asserteq(0, phys_addr); |
| phys_addr = dm_pci_bus_to_phys(dev, 0x31000000, 0x2000, mask, flags); |
| ut_asserteq(0x3e000000, phys_addr); |
| phys_addr = dm_pci_bus_to_phys(dev, 0x31000000, 0x1000, mask, flags); |
| ut_asserteq(0x3e000000, phys_addr); |
| phys_addr = dm_pci_bus_to_phys(dev, 0x31000abc, 0x12, mask, flags); |
| ut_asserteq(0x3e000abc, phys_addr); |
| phys_addr = dm_pci_bus_to_phys(dev, 0x31000800, 0x1800, mask, flags); |
| ut_asserteq(0x3e000800, phys_addr); |
| phys_addr = dm_pci_bus_to_phys(dev, 0x31008000, 0x1801, mask, flags); |
| ut_asserteq(0, phys_addr); |
| |
| /* Beyond all of the ranges. */ |
| phys_addr = dm_pci_bus_to_phys(dev, 0x32000000, 0x400, mask, flags); |
| ut_asserteq(0, phys_addr); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_pci_bus_to_phys, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| /* |
| * Test the translation of physical addresses to PCI bus addresses using the |
| * ranges from bus#1. |
| */ |
| static int dm_test_pci_phys_to_bus(struct unit_test_state *uts) |
| { |
| unsigned long mask = PCI_REGION_TYPE; |
| unsigned long flags = PCI_REGION_MEM; |
| struct udevice *dev; |
| pci_addr_t pci_addr; |
| |
| ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x08, 0), &dev)); |
| |
| /* Before any of the ranges. */ |
| pci_addr = dm_pci_phys_to_bus(dev, 0x20000000, 0x400, mask, flags); |
| ut_asserteq(0, pci_addr); |
| |
| /* Identity range: partial overlap, whole, start, mid, end */ |
| pci_addr = dm_pci_phys_to_bus(dev, 0x2ffff000, 0x2000, mask, flags); |
| ut_asserteq(0, pci_addr); |
| pci_addr = dm_pci_phys_to_bus(dev, 0x30000000, 0x2000, mask, flags); |
| ut_asserteq(0x30000000, pci_addr); |
| pci_addr = dm_pci_phys_to_bus(dev, 0x30000000, 0x1000, mask, flags); |
| ut_asserteq(0x30000000, pci_addr); |
| pci_addr = dm_pci_phys_to_bus(dev, 0x30000abc, 0x12, mask, flags); |
| ut_asserteq(0x30000abc, pci_addr); |
| pci_addr = dm_pci_phys_to_bus(dev, 0x30000800, 0x1800, mask, flags); |
| ut_asserteq(0x30000800, pci_addr); |
| pci_addr = dm_pci_phys_to_bus(dev, 0x30008000, 0x1801, mask, flags); |
| ut_asserteq(0, pci_addr); |
| |
| /* Translated range: partial overlap, whole, start, mid, end */ |
| pci_addr = dm_pci_phys_to_bus(dev, 0x3dfff000, 0x2000, mask, flags); |
| ut_asserteq(0, pci_addr); |
| pci_addr = dm_pci_phys_to_bus(dev, 0x3e000000, 0x2000, mask, flags); |
| ut_asserteq(0x31000000, pci_addr); |
| pci_addr = dm_pci_phys_to_bus(dev, 0x3e000000, 0x1000, mask, flags); |
| ut_asserteq(0x31000000, pci_addr); |
| pci_addr = dm_pci_phys_to_bus(dev, 0x3e000abc, 0x12, mask, flags); |
| ut_asserteq(0x31000abc, pci_addr); |
| pci_addr = dm_pci_phys_to_bus(dev, 0x3e000800, 0x1800, mask, flags); |
| ut_asserteq(0x31000800, pci_addr); |
| pci_addr = dm_pci_phys_to_bus(dev, 0x3e008000, 0x1801, mask, flags); |
| ut_asserteq(0, pci_addr); |
| |
| /* Beyond all of the ranges. */ |
| pci_addr = dm_pci_phys_to_bus(dev, 0x3f000000, 0x400, mask, flags); |
| ut_asserteq(0, pci_addr); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_pci_phys_to_bus, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |