| /* |
| * cpu/ppc4xx/denali_spd_ddr2.c |
| * This SPD SDRAM detection code supports AMCC PPC44x CPUs with a Denali-core |
| * DDR2 controller, specifically the 440EPx/GRx. |
| * |
| * (C) Copyright 2007-2008 |
| * Larry Johnson, lrj@acm.org. |
| * |
| * Based primarily on cpu/ppc4xx/4xx_spd_ddr2.c, which is... |
| * |
| * (C) Copyright 2007 |
| * Stefan Roese, DENX Software Engineering, sr@denx.de. |
| * |
| * COPYRIGHT AMCC CORPORATION 2004 |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| * |
| */ |
| |
| /* define DEBUG for debugging output (obviously ;-)) */ |
| #if 0 |
| #define DEBUG |
| #endif |
| |
| #include <common.h> |
| #include <command.h> |
| #include <ppc4xx.h> |
| #include <i2c.h> |
| #include <asm/io.h> |
| #include <asm/processor.h> |
| #include <asm/mmu.h> |
| #include <asm/cache.h> |
| |
| #if defined(CONFIG_SPD_EEPROM) && \ |
| (defined(CONFIG_440EPX) || defined(CONFIG_440GRX)) |
| |
| /*-----------------------------------------------------------------------------+ |
| * Defines |
| *-----------------------------------------------------------------------------*/ |
| #ifndef TRUE |
| #define TRUE 1 |
| #endif |
| #ifndef FALSE |
| #define FALSE 0 |
| #endif |
| |
| #define MAXDIMMS 2 |
| #define MAXRANKS 2 |
| |
| #define ONE_BILLION 1000000000 |
| |
| #define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d)) |
| |
| #define DLL_DQS_DELAY 0x19 |
| #define DLL_DQS_BYPASS 0x0B |
| #define DQS_OUT_SHIFT 0x7F |
| |
| /* |
| * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory |
| * region. Right now the cache should still be disabled in U-Boot because of the |
| * EMAC driver, that need it's buffer descriptor to be located in non cached |
| * memory. |
| * |
| * If at some time this restriction doesn't apply anymore, just define |
| * CONFIG_4xx_DCACHE in the board config file and this code should setup |
| * everything correctly. |
| */ |
| #if defined(CONFIG_4xx_DCACHE) |
| #define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */ |
| #else |
| #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */ |
| #endif |
| |
| /*-----------------------------------------------------------------------------+ |
| * Prototypes |
| *-----------------------------------------------------------------------------*/ |
| extern int denali_wait_for_dlllock(void); |
| extern void denali_core_search_data_eye(void); |
| extern void dcbz_area(u32 start_address, u32 num_bytes); |
| |
| /* |
| * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed |
| */ |
| void __spd_ddr_init_hang(void) |
| { |
| hang(); |
| } |
| void spd_ddr_init_hang(void) |
| __attribute__ ((weak, alias("__spd_ddr_init_hang"))); |
| |
| #if defined(DEBUG) |
| static void print_mcsr(void) |
| { |
| printf("MCSR = 0x%08X\n", mfspr(SPRN_MCSR)); |
| } |
| |
| static void denali_sdram_register_dump(void) |
| { |
| unsigned int sdram_data; |
| |
| printf("\n Register Dump:\n"); |
| mfsdram(DDR0_00, sdram_data); |
| printf(" DDR0_00 = 0x%08X", sdram_data); |
| mfsdram(DDR0_01, sdram_data); |
| printf(" DDR0_01 = 0x%08X\n", sdram_data); |
| mfsdram(DDR0_02, sdram_data); |
| printf(" DDR0_02 = 0x%08X", sdram_data); |
| mfsdram(DDR0_03, sdram_data); |
| printf(" DDR0_03 = 0x%08X\n", sdram_data); |
| mfsdram(DDR0_04, sdram_data); |
| printf(" DDR0_04 = 0x%08X", sdram_data); |
| mfsdram(DDR0_05, sdram_data); |
| printf(" DDR0_05 = 0x%08X\n", sdram_data); |
| mfsdram(DDR0_06, sdram_data); |
| printf(" DDR0_06 = 0x%08X", sdram_data); |
| mfsdram(DDR0_07, sdram_data); |
| printf(" DDR0_07 = 0x%08X\n", sdram_data); |
| mfsdram(DDR0_08, sdram_data); |
| printf(" DDR0_08 = 0x%08X", sdram_data); |
| mfsdram(DDR0_09, sdram_data); |
| printf(" DDR0_09 = 0x%08X\n", sdram_data); |
| mfsdram(DDR0_10, sdram_data); |
| printf(" DDR0_10 = 0x%08X", sdram_data); |
| mfsdram(DDR0_11, sdram_data); |
| printf(" DDR0_11 = 0x%08X\n", sdram_data); |
| mfsdram(DDR0_12, sdram_data); |
| printf(" DDR0_12 = 0x%08X", sdram_data); |
| mfsdram(DDR0_14, sdram_data); |
| printf(" DDR0_14 = 0x%08X\n", sdram_data); |
| mfsdram(DDR0_17, sdram_data); |
| printf(" DDR0_17 = 0x%08X", sdram_data); |
| mfsdram(DDR0_18, sdram_data); |
| printf(" DDR0_18 = 0x%08X\n", sdram_data); |
| mfsdram(DDR0_19, sdram_data); |
| printf(" DDR0_19 = 0x%08X", sdram_data); |
| mfsdram(DDR0_20, sdram_data); |
| printf(" DDR0_20 = 0x%08X\n", sdram_data); |
| mfsdram(DDR0_21, sdram_data); |
| printf(" DDR0_21 = 0x%08X", sdram_data); |
| mfsdram(DDR0_22, sdram_data); |
| printf(" DDR0_22 = 0x%08X\n", sdram_data); |
| mfsdram(DDR0_23, sdram_data); |
| printf(" DDR0_23 = 0x%08X", sdram_data); |
| mfsdram(DDR0_24, sdram_data); |
| printf(" DDR0_24 = 0x%08X\n", sdram_data); |
| mfsdram(DDR0_25, sdram_data); |
| printf(" DDR0_25 = 0x%08X", sdram_data); |
| mfsdram(DDR0_26, sdram_data); |
| printf(" DDR0_26 = 0x%08X\n", sdram_data); |
| mfsdram(DDR0_27, sdram_data); |
| printf(" DDR0_27 = 0x%08X", sdram_data); |
| mfsdram(DDR0_28, sdram_data); |
| printf(" DDR0_28 = 0x%08X\n", sdram_data); |
| mfsdram(DDR0_31, sdram_data); |
| printf(" DDR0_31 = 0x%08X", sdram_data); |
| mfsdram(DDR0_32, sdram_data); |
| printf(" DDR0_32 = 0x%08X\n", sdram_data); |
| mfsdram(DDR0_33, sdram_data); |
| printf(" DDR0_33 = 0x%08X", sdram_data); |
| mfsdram(DDR0_34, sdram_data); |
| printf(" DDR0_34 = 0x%08X\n", sdram_data); |
| mfsdram(DDR0_35, sdram_data); |
| printf(" DDR0_35 = 0x%08X", sdram_data); |
| mfsdram(DDR0_36, sdram_data); |
| printf(" DDR0_36 = 0x%08X\n", sdram_data); |
| mfsdram(DDR0_37, sdram_data); |
| printf(" DDR0_37 = 0x%08X", sdram_data); |
| mfsdram(DDR0_38, sdram_data); |
| printf(" DDR0_38 = 0x%08X\n", sdram_data); |
| mfsdram(DDR0_39, sdram_data); |
| printf(" DDR0_39 = 0x%08X", sdram_data); |
| mfsdram(DDR0_40, sdram_data); |
| printf(" DDR0_40 = 0x%08X\n", sdram_data); |
| mfsdram(DDR0_41, sdram_data); |
| printf(" DDR0_41 = 0x%08X", sdram_data); |
| mfsdram(DDR0_42, sdram_data); |
| printf(" DDR0_42 = 0x%08X\n", sdram_data); |
| mfsdram(DDR0_43, sdram_data); |
| printf(" DDR0_43 = 0x%08X", sdram_data); |
| mfsdram(DDR0_44, sdram_data); |
| printf(" DDR0_44 = 0x%08X\n", sdram_data); |
| } |
| #else |
| static inline void denali_sdram_register_dump(void) |
| { |
| } |
| |
| inline static void print_mcsr(void) |
| { |
| } |
| #endif /* defined(DEBUG) */ |
| |
| static int is_ecc_enabled(void) |
| { |
| u32 val; |
| |
| mfsdram(DDR0_22, val); |
| return 0x3 == DDR0_22_CTRL_RAW_DECODE(val); |
| } |
| |
| static unsigned char spd_read(u8 chip, unsigned int addr) |
| { |
| u8 data[2]; |
| |
| if (0 != i2c_probe(chip) || 0 != i2c_read(chip, addr, 1, data, 1)) { |
| debug("spd_read(0x%02X, 0x%02X) failed\n", chip, addr); |
| return 0; |
| } |
| debug("spd_read(0x%02X, 0x%02X) returned 0x%02X\n", |
| chip, addr, data[0]); |
| return data[0]; |
| } |
| |
| static unsigned long get_tcyc(unsigned char reg) |
| { |
| /* |
| * Byte 9, et al: Cycle time for CAS Latency=X, is split into two |
| * nibbles: the higher order nibble (bits 4-7) designates the cycle time |
| * to a granularity of 1ns; the value presented by the lower order |
| * nibble (bits 0-3) has a granularity of .1ns and is added to the value |
| * designated by the higher nibble. In addition, four lines of the lower |
| * order nibble are assigned to support +.25, +.33, +.66, and +.75. |
| */ |
| |
| unsigned char subfield_b = reg & 0x0F; |
| |
| switch (subfield_b & 0x0F) { |
| case 0x0: |
| case 0x1: |
| case 0x2: |
| case 0x3: |
| case 0x4: |
| case 0x5: |
| case 0x6: |
| case 0x7: |
| case 0x8: |
| case 0x9: |
| return 1000 * (reg >> 4) + 100 * subfield_b; |
| case 0xA: |
| return 1000 * (reg >> 4) + 250; |
| case 0xB: |
| return 1000 * (reg >> 4) + 333; |
| case 0xC: |
| return 1000 * (reg >> 4) + 667; |
| case 0xD: |
| return 1000 * (reg >> 4) + 750; |
| } |
| return 0; |
| } |
| |
| /*------------------------------------------------------------------ |
| * Find the installed DIMMs, make sure that the are DDR2, and fill |
| * in the dimm_ranks array. Then dimm_ranks[dimm_num] > 0 iff the |
| * DIMM and dimm_num is present. |
| * Note: Because there are only two chip-select lines, it is assumed |
| * that a board with a single socket can support two ranks on that |
| * socket, while a board with two sockets can support only one rank |
| * on each socket. |
| *-----------------------------------------------------------------*/ |
| static void get_spd_info(unsigned long dimm_ranks[], |
| unsigned long *ranks, |
| unsigned char const iic0_dimm_addr[], |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned long dimm_found = FALSE; |
| unsigned long const max_ranks_per_dimm = (1 == num_dimm_banks) ? 2 : 1; |
| unsigned char num_of_bytes; |
| unsigned char total_size; |
| |
| *ranks = 0; |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| num_of_bytes = 0; |
| total_size = 0; |
| |
| num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0); |
| total_size = spd_read(iic0_dimm_addr[dimm_num], 1); |
| if ((num_of_bytes != 0) && (total_size != 0)) { |
| unsigned char const dimm_type = |
| spd_read(iic0_dimm_addr[dimm_num], 2); |
| |
| unsigned long ranks_on_dimm = |
| (spd_read(iic0_dimm_addr[dimm_num], 5) & 0x07) + 1; |
| |
| if (8 != dimm_type) { |
| switch (dimm_type) { |
| case 1: |
| printf("ERROR: Standard Fast Page Mode " |
| "DRAM DIMM"); |
| break; |
| case 2: |
| printf("ERROR: EDO DIMM"); |
| break; |
| case 3: |
| printf("ERROR: Pipelined Nibble DIMM"); |
| break; |
| case 4: |
| printf("ERROR: SDRAM DIMM"); |
| break; |
| case 5: |
| printf("ERROR: Multiplexed ROM DIMM"); |
| break; |
| case 6: |
| printf("ERROR: SGRAM DIMM"); |
| break; |
| case 7: |
| printf("ERROR: DDR1 DIMM"); |
| break; |
| default: |
| printf("ERROR: Unknown DIMM (type %d)", |
| (unsigned int)dimm_type); |
| break; |
| } |
| printf(" detected in slot %lu.\n", dimm_num); |
| printf("Only DDR2 SDRAM DIMMs are supported." |
| "\n"); |
| printf("Replace the module with a DDR2 DIMM." |
| "\n\n"); |
| spd_ddr_init_hang(); |
| } |
| dimm_found = TRUE; |
| debug("DIMM slot %lu: populated with %lu-rank DDR2 DIMM" |
| "\n", dimm_num, ranks_on_dimm); |
| if (ranks_on_dimm > max_ranks_per_dimm) { |
| printf("WARNING: DRAM DIMM in slot %lu has %lu " |
| "ranks.\n"); |
| if (1 == max_ranks_per_dimm) { |
| printf("Only one rank will be used.\n"); |
| } else { |
| printf |
| ("Only two ranks will be used.\n"); |
| } |
| ranks_on_dimm = max_ranks_per_dimm; |
| } |
| dimm_ranks[dimm_num] = ranks_on_dimm; |
| *ranks += ranks_on_dimm; |
| } else { |
| dimm_ranks[dimm_num] = 0; |
| debug("DIMM slot %lu: Not populated\n", dimm_num); |
| } |
| } |
| if (dimm_found == FALSE) { |
| printf("ERROR: No memory installed.\n"); |
| printf("Install at least one DDR2 DIMM.\n\n"); |
| spd_ddr_init_hang(); |
| } |
| debug("Total number of ranks = %d\n", *ranks); |
| } |
| |
| /*------------------------------------------------------------------ |
| * For the memory DIMMs installed, this routine verifies that |
| * frequency previously calculated is supported. |
| *-----------------------------------------------------------------*/ |
| static void check_frequency(unsigned long *dimm_ranks, |
| unsigned char const iic0_dimm_addr[], |
| unsigned long num_dimm_banks, |
| unsigned long sdram_freq) |
| { |
| unsigned long dimm_num; |
| unsigned long cycle_time; |
| unsigned long calc_cycle_time; |
| |
| /* |
| * calc_cycle_time is calculated from DDR frequency set by board/chip |
| * and is expressed in picoseconds to match the way DIMM cycle time is |
| * calculated below. |
| */ |
| calc_cycle_time = MULDIV64(ONE_BILLION, 1000, sdram_freq); |
| |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| if (dimm_ranks[dimm_num]) { |
| cycle_time = |
| get_tcyc(spd_read(iic0_dimm_addr[dimm_num], 9)); |
| debug("cycle_time=%d ps\n", cycle_time); |
| |
| if (cycle_time > (calc_cycle_time + 10)) { |
| /* |
| * the provided sdram cycle_time is too small |
| * for the available DIMM cycle_time. The |
| * additionnal 10ps is here to accept a small |
| * incertainty. |
| */ |
| printf |
| ("ERROR: DRAM DIMM detected with cycle_time %d ps in " |
| "slot %d \n while calculated cycle time is %d ps.\n", |
| (unsigned int)cycle_time, |
| (unsigned int)dimm_num, |
| (unsigned int)calc_cycle_time); |
| printf |
| ("Replace the DIMM, or change DDR frequency via " |
| "strapping bits.\n\n"); |
| spd_ddr_init_hang(); |
| } |
| } |
| } |
| } |
| |
| /*------------------------------------------------------------------ |
| * This routine gets size information for the installed memory |
| * DIMMs. |
| *-----------------------------------------------------------------*/ |
| static void get_dimm_size(unsigned long dimm_ranks[], |
| unsigned char const iic0_dimm_addr[], |
| unsigned long num_dimm_banks, |
| unsigned long *const rows, |
| unsigned long *const banks, |
| unsigned long *const cols, unsigned long *const width) |
| { |
| unsigned long dimm_num; |
| |
| *rows = 0; |
| *banks = 0; |
| *cols = 0; |
| *width = 0; |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| if (dimm_ranks[dimm_num]) { |
| unsigned long t; |
| |
| /* Rows */ |
| t = spd_read(iic0_dimm_addr[dimm_num], 3); |
| if (0 == *rows) { |
| *rows = t; |
| } else if (t != *rows) { |
| printf("ERROR: DRAM DIMM modules do not all " |
| "have the same number of rows.\n\n"); |
| spd_ddr_init_hang(); |
| } |
| /* Banks */ |
| t = spd_read(iic0_dimm_addr[dimm_num], 17); |
| if (0 == *banks) { |
| *banks = t; |
| } else if (t != *banks) { |
| printf("ERROR: DRAM DIMM modules do not all " |
| "have the same number of banks.\n\n"); |
| spd_ddr_init_hang(); |
| } |
| /* Columns */ |
| t = spd_read(iic0_dimm_addr[dimm_num], 4); |
| if (0 == *cols) { |
| *cols = t; |
| } else if (t != *cols) { |
| printf("ERROR: DRAM DIMM modules do not all " |
| "have the same number of columns.\n\n"); |
| spd_ddr_init_hang(); |
| } |
| /* Data width */ |
| t = spd_read(iic0_dimm_addr[dimm_num], 6); |
| if (0 == *width) { |
| *width = t; |
| } else if (t != *width) { |
| printf("ERROR: DRAM DIMM modules do not all " |
| "have the same data width.\n\n"); |
| spd_ddr_init_hang(); |
| } |
| } |
| } |
| debug("Number of rows = %d\n", *rows); |
| debug("Number of columns = %d\n", *cols); |
| debug("Number of banks = %d\n", *banks); |
| debug("Data width = %d\n", *width); |
| if (*rows > 14) { |
| printf("ERROR: DRAM DIMM modules have %lu address rows.\n", |
| *rows); |
| printf("Only modules with 14 or fewer rows are supported.\n\n"); |
| spd_ddr_init_hang(); |
| } |
| if (4 != *banks && 8 != *banks) { |
| printf("ERROR: DRAM DIMM modules have %lu banks.\n", *banks); |
| printf("Only modules with 4 or 8 banks are supported.\n\n"); |
| spd_ddr_init_hang(); |
| } |
| if (*cols > 12) { |
| printf("ERROR: DRAM DIMM modules have %lu address columns.\n", |
| *cols); |
| printf("Only modules with 12 or fewer columns are " |
| "supported.\n\n"); |
| spd_ddr_init_hang(); |
| } |
| if (32 != *width && 40 != *width && 64 != *width && 72 != *width) { |
| printf("ERROR: DRAM DIMM modules have a width of %lu bit.\n", |
| *width); |
| printf("Only modules with widths of 32, 40, 64, and 72 bits " |
| "are supported.\n\n"); |
| spd_ddr_init_hang(); |
| } |
| } |
| |
| /*------------------------------------------------------------------ |
| * Only 1.8V modules are supported. This routine verifies this. |
| *-----------------------------------------------------------------*/ |
| static void check_voltage_type(unsigned long dimm_ranks[], |
| unsigned char const iic0_dimm_addr[], |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned long voltage_type; |
| |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| if (dimm_ranks[dimm_num]) { |
| voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8); |
| if (0x05 != voltage_type) { /* 1.8V for DDR2 */ |
| printf("ERROR: Slot %lu provides 1.8V for DDR2 " |
| "DIMMs.\n", dimm_num); |
| switch (voltage_type) { |
| case 0x00: |
| printf("This DIMM is 5.0 Volt/TTL.\n"); |
| break; |
| case 0x01: |
| printf("This DIMM is LVTTL.\n"); |
| break; |
| case 0x02: |
| printf("This DIMM is 1.5 Volt.\n"); |
| break; |
| case 0x03: |
| printf("This DIMM is 3.3 Volt/TTL.\n"); |
| break; |
| case 0x04: |
| printf("This DIMM is 2.5 Volt.\n"); |
| break; |
| default: |
| printf("This DIMM is an unknown " |
| "voltage.\n"); |
| break; |
| } |
| printf("Replace it with a 1.8V DDR2 DIMM.\n\n"); |
| spd_ddr_init_hang(); |
| } |
| } |
| } |
| } |
| |
| static void program_ddr0_03(unsigned long dimm_ranks[], |
| unsigned char const iic0_dimm_addr[], |
| unsigned long num_dimm_banks, |
| unsigned long sdram_freq, |
| unsigned long rows, unsigned long *cas_latency) |
| { |
| unsigned long dimm_num; |
| unsigned long cas_index; |
| unsigned long cycle_2_0_clk; |
| unsigned long cycle_3_0_clk; |
| unsigned long cycle_4_0_clk; |
| unsigned long cycle_5_0_clk; |
| unsigned long max_2_0_tcyc_ps = 100; |
| unsigned long max_3_0_tcyc_ps = 100; |
| unsigned long max_4_0_tcyc_ps = 100; |
| unsigned long max_5_0_tcyc_ps = 100; |
| unsigned char cas_available = 0x3C; /* value for DDR2 */ |
| u32 ddr0_03 = DDR0_03_BSTLEN_ENCODE(0x2) | DDR0_03_INITAREF_ENCODE(0x2); |
| unsigned int const tcyc_addr[3] = { 9, 23, 25 }; |
| |
| /*------------------------------------------------------------------ |
| * Get the board configuration info. |
| *-----------------------------------------------------------------*/ |
| debug("sdram_freq = %d\n", sdram_freq); |
| |
| /*------------------------------------------------------------------ |
| * Handle the timing. We need to find the worst case timing of all |
| * the dimm modules installed. |
| *-----------------------------------------------------------------*/ |
| /* loop through all the DIMM slots on the board */ |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| /* If a dimm is installed in a particular slot ... */ |
| if (dimm_ranks[dimm_num]) { |
| unsigned char const cas_bit = |
| spd_read(iic0_dimm_addr[dimm_num], 18); |
| unsigned char cas_mask; |
| |
| cas_available &= cas_bit; |
| for (cas_mask = 0x80; cas_mask; cas_mask >>= 1) { |
| if (cas_bit & cas_mask) |
| break; |
| } |
| debug("cas_bit (SPD byte 18) = %02X, cas_mask = %02X\n", |
| cas_bit, cas_mask); |
| |
| for (cas_index = 0; cas_index < 3; |
| cas_mask >>= 1, cas_index++) { |
| unsigned long cycle_time_ps; |
| |
| if (!(cas_available & cas_mask)) { |
| continue; |
| } |
| cycle_time_ps = |
| get_tcyc(spd_read(iic0_dimm_addr[dimm_num], |
| tcyc_addr[cas_index])); |
| |
| debug("cas_index = %d: cycle_time_ps = %d\n", |
| cas_index, cycle_time_ps); |
| /* |
| * DDR2 devices use the following bitmask for CAS latency: |
| * Bit 7 6 5 4 3 2 1 0 |
| * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD |
| */ |
| switch (cas_mask) { |
| case 0x20: |
| max_5_0_tcyc_ps = |
| max(max_5_0_tcyc_ps, cycle_time_ps); |
| break; |
| case 0x10: |
| max_4_0_tcyc_ps = |
| max(max_4_0_tcyc_ps, cycle_time_ps); |
| break; |
| case 0x08: |
| max_3_0_tcyc_ps = |
| max(max_3_0_tcyc_ps, cycle_time_ps); |
| break; |
| case 0x04: |
| max_2_0_tcyc_ps = |
| max(max_2_0_tcyc_ps, cycle_time_ps); |
| break; |
| } |
| } |
| } |
| } |
| debug("cas_available (bit map) = 0x%02X\n", cas_available); |
| |
| /*------------------------------------------------------------------ |
| * Set the SDRAM mode, SDRAM_MMODE |
| *-----------------------------------------------------------------*/ |
| |
| /* add 10 here because of rounding problems */ |
| cycle_2_0_clk = MULDIV64(ONE_BILLION, 1000, max_2_0_tcyc_ps) + 10; |
| cycle_3_0_clk = MULDIV64(ONE_BILLION, 1000, max_3_0_tcyc_ps) + 10; |
| cycle_4_0_clk = MULDIV64(ONE_BILLION, 1000, max_4_0_tcyc_ps) + 10; |
| cycle_5_0_clk = MULDIV64(ONE_BILLION, 1000, max_5_0_tcyc_ps) + 10; |
| debug("cycle_2_0_clk = %d\n", cycle_2_0_clk); |
| debug("cycle_3_0_clk = %d\n", cycle_3_0_clk); |
| debug("cycle_4_0_clk = %d\n", cycle_4_0_clk); |
| debug("cycle_5_0_clk = %d\n", cycle_5_0_clk); |
| |
| if ((cas_available & 0x04) && (sdram_freq <= cycle_2_0_clk)) { |
| *cas_latency = 2; |
| ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x2) | |
| DDR0_03_CASLAT_LIN_ENCODE(0x4); |
| } else if ((cas_available & 0x08) && (sdram_freq <= cycle_3_0_clk)) { |
| *cas_latency = 3; |
| ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x3) | |
| DDR0_03_CASLAT_LIN_ENCODE(0x6); |
| } else if ((cas_available & 0x10) && (sdram_freq <= cycle_4_0_clk)) { |
| *cas_latency = 4; |
| ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x4) | |
| DDR0_03_CASLAT_LIN_ENCODE(0x8); |
| } else if ((cas_available & 0x20) && (sdram_freq <= cycle_5_0_clk)) { |
| *cas_latency = 5; |
| ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x5) | |
| DDR0_03_CASLAT_LIN_ENCODE(0xA); |
| } else { |
| printf("ERROR: Cannot find a supported CAS latency with the " |
| "installed DIMMs.\n"); |
| printf("Only DDR2 DIMMs with CAS latencies of 2.0, 3.0, 4.0, " |
| "and 5.0 are supported.\n"); |
| printf("Make sure the PLB speed is within the supported range " |
| "of the DIMMs.\n"); |
| printf("sdram_freq=%d cycle2=%d cycle3=%d cycle4=%d " |
| "cycle5=%d\n\n", sdram_freq, cycle_2_0_clk, |
| cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk); |
| spd_ddr_init_hang(); |
| } |
| debug("CAS latency = %d\n", *cas_latency); |
| mtsdram(DDR0_03, ddr0_03); |
| } |
| |
| static void program_ddr0_04(unsigned long dimm_ranks[], |
| unsigned char const iic0_dimm_addr[], |
| unsigned long num_dimm_banks, |
| unsigned long sdram_freq) |
| { |
| unsigned long dimm_num; |
| unsigned long t_rc_ps = 0; |
| unsigned long t_rrd_ps = 0; |
| unsigned long t_rtp_ps = 0; |
| unsigned long t_rc_clk; |
| unsigned long t_rrd_clk; |
| unsigned long t_rtp_clk; |
| |
| /*------------------------------------------------------------------ |
| * Handle the timing. We need to find the worst case timing of all |
| * the dimm modules installed. |
| *-----------------------------------------------------------------*/ |
| /* loop through all the DIMM slots on the board */ |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| /* If a dimm is installed in a particular slot ... */ |
| if (dimm_ranks[dimm_num]) { |
| unsigned long ps; |
| |
| /* tRC */ |
| ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 41); |
| switch (spd_read(iic0_dimm_addr[dimm_num], 40) >> 4) { |
| case 0x1: |
| ps += 250; |
| break; |
| case 0x2: |
| ps += 333; |
| break; |
| case 0x3: |
| ps += 500; |
| break; |
| case 0x4: |
| ps += 667; |
| break; |
| case 0x5: |
| ps += 750; |
| break; |
| } |
| t_rc_ps = max(t_rc_ps, ps); |
| /* tRRD */ |
| ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 28); |
| t_rrd_ps = max(t_rrd_ps, ps); |
| /* tRTP */ |
| ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 38); |
| t_rtp_ps = max(t_rtp_ps, ps); |
| } |
| } |
| debug("t_rc_ps = %d\n", t_rc_ps); |
| t_rc_clk = (MULDIV64(sdram_freq, t_rc_ps, ONE_BILLION) + 999) / 1000; |
| debug("t_rrd_ps = %d\n", t_rrd_ps); |
| t_rrd_clk = (MULDIV64(sdram_freq, t_rrd_ps, ONE_BILLION) + 999) / 1000; |
| debug("t_rtp_ps = %d\n", t_rtp_ps); |
| t_rtp_clk = (MULDIV64(sdram_freq, t_rtp_ps, ONE_BILLION) + 999) / 1000; |
| mtsdram(DDR0_04, DDR0_04_TRC_ENCODE(t_rc_clk) | |
| DDR0_04_TRRD_ENCODE(t_rrd_clk) | |
| DDR0_04_TRTP_ENCODE(t_rtp_clk)); |
| } |
| |
| static void program_ddr0_05(unsigned long dimm_ranks[], |
| unsigned char const iic0_dimm_addr[], |
| unsigned long num_dimm_banks, |
| unsigned long sdram_freq) |
| { |
| unsigned long dimm_num; |
| unsigned long t_rp_ps = 0; |
| unsigned long t_ras_ps = 0; |
| unsigned long t_rp_clk; |
| unsigned long t_ras_clk; |
| u32 ddr0_05 = DDR0_05_TMRD_ENCODE(0x2) | DDR0_05_TEMRS_ENCODE(0x2); |
| |
| /*------------------------------------------------------------------ |
| * Handle the timing. We need to find the worst case timing of all |
| * the dimm modules installed. |
| *-----------------------------------------------------------------*/ |
| /* loop through all the DIMM slots on the board */ |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| /* If a dimm is installed in a particular slot ... */ |
| if (dimm_ranks[dimm_num]) { |
| unsigned long ps; |
| |
| /* tRP */ |
| ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 27); |
| t_rp_ps = max(t_rp_ps, ps); |
| /* tRAS */ |
| ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 30); |
| t_ras_ps = max(t_ras_ps, ps); |
| } |
| } |
| debug("t_rp_ps = %d\n", t_rp_ps); |
| t_rp_clk = (MULDIV64(sdram_freq, t_rp_ps, ONE_BILLION) + 999) / 1000; |
| debug("t_ras_ps = %d\n", t_ras_ps); |
| t_ras_clk = (MULDIV64(sdram_freq, t_ras_ps, ONE_BILLION) + 999) / 1000; |
| mtsdram(DDR0_05, ddr0_05 | DDR0_05_TRP_ENCODE(t_rp_clk) | |
| DDR0_05_TRAS_MIN_ENCODE(t_ras_clk)); |
| } |
| |
| static void program_ddr0_06(unsigned long dimm_ranks[], |
| unsigned char const iic0_dimm_addr[], |
| unsigned long num_dimm_banks, |
| unsigned long sdram_freq) |
| { |
| unsigned long dimm_num; |
| unsigned char spd_40; |
| unsigned long t_wtr_ps = 0; |
| unsigned long t_rfc_ps = 0; |
| unsigned long t_wtr_clk; |
| unsigned long t_rfc_clk; |
| u32 ddr0_06 = |
| DDR0_06_WRITEINTERP_ENCODE(0x1) | DDR0_06_TDLL_ENCODE(200); |
| |
| /*------------------------------------------------------------------ |
| * Handle the timing. We need to find the worst case timing of all |
| * the dimm modules installed. |
| *-----------------------------------------------------------------*/ |
| /* loop through all the DIMM slots on the board */ |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| /* If a dimm is installed in a particular slot ... */ |
| if (dimm_ranks[dimm_num]) { |
| unsigned long ps; |
| |
| /* tWTR */ |
| ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 37); |
| t_wtr_ps = max(t_wtr_ps, ps); |
| /* tRFC */ |
| ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 42); |
| spd_40 = spd_read(iic0_dimm_addr[dimm_num], 40); |
| ps += 256000 * (spd_40 & 0x01); |
| switch ((spd_40 & 0x0E) >> 1) { |
| case 0x1: |
| ps += 250; |
| break; |
| case 0x2: |
| ps += 333; |
| break; |
| case 0x3: |
| ps += 500; |
| break; |
| case 0x4: |
| ps += 667; |
| break; |
| case 0x5: |
| ps += 750; |
| break; |
| } |
| t_rfc_ps = max(t_rfc_ps, ps); |
| } |
| } |
| debug("t_wtr_ps = %d\n", t_wtr_ps); |
| t_wtr_clk = (MULDIV64(sdram_freq, t_wtr_ps, ONE_BILLION) + 999) / 1000; |
| debug("t_rfc_ps = %d\n", t_rfc_ps); |
| t_rfc_clk = (MULDIV64(sdram_freq, t_rfc_ps, ONE_BILLION) + 999) / 1000; |
| mtsdram(DDR0_06, ddr0_06 | DDR0_06_TWTR_ENCODE(t_wtr_clk) | |
| DDR0_06_TRFC_ENCODE(t_rfc_clk)); |
| } |
| |
| static void program_ddr0_10(unsigned long dimm_ranks[], unsigned long ranks) |
| { |
| unsigned long csmap; |
| |
| if (2 == ranks) { |
| /* Both chip selects in use */ |
| csmap = 0x03; |
| } else { |
| /* One chip select in use */ |
| csmap = (1 == dimm_ranks[0]) ? 0x1 : 0x2; |
| } |
| mtsdram(DDR0_10, DDR0_10_WRITE_MODEREG_ENCODE(0x0) | |
| DDR0_10_CS_MAP_ENCODE(csmap) | |
| DDR0_10_OCD_ADJUST_PUP_CS_0_ENCODE(0)); |
| } |
| |
| static void program_ddr0_11(unsigned long sdram_freq) |
| { |
| unsigned long const t_xsnr_ps = 200000; /* 200 ns */ |
| unsigned long t_xsnr_clk; |
| |
| debug("t_xsnr_ps = %d\n", t_xsnr_ps); |
| t_xsnr_clk = |
| (MULDIV64(sdram_freq, t_xsnr_ps, ONE_BILLION) + 999) / 1000; |
| mtsdram(DDR0_11, DDR0_11_SREFRESH_ENCODE(0) | |
| DDR0_11_TXSNR_ENCODE(t_xsnr_clk) | DDR0_11_TXSR_ENCODE(200)); |
| } |
| |
| static void program_ddr0_22(unsigned long dimm_ranks[], |
| unsigned char const iic0_dimm_addr[], |
| unsigned long num_dimm_banks, unsigned long width) |
| { |
| #if defined(CONFIG_DDR_ECC) |
| unsigned long dimm_num; |
| unsigned long ecc_available = width >= 64; |
| u32 ddr0_22 = DDR0_22_DQS_OUT_SHIFT_BYPASS_ENCODE(0x26) | |
| DDR0_22_DQS_OUT_SHIFT_ENCODE(DQS_OUT_SHIFT) | |
| DDR0_22_DLL_DQS_BYPASS_8_ENCODE(DLL_DQS_BYPASS); |
| |
| /* loop through all the DIMM slots on the board */ |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| /* If a dimm is installed in a particular slot ... */ |
| if (dimm_ranks[dimm_num]) { |
| /* Check for ECC */ |
| if (0 == (spd_read(iic0_dimm_addr[dimm_num], 11) & |
| 0x02)) { |
| ecc_available = FALSE; |
| } |
| } |
| } |
| if (ecc_available) { |
| debug("ECC found on all DIMMs present\n"); |
| mtsdram(DDR0_22, ddr0_22 | DDR0_22_CTRL_RAW_ENCODE(0x3)); |
| } else { |
| debug("ECC not found on some or all DIMMs present\n"); |
| mtsdram(DDR0_22, ddr0_22 | DDR0_22_CTRL_RAW_ENCODE(0x0)); |
| } |
| #else |
| mtsdram(DDR0_22, DDR0_22_CTRL_RAW_ENCODE(0x0) | |
| DDR0_22_DQS_OUT_SHIFT_BYPASS_ENCODE(0x26) | |
| DDR0_22_DQS_OUT_SHIFT_ENCODE(DQS_OUT_SHIFT) | |
| DDR0_22_DLL_DQS_BYPASS_8_ENCODE(DLL_DQS_BYPASS)); |
| #endif /* defined(CONFIG_DDR_ECC) */ |
| } |
| |
| static void program_ddr0_24(unsigned long ranks) |
| { |
| u32 ddr0_24 = DDR0_24_RTT_PAD_TERMINATION_ENCODE(0x1) | /* 75 ohm */ |
| DDR0_24_ODT_RD_MAP_CS1_ENCODE(0x0); |
| |
| if (2 == ranks) { |
| /* Both chip selects in use */ |
| ddr0_24 |= DDR0_24_ODT_WR_MAP_CS1_ENCODE(0x1) | |
| DDR0_24_ODT_WR_MAP_CS0_ENCODE(0x2); |
| } else { |
| /* One chip select in use */ |
| /* One of the two fields added to ddr0_24 is a "don't care" */ |
| ddr0_24 |= DDR0_24_ODT_WR_MAP_CS1_ENCODE(0x2) | |
| DDR0_24_ODT_WR_MAP_CS0_ENCODE(0x1); |
| } |
| mtsdram(DDR0_24, ddr0_24); |
| } |
| |
| static void program_ddr0_26(unsigned long sdram_freq) |
| { |
| unsigned long const t_ref_ps = 7800000; /* 7.8 us. refresh */ |
| /* TODO: check definition of tRAS_MAX */ |
| unsigned long const t_ras_max_ps = 9 * t_ref_ps; |
| unsigned long t_ras_max_clk; |
| unsigned long t_ref_clk; |
| |
| /* Round down t_ras_max_clk and t_ref_clk */ |
| debug("t_ras_max_ps = %d\n", t_ras_max_ps); |
| t_ras_max_clk = MULDIV64(sdram_freq, t_ras_max_ps, ONE_BILLION) / 1000; |
| debug("t_ref_ps = %d\n", t_ref_ps); |
| t_ref_clk = MULDIV64(sdram_freq, t_ref_ps, ONE_BILLION) / 1000; |
| mtsdram(DDR0_26, DDR0_26_TRAS_MAX_ENCODE(t_ras_max_clk) | |
| DDR0_26_TREF_ENCODE(t_ref_clk)); |
| } |
| |
| static void program_ddr0_27(unsigned long sdram_freq) |
| { |
| unsigned long const t_init_ps = 200000000; /* 200 us. init */ |
| unsigned long t_init_clk; |
| |
| debug("t_init_ps = %d\n", t_init_ps); |
| t_init_clk = |
| (MULDIV64(sdram_freq, t_init_ps, ONE_BILLION) + 999) / 1000; |
| mtsdram(DDR0_27, DDR0_27_EMRS_DATA_ENCODE(0x0000) | |
| DDR0_27_TINIT_ENCODE(t_init_clk)); |
| } |
| |
| static void program_ddr0_43(unsigned long dimm_ranks[], |
| unsigned char const iic0_dimm_addr[], |
| unsigned long num_dimm_banks, |
| unsigned long sdram_freq, |
| unsigned long cols, unsigned long banks) |
| { |
| unsigned long dimm_num; |
| unsigned long t_wr_ps = 0; |
| unsigned long t_wr_clk; |
| u32 ddr0_43 = DDR0_43_APREBIT_ENCODE(10) | |
| DDR0_43_COLUMN_SIZE_ENCODE(12 - cols) | |
| DDR0_43_EIGHT_BANK_MODE_ENCODE(8 == banks ? 1 : 0); |
| |
| /*------------------------------------------------------------------ |
| * Handle the timing. We need to find the worst case timing of all |
| * the dimm modules installed. |
| *-----------------------------------------------------------------*/ |
| /* loop through all the DIMM slots on the board */ |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| /* If a dimm is installed in a particular slot ... */ |
| if (dimm_ranks[dimm_num]) { |
| unsigned long ps; |
| |
| ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 36); |
| t_wr_ps = max(t_wr_ps, ps); |
| } |
| } |
| debug("t_wr_ps = %d\n", t_wr_ps); |
| t_wr_clk = (MULDIV64(sdram_freq, t_wr_ps, ONE_BILLION) + 999) / 1000; |
| mtsdram(DDR0_43, ddr0_43 | DDR0_43_TWR_ENCODE(t_wr_clk)); |
| } |
| |
| static void program_ddr0_44(unsigned long dimm_ranks[], |
| unsigned char const iic0_dimm_addr[], |
| unsigned long num_dimm_banks, |
| unsigned long sdram_freq) |
| { |
| unsigned long dimm_num; |
| unsigned long t_rcd_ps = 0; |
| unsigned long t_rcd_clk; |
| |
| /*------------------------------------------------------------------ |
| * Handle the timing. We need to find the worst case timing of all |
| * the dimm modules installed. |
| *-----------------------------------------------------------------*/ |
| /* loop through all the DIMM slots on the board */ |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| /* If a dimm is installed in a particular slot ... */ |
| if (dimm_ranks[dimm_num]) { |
| unsigned long ps; |
| |
| ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 29); |
| t_rcd_ps = max(t_rcd_ps, ps); |
| } |
| } |
| debug("t_rcd_ps = %d\n", t_rcd_ps); |
| t_rcd_clk = (MULDIV64(sdram_freq, t_rcd_ps, ONE_BILLION) + 999) / 1000; |
| mtsdram(DDR0_44, DDR0_44_TRCD_ENCODE(t_rcd_clk)); |
| } |
| |
| /*-----------------------------------------------------------------------------+ |
| * initdram. Initializes the 440EPx/GPx DDR SDRAM controller. |
| * Note: This routine runs from flash with a stack set up in the chip's |
| * sram space. It is important that the routine does not require .sbss, .bss or |
| * .data sections. It also cannot call routines that require these sections. |
| *-----------------------------------------------------------------------------*/ |
| /*----------------------------------------------------------------------------- |
| * Function: initdram |
| * Description: Configures SDRAM memory banks for DDR operation. |
| * Auto Memory Configuration option reads the DDR SDRAM EEPROMs |
| * via the IIC bus and then configures the DDR SDRAM memory |
| * banks appropriately. If Auto Memory Configuration is |
| * not used, it is assumed that no DIMM is plugged |
| *-----------------------------------------------------------------------------*/ |
| phys_size_t initdram(int board_type) |
| { |
| unsigned char const iic0_dimm_addr[] = SPD_EEPROM_ADDRESS; |
| unsigned long dimm_ranks[MAXDIMMS]; |
| unsigned long ranks; |
| unsigned long rows; |
| unsigned long banks; |
| unsigned long cols; |
| unsigned long width; |
| unsigned long const sdram_freq = get_bus_freq(0); |
| unsigned long const num_dimm_banks = sizeof(iic0_dimm_addr); /* on board dimm banks */ |
| unsigned long cas_latency = 0; /* to quiet initialization warning */ |
| unsigned long dram_size; |
| |
| debug("\nEntering initdram()\n"); |
| |
| /*------------------------------------------------------------------ |
| * Stop the DDR-SDRAM controller. |
| *-----------------------------------------------------------------*/ |
| mtsdram(DDR0_02, DDR0_02_START_ENCODE(0)); |
| |
| /* |
| * Make sure I2C controller is initialized |
| * before continuing. |
| */ |
| /* switch to correct I2C bus */ |
| I2C_SET_BUS(CFG_SPD_BUS_NUM); |
| i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE); |
| |
| /*------------------------------------------------------------------ |
| * Clear out the serial presence detect buffers. |
| * Perform IIC reads from the dimm. Fill in the spds. |
| * Check to see if the dimm slots are populated |
| *-----------------------------------------------------------------*/ |
| get_spd_info(dimm_ranks, &ranks, iic0_dimm_addr, num_dimm_banks); |
| |
| /*------------------------------------------------------------------ |
| * Check the frequency supported for the dimms plugged. |
| *-----------------------------------------------------------------*/ |
| check_frequency(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq); |
| |
| /*------------------------------------------------------------------ |
| * Check and get size information. |
| *-----------------------------------------------------------------*/ |
| get_dimm_size(dimm_ranks, iic0_dimm_addr, num_dimm_banks, &rows, &banks, |
| &cols, &width); |
| |
| /*------------------------------------------------------------------ |
| * Check the voltage type for the dimms plugged. |
| *-----------------------------------------------------------------*/ |
| check_voltage_type(dimm_ranks, iic0_dimm_addr, num_dimm_banks); |
| |
| /*------------------------------------------------------------------ |
| * Program registers for SDRAM controller. |
| *-----------------------------------------------------------------*/ |
| mtsdram(DDR0_00, DDR0_00_DLL_INCREMENT_ENCODE(0x19) | |
| DDR0_00_DLL_START_POINT_DECODE(0x0A)); |
| |
| mtsdram(DDR0_01, DDR0_01_PLB0_DB_CS_LOWER_ENCODE(0x01) | |
| DDR0_01_PLB0_DB_CS_UPPER_ENCODE(0x00) | |
| DDR0_01_INT_MASK_ENCODE(0xFF)); |
| |
| program_ddr0_03(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq, |
| rows, &cas_latency); |
| |
| program_ddr0_04(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq); |
| |
| program_ddr0_05(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq); |
| |
| program_ddr0_06(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq); |
| |
| /* |
| * TODO: tFAW not found in SPD. Value of 13 taken from Sequoia |
| * board SDRAM, but may be overly conservative. |
| */ |
| mtsdram(DDR0_07, DDR0_07_NO_CMD_INIT_ENCODE(0) | |
| DDR0_07_TFAW_ENCODE(13) | |
| DDR0_07_AUTO_REFRESH_MODE_ENCODE(1) | |
| DDR0_07_AREFRESH_ENCODE(0)); |
| |
| mtsdram(DDR0_08, DDR0_08_WRLAT_ENCODE(cas_latency - 1) | |
| DDR0_08_TCPD_ENCODE(200) | DDR0_08_DQS_N_EN_ENCODE(0) | |
| DDR0_08_DDRII_ENCODE(1)); |
| |
| mtsdram(DDR0_09, DDR0_09_OCD_ADJUST_PDN_CS_0_ENCODE(0x00) | |
| DDR0_09_RTT_0_ENCODE(0x1) | |
| DDR0_09_WR_DQS_SHIFT_BYPASS_ENCODE(0x1D) | |
| DDR0_09_WR_DQS_SHIFT_ENCODE(DQS_OUT_SHIFT - 0x20)); |
| |
| program_ddr0_10(dimm_ranks, ranks); |
| |
| program_ddr0_11(sdram_freq); |
| |
| mtsdram(DDR0_12, DDR0_12_TCKE_ENCODE(3)); |
| |
| mtsdram(DDR0_14, DDR0_14_DLL_BYPASS_MODE_ENCODE(0) | |
| DDR0_14_REDUC_ENCODE(width <= 40 ? 1 : 0) | |
| DDR0_14_REG_DIMM_ENABLE_ENCODE(0)); |
| |
| mtsdram(DDR0_17, DDR0_17_DLL_DQS_DELAY_0_ENCODE(DLL_DQS_DELAY)); |
| |
| mtsdram(DDR0_18, DDR0_18_DLL_DQS_DELAY_4_ENCODE(DLL_DQS_DELAY) | |
| DDR0_18_DLL_DQS_DELAY_3_ENCODE(DLL_DQS_DELAY) | |
| DDR0_18_DLL_DQS_DELAY_2_ENCODE(DLL_DQS_DELAY) | |
| DDR0_18_DLL_DQS_DELAY_1_ENCODE(DLL_DQS_DELAY)); |
| |
| mtsdram(DDR0_19, DDR0_19_DLL_DQS_DELAY_8_ENCODE(DLL_DQS_DELAY) | |
| DDR0_19_DLL_DQS_DELAY_7_ENCODE(DLL_DQS_DELAY) | |
| DDR0_19_DLL_DQS_DELAY_6_ENCODE(DLL_DQS_DELAY) | |
| DDR0_19_DLL_DQS_DELAY_5_ENCODE(DLL_DQS_DELAY)); |
| |
| mtsdram(DDR0_20, DDR0_20_DLL_DQS_BYPASS_3_ENCODE(DLL_DQS_BYPASS) | |
| DDR0_20_DLL_DQS_BYPASS_2_ENCODE(DLL_DQS_BYPASS) | |
| DDR0_20_DLL_DQS_BYPASS_1_ENCODE(DLL_DQS_BYPASS) | |
| DDR0_20_DLL_DQS_BYPASS_0_ENCODE(DLL_DQS_BYPASS)); |
| |
| mtsdram(DDR0_21, DDR0_21_DLL_DQS_BYPASS_7_ENCODE(DLL_DQS_BYPASS) | |
| DDR0_21_DLL_DQS_BYPASS_6_ENCODE(DLL_DQS_BYPASS) | |
| DDR0_21_DLL_DQS_BYPASS_5_ENCODE(DLL_DQS_BYPASS) | |
| DDR0_21_DLL_DQS_BYPASS_4_ENCODE(DLL_DQS_BYPASS)); |
| |
| program_ddr0_22(dimm_ranks, iic0_dimm_addr, num_dimm_banks, width); |
| |
| mtsdram(DDR0_23, DDR0_23_ODT_RD_MAP_CS0_ENCODE(0x0) | |
| DDR0_23_FWC_ENCODE(0)); |
| |
| program_ddr0_24(ranks); |
| |
| program_ddr0_26(sdram_freq); |
| |
| program_ddr0_27(sdram_freq); |
| |
| mtsdram(DDR0_28, DDR0_28_EMRS3_DATA_ENCODE(0x0000) | |
| DDR0_28_EMRS2_DATA_ENCODE(0x0000)); |
| |
| mtsdram(DDR0_31, DDR0_31_XOR_CHECK_BITS_ENCODE(0x0000)); |
| |
| mtsdram(DDR0_42, DDR0_42_ADDR_PINS_DECODE(14 - rows) | |
| DDR0_42_CASLAT_LIN_GATE_ENCODE(2 * cas_latency)); |
| |
| program_ddr0_43(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq, |
| cols, banks); |
| |
| program_ddr0_44(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq); |
| |
| denali_sdram_register_dump(); |
| |
| dram_size = (width >= 64) ? 8 : 4; |
| dram_size *= 1 << cols; |
| dram_size *= banks; |
| dram_size *= 1 << rows; |
| dram_size *= ranks; |
| debug("dram_size = %lu\n", dram_size); |
| |
| /* Start the SDRAM controler */ |
| mtsdram(DDR0_02, DDR0_02_START_ENCODE(1)); |
| denali_wait_for_dlllock(); |
| |
| #if defined(CONFIG_DDR_DATA_EYE) |
| /* |
| * Map the first 1 MiB of memory in the TLB, and perform the data eye |
| * search. |
| */ |
| program_tlb(0, CFG_SDRAM_BASE, TLB_1MB_SIZE, TLB_WORD2_I_ENABLE); |
| denali_core_search_data_eye(); |
| denali_sdram_register_dump(); |
| remove_tlb(CFG_SDRAM_BASE, TLB_1MB_SIZE); |
| #endif |
| |
| #if defined(CONFIG_ZERO_SDRAM) || defined(CONFIG_DDR_ECC) |
| program_tlb(0, CFG_SDRAM_BASE, dram_size, 0); |
| sync(); |
| /* Zero the memory */ |
| debug("Zeroing SDRAM..."); |
| #if defined(CFG_MEM_TOP_HIDE) |
| dcbz_area(CFG_SDRAM_BASE, dram_size - CFG_MEM_TOP_HIDE); |
| #else |
| #error Please define CFG_MEM_TOP_HIDE (see README) in your board config file |
| #endif |
| /* Write modified dcache lines back to memory */ |
| clean_dcache_range(CFG_SDRAM_BASE, CFG_SDRAM_BASE + dram_size - CFG_MEM_TOP_HIDE); |
| debug("Completed\n"); |
| sync(); |
| remove_tlb(CFG_SDRAM_BASE, dram_size); |
| |
| #if defined(CONFIG_DDR_ECC) |
| /* |
| * If ECC is enabled, clear and enable interrupts |
| */ |
| if (is_ecc_enabled()) { |
| u32 val; |
| |
| sync(); |
| /* Clear error status */ |
| mfsdram(DDR0_00, val); |
| mtsdram(DDR0_00, val | DDR0_00_INT_ACK_ALL); |
| /* Set 'int_mask' parameter to functionnal value */ |
| mfsdram(DDR0_01, val); |
| mtsdram(DDR0_01, (val & ~DDR0_01_INT_MASK_MASK) | |
| DDR0_01_INT_MASK_ALL_OFF); |
| #if defined(CONFIG_DDR_DATA_EYE) |
| /* |
| * Running denali_core_search_data_eye() when ECC is enabled |
| * causes non-ECC machine checks. This clears them. |
| */ |
| print_mcsr(); |
| mtspr(SPRN_MCSR, mfspr(SPRN_MCSR)); |
| print_mcsr(); |
| #endif |
| sync(); |
| } |
| #endif /* defined(CONFIG_DDR_ECC) */ |
| #endif /* defined(CONFIG_ZERO_SDRAM) || defined(CONFIG_DDR_ECC) */ |
| |
| program_tlb(0, CFG_SDRAM_BASE, dram_size, MY_TLB_WORD2_I_ENABLE); |
| return dram_size; |
| } |
| |
| void board_add_ram_info(int use_default) |
| { |
| u32 val; |
| |
| printf(" (ECC"); |
| if (!is_ecc_enabled()) { |
| printf(" not"); |
| } |
| printf(" enabled, %d MHz", (2 * get_bus_freq(0)) / 1000000); |
| |
| mfsdram(DDR0_03, val); |
| printf(", CL%d)", DDR0_03_CASLAT_LIN_DECODE(val) >> 1); |
| } |
| #endif /* CONFIG_SPD_EEPROM */ |