blob: 5f5e59a3ad253d1651a6d4badd8aa03b54485f3a [file] [log] [blame]
/*
* (C) Copyright 2000
* Rob Taylor, Flying Pig Systems. robt@flyingpig.com.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <mpc824x.h>
#include <pci.h>
#include <i2c.h>
int checkboard (void)
{
puts ( "Board: OXC8240\n" );
return 0;
}
long int initdram (int board_type)
{
#ifndef CFG_RAMBOOT
int i, cnt;
volatile uchar * base= CFG_SDRAM_BASE;
volatile ulong * addr;
ulong save[32];
ulong val, ret = 0;
for (i=0, cnt=(CFG_MAX_RAM_SIZE / sizeof(long)) >> 1; cnt > 0; cnt >>= 1) {
addr = (volatile ulong *)base + cnt;
save[i++] = *addr;
*addr = ~cnt;
}
addr = (volatile ulong *)base;
save[i] = *addr;
*addr = 0;
if (*addr != 0) {
*addr = save[i];
goto Done;
}
for (cnt = 1; cnt <= CFG_MAX_RAM_SIZE / sizeof(long); cnt <<= 1) {
addr = (volatile ulong *)base + cnt;
val = *addr;
*addr = save[--i];
if (val != ~cnt) {
ulong new_bank0_end = cnt * sizeof(long) - 1;
ulong mear1 = mpc824x_mpc107_getreg(MEAR1);
ulong emear1 = mpc824x_mpc107_getreg(EMEAR1);
mear1 = (mear1 & 0xFFFFFF00) |
((new_bank0_end & MICR_ADDR_MASK) >> MICR_ADDR_SHIFT);
emear1 = (emear1 & 0xFFFFFF00) |
((new_bank0_end & MICR_ADDR_MASK) >> MICR_EADDR_SHIFT);
mpc824x_mpc107_setreg(MEAR1, mear1);
mpc824x_mpc107_setreg(EMEAR1, emear1);
ret = cnt * sizeof(long);
goto Done;
}
}
ret = CFG_MAX_RAM_SIZE;
Done:
return ret;
#else
/* if U-Boot starts from RAM, then suppose we have 16Mb of RAM */
return (16 << 20);
#endif
}
/*
* Initialize PCI Devices, report devices found.
*/
#ifndef CONFIG_PCI_PNP
static struct pci_config_table pci_oxc_config_table[] = {
{ PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 0x14, PCI_ANY_ID,
pci_cfgfunc_config_device, { PCI_ENET0_IOADDR,
PCI_ENET0_MEMADDR,
PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER }},
{ PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 0x15, PCI_ANY_ID,
pci_cfgfunc_config_device, { PCI_ENET1_IOADDR,
PCI_ENET1_MEMADDR,
PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER }},
{ }
};
#endif
static struct pci_controller hose = {
#ifndef CONFIG_PCI_PNP
config_table: pci_oxc_config_table,
#endif
};
void pci_init_board (void)
{
pci_mpc824x_init(&hose);
}
int board_pre_init (void)
{
*(volatile unsigned char *)(CFG_CPLD_RESET) = 0x89;
return 0;
}
#ifdef CONFIG_WATCHDOG
void oxc_wdt_reset(void)
{
*(volatile unsigned char *)(CFG_CPLD_WATCHDOG) = 0xff;
}
void watchdog_reset(void)
{
int re_enable = disable_interrupts();
oxc_wdt_reset();
if (re_enable)
enable_interrupts();
}
#endif
static int oxc_get_expander(unsigned char addr, unsigned char * val)
{
return i2c_read(addr, 0, 0, val, 1);
}
static int oxc_set_expander(unsigned char addr, unsigned char val)
{
return i2c_write(addr, 0, 0, &val, 1);
}
static int expander0alive = 0;
#ifdef CONFIG_SHOW_ACTIVITY
static int ledtoggle = 0;
static int ledstatus = 1;
void oxc_toggle_activeled(void)
{
ledtoggle++;
}
void show_activity(int arg)
{
static unsigned char led = 0;
unsigned char val;
if (!expander0alive) return;
if ((ledtoggle > (2 * arg)) && ledstatus) {
led ^= 0x80;
oxc_get_expander(CFG_I2C_EXPANDER0_ADDR, &val);
udelay(200);
oxc_set_expander(CFG_I2C_EXPANDER0_ADDR, (val & 0x7F) | led);
ledtoggle = 0;
}
}
#endif
#ifdef CONFIG_SHOW_BOOT_PROGRESS
void show_boot_progress(int arg)
{
unsigned char val;
if (!expander0alive) return;
if (arg > 0 && ledstatus) {
ledstatus = 0;
oxc_get_expander(CFG_I2C_EXPANDER0_ADDR, &val);
udelay(200);
oxc_set_expander(CFG_I2C_EXPANDER0_ADDR, val | 0x80);
} else if (arg < 0) {
oxc_get_expander(CFG_I2C_EXPANDER0_ADDR, &val);
udelay(200);
oxc_set_expander(CFG_I2C_EXPANDER0_ADDR, val & 0x7F);
ledstatus = 1;
}
}
#endif
int misc_init_r (void)
{
/* check whether the i2c expander #0 is accessible */
if (!oxc_set_expander(CFG_I2C_EXPANDER0_ADDR, 0x7F)) {
udelay(200);
expander0alive = 1;
}
#ifdef CFG_OXC_GENERATE_IP
{
DECLARE_GLOBAL_DATA_PTR;
char str[32];
unsigned long ip = CFG_OXC_IPMASK;
bd_t *bd = gd->bd;
if (expander0alive) {
unsigned char val;
if (!oxc_get_expander(CFG_I2C_EXPANDER0_ADDR, &val)) {
ip = (ip & 0xffffff00) | ((val & 0x7c) >> 2);
}
}
if ((ip & 0xff) < 3) {
/* if fail, set x.x.x.254 */
ip = (ip & 0xffffff00) | 0xfe;
}
bd->bi_ip_addr = ip;
sprintf(str, "%ld.%ld.%ld.%ld",
(bd->bi_ip_addr & 0xff000000) >> 24,
(bd->bi_ip_addr & 0x00ff0000) >> 16,
(bd->bi_ip_addr & 0x0000ff00) >> 8,
(bd->bi_ip_addr & 0x000000ff));
setenv("ipaddr", str);
printf("ip: %s\n", str);
}
#endif
return (0);
}