| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) 2018 Exceet Electronics GmbH |
| * Copyright (C) 2018 Bootlin |
| * |
| * Author: Boris Brezillon <boris.brezillon@bootlin.com> |
| */ |
| |
| #ifndef __UBOOT__ |
| #include <log.h> |
| #include <dm/devres.h> |
| #include <linux/dmaengine.h> |
| #include <linux/pm_runtime.h> |
| #include "internals.h" |
| #else |
| #include <common.h> |
| #include <dm.h> |
| #include <errno.h> |
| #include <malloc.h> |
| #include <spi.h> |
| #include <spi.h> |
| #include <spi-mem.h> |
| #include <dm/device_compat.h> |
| #include <dm/devres.h> |
| #include <linux/bug.h> |
| #endif |
| |
| #ifndef __UBOOT__ |
| /** |
| * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a |
| * memory operation |
| * @ctlr: the SPI controller requesting this dma_map() |
| * @op: the memory operation containing the buffer to map |
| * @sgt: a pointer to a non-initialized sg_table that will be filled by this |
| * function |
| * |
| * Some controllers might want to do DMA on the data buffer embedded in @op. |
| * This helper prepares everything for you and provides a ready-to-use |
| * sg_table. This function is not intended to be called from spi drivers. |
| * Only SPI controller drivers should use it. |
| * Note that the caller must ensure the memory region pointed by |
| * op->data.buf.{in,out} is DMA-able before calling this function. |
| * |
| * Return: 0 in case of success, a negative error code otherwise. |
| */ |
| int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr, |
| const struct spi_mem_op *op, |
| struct sg_table *sgt) |
| { |
| struct device *dmadev; |
| |
| if (!op->data.nbytes) |
| return -EINVAL; |
| |
| if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx) |
| dmadev = ctlr->dma_tx->device->dev; |
| else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx) |
| dmadev = ctlr->dma_rx->device->dev; |
| else |
| dmadev = ctlr->dev.parent; |
| |
| if (!dmadev) |
| return -EINVAL; |
| |
| return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes, |
| op->data.dir == SPI_MEM_DATA_IN ? |
| DMA_FROM_DEVICE : DMA_TO_DEVICE); |
| } |
| EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data); |
| |
| /** |
| * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a |
| * memory operation |
| * @ctlr: the SPI controller requesting this dma_unmap() |
| * @op: the memory operation containing the buffer to unmap |
| * @sgt: a pointer to an sg_table previously initialized by |
| * spi_controller_dma_map_mem_op_data() |
| * |
| * Some controllers might want to do DMA on the data buffer embedded in @op. |
| * This helper prepares things so that the CPU can access the |
| * op->data.buf.{in,out} buffer again. |
| * |
| * This function is not intended to be called from SPI drivers. Only SPI |
| * controller drivers should use it. |
| * |
| * This function should be called after the DMA operation has finished and is |
| * only valid if the previous spi_controller_dma_map_mem_op_data() call |
| * returned 0. |
| * |
| * Return: 0 in case of success, a negative error code otherwise. |
| */ |
| void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr, |
| const struct spi_mem_op *op, |
| struct sg_table *sgt) |
| { |
| struct device *dmadev; |
| |
| if (!op->data.nbytes) |
| return; |
| |
| if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx) |
| dmadev = ctlr->dma_tx->device->dev; |
| else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx) |
| dmadev = ctlr->dma_rx->device->dev; |
| else |
| dmadev = ctlr->dev.parent; |
| |
| spi_unmap_buf(ctlr, dmadev, sgt, |
| op->data.dir == SPI_MEM_DATA_IN ? |
| DMA_FROM_DEVICE : DMA_TO_DEVICE); |
| } |
| EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data); |
| #endif /* __UBOOT__ */ |
| |
| static int spi_check_buswidth_req(struct spi_slave *slave, u8 buswidth, bool tx) |
| { |
| u32 mode = slave->mode; |
| |
| switch (buswidth) { |
| case 1: |
| return 0; |
| |
| case 2: |
| if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) || |
| (!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD)))) |
| return 0; |
| |
| break; |
| |
| case 4: |
| if ((tx && (mode & SPI_TX_QUAD)) || |
| (!tx && (mode & SPI_RX_QUAD))) |
| return 0; |
| |
| break; |
| case 8: |
| if ((tx && (mode & SPI_TX_OCTAL)) || |
| (!tx && (mode & SPI_RX_OCTAL))) |
| return 0; |
| |
| break; |
| |
| default: |
| break; |
| } |
| |
| return -ENOTSUPP; |
| } |
| |
| static bool spi_mem_check_buswidth(struct spi_slave *slave, |
| const struct spi_mem_op *op) |
| { |
| if (spi_check_buswidth_req(slave, op->cmd.buswidth, true)) |
| return false; |
| |
| if (op->addr.nbytes && |
| spi_check_buswidth_req(slave, op->addr.buswidth, true)) |
| return false; |
| |
| if (op->dummy.nbytes && |
| spi_check_buswidth_req(slave, op->dummy.buswidth, true)) |
| return false; |
| |
| if (op->data.dir != SPI_MEM_NO_DATA && |
| spi_check_buswidth_req(slave, op->data.buswidth, |
| op->data.dir == SPI_MEM_DATA_OUT)) |
| return false; |
| |
| return true; |
| } |
| |
| bool spi_mem_dtr_supports_op(struct spi_slave *slave, |
| const struct spi_mem_op *op) |
| { |
| if (op->cmd.buswidth == 8 && op->cmd.nbytes % 2) |
| return false; |
| |
| if (op->addr.nbytes && op->addr.buswidth == 8 && op->addr.nbytes % 2) |
| return false; |
| |
| if (op->dummy.nbytes && op->dummy.buswidth == 8 && op->dummy.nbytes % 2) |
| return false; |
| |
| /* |
| * Transactions of odd length do not make sense for 8D-8D-8D mode |
| * because a byte is transferred in just half a cycle. |
| */ |
| if (op->data.dir != SPI_MEM_NO_DATA && op->data.dir != SPI_MEM_DATA_IN && |
| op->data.buswidth == 8 && op->data.nbytes % 2) |
| return false; |
| |
| return spi_mem_check_buswidth(slave, op); |
| } |
| EXPORT_SYMBOL_GPL(spi_mem_dtr_supports_op); |
| |
| bool spi_mem_default_supports_op(struct spi_slave *slave, |
| const struct spi_mem_op *op) |
| { |
| if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr) |
| return false; |
| |
| if (op->cmd.nbytes != 1) |
| return false; |
| |
| return spi_mem_check_buswidth(slave, op); |
| } |
| EXPORT_SYMBOL_GPL(spi_mem_default_supports_op); |
| |
| /** |
| * spi_mem_supports_op() - Check if a memory device and the controller it is |
| * connected to support a specific memory operation |
| * @slave: the SPI device |
| * @op: the memory operation to check |
| * |
| * Some controllers are only supporting Single or Dual IOs, others might only |
| * support specific opcodes, or it can even be that the controller and device |
| * both support Quad IOs but the hardware prevents you from using it because |
| * only 2 IO lines are connected. |
| * |
| * This function checks whether a specific operation is supported. |
| * |
| * Return: true if @op is supported, false otherwise. |
| */ |
| bool spi_mem_supports_op(struct spi_slave *slave, |
| const struct spi_mem_op *op) |
| { |
| struct udevice *bus = slave->dev->parent; |
| struct dm_spi_ops *ops = spi_get_ops(bus); |
| |
| if (ops->mem_ops && ops->mem_ops->supports_op) |
| return ops->mem_ops->supports_op(slave, op); |
| |
| return spi_mem_default_supports_op(slave, op); |
| } |
| EXPORT_SYMBOL_GPL(spi_mem_supports_op); |
| |
| /** |
| * spi_mem_exec_op() - Execute a memory operation |
| * @slave: the SPI device |
| * @op: the memory operation to execute |
| * |
| * Executes a memory operation. |
| * |
| * This function first checks that @op is supported and then tries to execute |
| * it. |
| * |
| * Return: 0 in case of success, a negative error code otherwise. |
| */ |
| int spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op) |
| { |
| struct udevice *bus = slave->dev->parent; |
| struct dm_spi_ops *ops = spi_get_ops(bus); |
| unsigned int pos = 0; |
| const u8 *tx_buf = NULL; |
| u8 *rx_buf = NULL; |
| int op_len; |
| u32 flag; |
| int ret; |
| int i; |
| |
| if (!spi_mem_supports_op(slave, op)) |
| return -ENOTSUPP; |
| |
| ret = spi_claim_bus(slave); |
| if (ret < 0) |
| return ret; |
| |
| if (ops->mem_ops && ops->mem_ops->exec_op) { |
| #ifndef __UBOOT__ |
| /* |
| * Flush the message queue before executing our SPI memory |
| * operation to prevent preemption of regular SPI transfers. |
| */ |
| spi_flush_queue(ctlr); |
| |
| if (ctlr->auto_runtime_pm) { |
| ret = pm_runtime_get_sync(ctlr->dev.parent); |
| if (ret < 0) { |
| dev_err(&ctlr->dev, |
| "Failed to power device: %d\n", |
| ret); |
| return ret; |
| } |
| } |
| |
| mutex_lock(&ctlr->bus_lock_mutex); |
| mutex_lock(&ctlr->io_mutex); |
| #endif |
| ret = ops->mem_ops->exec_op(slave, op); |
| |
| #ifndef __UBOOT__ |
| mutex_unlock(&ctlr->io_mutex); |
| mutex_unlock(&ctlr->bus_lock_mutex); |
| |
| if (ctlr->auto_runtime_pm) |
| pm_runtime_put(ctlr->dev.parent); |
| #endif |
| |
| /* |
| * Some controllers only optimize specific paths (typically the |
| * read path) and expect the core to use the regular SPI |
| * interface in other cases. |
| */ |
| if (!ret || ret != -ENOTSUPP) { |
| spi_release_bus(slave); |
| return ret; |
| } |
| } |
| |
| #ifndef __UBOOT__ |
| tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; |
| |
| /* |
| * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so |
| * we're guaranteed that this buffer is DMA-able, as required by the |
| * SPI layer. |
| */ |
| tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA); |
| if (!tmpbuf) |
| return -ENOMEM; |
| |
| spi_message_init(&msg); |
| |
| tmpbuf[0] = op->cmd.opcode; |
| xfers[xferpos].tx_buf = tmpbuf; |
| xfers[xferpos].len = op->cmd.nbytes; |
| xfers[xferpos].tx_nbits = op->cmd.buswidth; |
| spi_message_add_tail(&xfers[xferpos], &msg); |
| xferpos++; |
| totalxferlen++; |
| |
| if (op->addr.nbytes) { |
| int i; |
| |
| for (i = 0; i < op->addr.nbytes; i++) |
| tmpbuf[i + 1] = op->addr.val >> |
| (8 * (op->addr.nbytes - i - 1)); |
| |
| xfers[xferpos].tx_buf = tmpbuf + 1; |
| xfers[xferpos].len = op->addr.nbytes; |
| xfers[xferpos].tx_nbits = op->addr.buswidth; |
| spi_message_add_tail(&xfers[xferpos], &msg); |
| xferpos++; |
| totalxferlen += op->addr.nbytes; |
| } |
| |
| if (op->dummy.nbytes) { |
| memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes); |
| xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1; |
| xfers[xferpos].len = op->dummy.nbytes; |
| xfers[xferpos].tx_nbits = op->dummy.buswidth; |
| spi_message_add_tail(&xfers[xferpos], &msg); |
| xferpos++; |
| totalxferlen += op->dummy.nbytes; |
| } |
| |
| if (op->data.nbytes) { |
| if (op->data.dir == SPI_MEM_DATA_IN) { |
| xfers[xferpos].rx_buf = op->data.buf.in; |
| xfers[xferpos].rx_nbits = op->data.buswidth; |
| } else { |
| xfers[xferpos].tx_buf = op->data.buf.out; |
| xfers[xferpos].tx_nbits = op->data.buswidth; |
| } |
| |
| xfers[xferpos].len = op->data.nbytes; |
| spi_message_add_tail(&xfers[xferpos], &msg); |
| xferpos++; |
| totalxferlen += op->data.nbytes; |
| } |
| |
| ret = spi_sync(slave, &msg); |
| |
| kfree(tmpbuf); |
| |
| if (ret) |
| return ret; |
| |
| if (msg.actual_length != totalxferlen) |
| return -EIO; |
| #else |
| |
| if (op->data.nbytes) { |
| if (op->data.dir == SPI_MEM_DATA_IN) |
| rx_buf = op->data.buf.in; |
| else |
| tx_buf = op->data.buf.out; |
| } |
| |
| op_len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; |
| |
| /* |
| * Avoid using malloc() here so that we can use this code in SPL where |
| * simple malloc may be used. That implementation does not allow free() |
| * so repeated calls to this code can exhaust the space. |
| * |
| * The value of op_len is small, since it does not include the actual |
| * data being sent, only the op-code and address. In fact, it should be |
| * possible to just use a small fixed value here instead of op_len. |
| */ |
| u8 op_buf[op_len]; |
| |
| op_buf[pos++] = op->cmd.opcode; |
| |
| if (op->addr.nbytes) { |
| for (i = 0; i < op->addr.nbytes; i++) |
| op_buf[pos + i] = op->addr.val >> |
| (8 * (op->addr.nbytes - i - 1)); |
| |
| pos += op->addr.nbytes; |
| } |
| |
| if (op->dummy.nbytes) |
| memset(op_buf + pos, 0xff, op->dummy.nbytes); |
| |
| /* 1st transfer: opcode + address + dummy cycles */ |
| flag = SPI_XFER_BEGIN; |
| /* Make sure to set END bit if no tx or rx data messages follow */ |
| if (!tx_buf && !rx_buf) |
| flag |= SPI_XFER_END; |
| |
| ret = spi_xfer(slave, op_len * 8, op_buf, NULL, flag); |
| if (ret) |
| return ret; |
| |
| /* 2nd transfer: rx or tx data path */ |
| if (tx_buf || rx_buf) { |
| ret = spi_xfer(slave, op->data.nbytes * 8, tx_buf, |
| rx_buf, SPI_XFER_END); |
| if (ret) |
| return ret; |
| } |
| |
| spi_release_bus(slave); |
| |
| for (i = 0; i < pos; i++) |
| debug("%02x ", op_buf[i]); |
| debug("| [%dB %s] ", |
| tx_buf || rx_buf ? op->data.nbytes : 0, |
| tx_buf || rx_buf ? (tx_buf ? "out" : "in") : "-"); |
| for (i = 0; i < op->data.nbytes; i++) |
| debug("%02x ", tx_buf ? tx_buf[i] : rx_buf[i]); |
| debug("[ret %d]\n", ret); |
| |
| if (ret < 0) |
| return ret; |
| #endif /* __UBOOT__ */ |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(spi_mem_exec_op); |
| |
| /** |
| * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to |
| * match controller limitations |
| * @slave: the SPI device |
| * @op: the operation to adjust |
| * |
| * Some controllers have FIFO limitations and must split a data transfer |
| * operation into multiple ones, others require a specific alignment for |
| * optimized accesses. This function allows SPI mem drivers to split a single |
| * operation into multiple sub-operations when required. |
| * |
| * Return: a negative error code if the controller can't properly adjust @op, |
| * 0 otherwise. Note that @op->data.nbytes will be updated if @op |
| * can't be handled in a single step. |
| */ |
| int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op) |
| { |
| struct udevice *bus = slave->dev->parent; |
| struct dm_spi_ops *ops = spi_get_ops(bus); |
| |
| if (ops->mem_ops && ops->mem_ops->adjust_op_size) |
| return ops->mem_ops->adjust_op_size(slave, op); |
| |
| if (!ops->mem_ops || !ops->mem_ops->exec_op) { |
| unsigned int len; |
| |
| len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; |
| if (slave->max_write_size && len > slave->max_write_size) |
| return -EINVAL; |
| |
| if (op->data.dir == SPI_MEM_DATA_IN) { |
| if (slave->max_read_size) |
| op->data.nbytes = min(op->data.nbytes, |
| slave->max_read_size); |
| } else if (slave->max_write_size) { |
| op->data.nbytes = min(op->data.nbytes, |
| slave->max_write_size - len); |
| } |
| |
| if (!op->data.nbytes) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size); |
| |
| static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc, |
| u64 offs, size_t len, void *buf) |
| { |
| struct spi_mem_op op = desc->info.op_tmpl; |
| int ret; |
| |
| op.addr.val = desc->info.offset + offs; |
| op.data.buf.in = buf; |
| op.data.nbytes = len; |
| ret = spi_mem_adjust_op_size(desc->slave, &op); |
| if (ret) |
| return ret; |
| |
| ret = spi_mem_exec_op(desc->slave, &op); |
| if (ret) |
| return ret; |
| |
| return op.data.nbytes; |
| } |
| |
| static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc, |
| u64 offs, size_t len, const void *buf) |
| { |
| struct spi_mem_op op = desc->info.op_tmpl; |
| int ret; |
| |
| op.addr.val = desc->info.offset + offs; |
| op.data.buf.out = buf; |
| op.data.nbytes = len; |
| ret = spi_mem_adjust_op_size(desc->slave, &op); |
| if (ret) |
| return ret; |
| |
| ret = spi_mem_exec_op(desc->slave, &op); |
| if (ret) |
| return ret; |
| |
| return op.data.nbytes; |
| } |
| |
| /** |
| * spi_mem_dirmap_create() - Create a direct mapping descriptor |
| * @mem: SPI mem device this direct mapping should be created for |
| * @info: direct mapping information |
| * |
| * This function is creating a direct mapping descriptor which can then be used |
| * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write(). |
| * If the SPI controller driver does not support direct mapping, this function |
| * falls back to an implementation using spi_mem_exec_op(), so that the caller |
| * doesn't have to bother implementing a fallback on his own. |
| * |
| * Return: a valid pointer in case of success, and ERR_PTR() otherwise. |
| */ |
| struct spi_mem_dirmap_desc * |
| spi_mem_dirmap_create(struct spi_slave *slave, |
| const struct spi_mem_dirmap_info *info) |
| { |
| struct udevice *bus = slave->dev->parent; |
| struct dm_spi_ops *ops = spi_get_ops(bus); |
| struct spi_mem_dirmap_desc *desc; |
| int ret = -EOPNOTSUPP; |
| |
| /* Make sure the number of address cycles is between 1 and 8 bytes. */ |
| if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8) |
| return ERR_PTR(-EINVAL); |
| |
| /* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */ |
| if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA) |
| return ERR_PTR(-EINVAL); |
| |
| desc = kzalloc(sizeof(*desc), GFP_KERNEL); |
| if (!desc) |
| return ERR_PTR(-ENOMEM); |
| |
| desc->slave = slave; |
| desc->info = *info; |
| if (ops->mem_ops && ops->mem_ops->dirmap_create) |
| ret = ops->mem_ops->dirmap_create(desc); |
| |
| if (ret) { |
| desc->nodirmap = true; |
| if (!spi_mem_supports_op(desc->slave, &desc->info.op_tmpl)) |
| ret = -EOPNOTSUPP; |
| else |
| ret = 0; |
| } |
| |
| if (ret) { |
| kfree(desc); |
| return ERR_PTR(ret); |
| } |
| |
| return desc; |
| } |
| EXPORT_SYMBOL_GPL(spi_mem_dirmap_create); |
| |
| /** |
| * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor |
| * @desc: the direct mapping descriptor to destroy |
| * |
| * This function destroys a direct mapping descriptor previously created by |
| * spi_mem_dirmap_create(). |
| */ |
| void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc) |
| { |
| struct udevice *bus = desc->slave->dev->parent; |
| struct dm_spi_ops *ops = spi_get_ops(bus); |
| |
| if (!desc->nodirmap && ops->mem_ops && ops->mem_ops->dirmap_destroy) |
| ops->mem_ops->dirmap_destroy(desc); |
| |
| kfree(desc); |
| } |
| EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy); |
| |
| #ifndef __UBOOT__ |
| static void devm_spi_mem_dirmap_release(struct udevice *dev, void *res) |
| { |
| struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res; |
| |
| spi_mem_dirmap_destroy(desc); |
| } |
| |
| /** |
| * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach |
| * it to a device |
| * @dev: device the dirmap desc will be attached to |
| * @mem: SPI mem device this direct mapping should be created for |
| * @info: direct mapping information |
| * |
| * devm_ variant of the spi_mem_dirmap_create() function. See |
| * spi_mem_dirmap_create() for more details. |
| * |
| * Return: a valid pointer in case of success, and ERR_PTR() otherwise. |
| */ |
| struct spi_mem_dirmap_desc * |
| devm_spi_mem_dirmap_create(struct udevice *dev, struct spi_slave *slave, |
| const struct spi_mem_dirmap_info *info) |
| { |
| struct spi_mem_dirmap_desc **ptr, *desc; |
| |
| ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr), |
| GFP_KERNEL); |
| if (!ptr) |
| return ERR_PTR(-ENOMEM); |
| |
| desc = spi_mem_dirmap_create(slave, info); |
| if (IS_ERR(desc)) { |
| devres_free(ptr); |
| } else { |
| *ptr = desc; |
| devres_add(dev, ptr); |
| } |
| |
| return desc; |
| } |
| EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create); |
| |
| static int devm_spi_mem_dirmap_match(struct udevice *dev, void *res, void *data) |
| { |
| struct spi_mem_dirmap_desc **ptr = res; |
| |
| if (WARN_ON(!ptr || !*ptr)) |
| return 0; |
| |
| return *ptr == data; |
| } |
| |
| /** |
| * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached |
| * to a device |
| * @dev: device the dirmap desc is attached to |
| * @desc: the direct mapping descriptor to destroy |
| * |
| * devm_ variant of the spi_mem_dirmap_destroy() function. See |
| * spi_mem_dirmap_destroy() for more details. |
| */ |
| void devm_spi_mem_dirmap_destroy(struct udevice *dev, |
| struct spi_mem_dirmap_desc *desc) |
| { |
| devres_release(dev, devm_spi_mem_dirmap_release, |
| devm_spi_mem_dirmap_match, desc); |
| } |
| EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy); |
| #endif /* __UBOOT__ */ |
| |
| /** |
| * spi_mem_dirmap_read() - Read data through a direct mapping |
| * @desc: direct mapping descriptor |
| * @offs: offset to start reading from. Note that this is not an absolute |
| * offset, but the offset within the direct mapping which already has |
| * its own offset |
| * @len: length in bytes |
| * @buf: destination buffer. This buffer must be DMA-able |
| * |
| * This function reads data from a memory device using a direct mapping |
| * previously instantiated with spi_mem_dirmap_create(). |
| * |
| * Return: the amount of data read from the memory device or a negative error |
| * code. Note that the returned size might be smaller than @len, and the caller |
| * is responsible for calling spi_mem_dirmap_read() again when that happens. |
| */ |
| ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc, |
| u64 offs, size_t len, void *buf) |
| { |
| struct udevice *bus = desc->slave->dev->parent; |
| struct dm_spi_ops *ops = spi_get_ops(bus); |
| ssize_t ret; |
| |
| if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN) |
| return -EINVAL; |
| |
| if (!len) |
| return 0; |
| |
| if (desc->nodirmap) |
| ret = spi_mem_no_dirmap_read(desc, offs, len, buf); |
| else if (ops->mem_ops && ops->mem_ops->dirmap_read) |
| ret = ops->mem_ops->dirmap_read(desc, offs, len, buf); |
| else |
| ret = -EOPNOTSUPP; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(spi_mem_dirmap_read); |
| |
| /** |
| * spi_mem_dirmap_write() - Write data through a direct mapping |
| * @desc: direct mapping descriptor |
| * @offs: offset to start writing from. Note that this is not an absolute |
| * offset, but the offset within the direct mapping which already has |
| * its own offset |
| * @len: length in bytes |
| * @buf: source buffer. This buffer must be DMA-able |
| * |
| * This function writes data to a memory device using a direct mapping |
| * previously instantiated with spi_mem_dirmap_create(). |
| * |
| * Return: the amount of data written to the memory device or a negative error |
| * code. Note that the returned size might be smaller than @len, and the caller |
| * is responsible for calling spi_mem_dirmap_write() again when that happens. |
| */ |
| ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc, |
| u64 offs, size_t len, const void *buf) |
| { |
| struct udevice *bus = desc->slave->dev->parent; |
| struct dm_spi_ops *ops = spi_get_ops(bus); |
| ssize_t ret; |
| |
| if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT) |
| return -EINVAL; |
| |
| if (!len) |
| return 0; |
| |
| if (desc->nodirmap) |
| ret = spi_mem_no_dirmap_write(desc, offs, len, buf); |
| else if (ops->mem_ops && ops->mem_ops->dirmap_write) |
| ret = ops->mem_ops->dirmap_write(desc, offs, len, buf); |
| else |
| ret = -EOPNOTSUPP; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(spi_mem_dirmap_write); |
| |
| #ifndef __UBOOT__ |
| static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv) |
| { |
| return container_of(drv, struct spi_mem_driver, spidrv.driver); |
| } |
| |
| static int spi_mem_probe(struct spi_device *spi) |
| { |
| struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); |
| struct spi_mem *mem; |
| |
| mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL); |
| if (!mem) |
| return -ENOMEM; |
| |
| mem->spi = spi; |
| spi_set_drvdata(spi, mem); |
| |
| return memdrv->probe(mem); |
| } |
| |
| static int spi_mem_remove(struct spi_device *spi) |
| { |
| struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); |
| struct spi_mem *mem = spi_get_drvdata(spi); |
| |
| if (memdrv->remove) |
| return memdrv->remove(mem); |
| |
| return 0; |
| } |
| |
| static void spi_mem_shutdown(struct spi_device *spi) |
| { |
| struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); |
| struct spi_mem *mem = spi_get_drvdata(spi); |
| |
| if (memdrv->shutdown) |
| memdrv->shutdown(mem); |
| } |
| |
| /** |
| * spi_mem_driver_register_with_owner() - Register a SPI memory driver |
| * @memdrv: the SPI memory driver to register |
| * @owner: the owner of this driver |
| * |
| * Registers a SPI memory driver. |
| * |
| * Return: 0 in case of success, a negative error core otherwise. |
| */ |
| |
| int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv, |
| struct module *owner) |
| { |
| memdrv->spidrv.probe = spi_mem_probe; |
| memdrv->spidrv.remove = spi_mem_remove; |
| memdrv->spidrv.shutdown = spi_mem_shutdown; |
| |
| return __spi_register_driver(owner, &memdrv->spidrv); |
| } |
| EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner); |
| |
| /** |
| * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver |
| * @memdrv: the SPI memory driver to unregister |
| * |
| * Unregisters a SPI memory driver. |
| */ |
| void spi_mem_driver_unregister(struct spi_mem_driver *memdrv) |
| { |
| spi_unregister_driver(&memdrv->spidrv); |
| } |
| EXPORT_SYMBOL_GPL(spi_mem_driver_unregister); |
| #endif /* __UBOOT__ */ |