| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * EFI application runtime services |
| * |
| * Copyright (c) 2016 Alexander Graf |
| */ |
| |
| #include <common.h> |
| #include <command.h> |
| #include <dm.h> |
| #include <efi_loader.h> |
| #include <rtc.h> |
| |
| /* For manual relocation support */ |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| struct efi_runtime_mmio_list { |
| struct list_head link; |
| void **ptr; |
| u64 paddr; |
| u64 len; |
| }; |
| |
| /* This list contains all runtime available mmio regions */ |
| LIST_HEAD(efi_runtime_mmio); |
| |
| static efi_status_t __efi_runtime EFIAPI efi_unimplemented(void); |
| static efi_status_t __efi_runtime EFIAPI efi_device_error(void); |
| static efi_status_t __efi_runtime EFIAPI efi_invalid_parameter(void); |
| |
| /* |
| * TODO(sjg@chromium.org): These defines and structs should come from the elf |
| * header for each arch (or a generic header) rather than being repeated here. |
| */ |
| #if defined(CONFIG_ARM64) |
| #define R_RELATIVE 1027 |
| #define R_MASK 0xffffffffULL |
| #define IS_RELA 1 |
| #elif defined(CONFIG_ARM) |
| #define R_RELATIVE 23 |
| #define R_MASK 0xffULL |
| #elif defined(CONFIG_X86) |
| #include <asm/elf.h> |
| #define R_RELATIVE R_386_RELATIVE |
| #define R_MASK 0xffULL |
| #elif defined(CONFIG_RISCV) |
| #include <elf.h> |
| #define R_RELATIVE R_RISCV_RELATIVE |
| #define R_MASK 0xffULL |
| #define IS_RELA 1 |
| |
| struct dyn_sym { |
| ulong foo1; |
| ulong addr; |
| u32 foo2; |
| u32 foo3; |
| }; |
| #ifdef CONFIG_CPU_RISCV_32 |
| #define R_ABSOLUTE R_RISCV_32 |
| #define SYM_INDEX 8 |
| #else |
| #define R_ABSOLUTE R_RISCV_64 |
| #define SYM_INDEX 32 |
| #endif |
| #else |
| #error Need to add relocation awareness |
| #endif |
| |
| struct elf_rel { |
| ulong *offset; |
| ulong info; |
| }; |
| |
| struct elf_rela { |
| ulong *offset; |
| ulong info; |
| long addend; |
| }; |
| |
| /* |
| * EFI Runtime code lives in 2 stages. In the first stage, U-Boot and an EFI |
| * payload are running concurrently at the same time. In this mode, we can |
| * handle a good number of runtime callbacks |
| */ |
| |
| static void EFIAPI efi_reset_system_boottime( |
| enum efi_reset_type reset_type, |
| efi_status_t reset_status, |
| unsigned long data_size, void *reset_data) |
| { |
| struct efi_event *evt; |
| |
| EFI_ENTRY("%d %lx %lx %p", reset_type, reset_status, data_size, |
| reset_data); |
| |
| /* Notify reset */ |
| list_for_each_entry(evt, &efi_events, link) { |
| if (evt->group && |
| !guidcmp(evt->group, |
| &efi_guid_event_group_reset_system)) { |
| efi_signal_event(evt, false); |
| break; |
| } |
| } |
| switch (reset_type) { |
| case EFI_RESET_COLD: |
| case EFI_RESET_WARM: |
| case EFI_RESET_PLATFORM_SPECIFIC: |
| do_reset(NULL, 0, 0, NULL); |
| break; |
| case EFI_RESET_SHUTDOWN: |
| /* We don't have anything to map this to */ |
| break; |
| } |
| |
| while (1) { } |
| } |
| |
| static efi_status_t EFIAPI efi_get_time_boottime( |
| struct efi_time *time, |
| struct efi_time_cap *capabilities) |
| { |
| #if defined(CONFIG_CMD_DATE) && defined(CONFIG_DM_RTC) |
| struct rtc_time tm; |
| int r; |
| struct udevice *dev; |
| |
| EFI_ENTRY("%p %p", time, capabilities); |
| |
| r = uclass_get_device(UCLASS_RTC, 0, &dev); |
| if (r) |
| return EFI_EXIT(EFI_DEVICE_ERROR); |
| |
| r = dm_rtc_get(dev, &tm); |
| if (r) |
| return EFI_EXIT(EFI_DEVICE_ERROR); |
| |
| memset(time, 0, sizeof(*time)); |
| time->year = tm.tm_year; |
| time->month = tm.tm_mon; |
| time->day = tm.tm_mday; |
| time->hour = tm.tm_hour; |
| time->minute = tm.tm_min; |
| time->daylight = tm.tm_isdst; |
| |
| return EFI_EXIT(EFI_SUCCESS); |
| #else |
| return EFI_DEVICE_ERROR; |
| #endif |
| } |
| |
| /* Boards may override the helpers below to implement RTS functionality */ |
| |
| void __weak __efi_runtime EFIAPI efi_reset_system( |
| enum efi_reset_type reset_type, |
| efi_status_t reset_status, |
| unsigned long data_size, void *reset_data) |
| { |
| /* Nothing we can do */ |
| while (1) { } |
| } |
| |
| efi_status_t __weak efi_reset_system_init(void) |
| { |
| return EFI_SUCCESS; |
| } |
| |
| efi_status_t __weak __efi_runtime EFIAPI efi_get_time( |
| struct efi_time *time, |
| struct efi_time_cap *capabilities) |
| { |
| /* Nothing we can do */ |
| return EFI_DEVICE_ERROR; |
| } |
| |
| efi_status_t __weak efi_get_time_init(void) |
| { |
| return EFI_SUCCESS; |
| } |
| |
| struct efi_runtime_detach_list_struct { |
| void *ptr; |
| void *patchto; |
| }; |
| |
| static const struct efi_runtime_detach_list_struct efi_runtime_detach_list[] = { |
| { |
| /* do_reset is gone */ |
| .ptr = &efi_runtime_services.reset_system, |
| .patchto = efi_reset_system, |
| }, { |
| /* invalidate_*cache_all are gone */ |
| .ptr = &efi_runtime_services.set_virtual_address_map, |
| .patchto = &efi_invalid_parameter, |
| }, { |
| /* RTC accessors are gone */ |
| .ptr = &efi_runtime_services.get_time, |
| .patchto = &efi_get_time, |
| }, { |
| /* Clean up system table */ |
| .ptr = &systab.con_in, |
| .patchto = NULL, |
| }, { |
| /* Clean up system table */ |
| .ptr = &systab.con_out, |
| .patchto = NULL, |
| }, { |
| /* Clean up system table */ |
| .ptr = &systab.std_err, |
| .patchto = NULL, |
| }, { |
| /* Clean up system table */ |
| .ptr = &systab.boottime, |
| .patchto = NULL, |
| }, { |
| .ptr = &efi_runtime_services.get_variable, |
| .patchto = &efi_device_error, |
| }, { |
| .ptr = &efi_runtime_services.get_next_variable_name, |
| .patchto = &efi_device_error, |
| }, { |
| .ptr = &efi_runtime_services.set_variable, |
| .patchto = &efi_device_error, |
| } |
| }; |
| |
| static bool efi_runtime_tobedetached(void *p) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(efi_runtime_detach_list); i++) |
| if (efi_runtime_detach_list[i].ptr == p) |
| return true; |
| |
| return false; |
| } |
| |
| static void efi_runtime_detach(ulong offset) |
| { |
| int i; |
| ulong patchoff = offset - (ulong)gd->relocaddr; |
| |
| for (i = 0; i < ARRAY_SIZE(efi_runtime_detach_list); i++) { |
| ulong patchto = (ulong)efi_runtime_detach_list[i].patchto; |
| ulong *p = efi_runtime_detach_list[i].ptr; |
| ulong newaddr = patchto ? (patchto + patchoff) : 0; |
| |
| debug("%s: Setting %p to %lx\n", __func__, p, newaddr); |
| *p = newaddr; |
| } |
| } |
| |
| /* Relocate EFI runtime to uboot_reloc_base = offset */ |
| void efi_runtime_relocate(ulong offset, struct efi_mem_desc *map) |
| { |
| #ifdef IS_RELA |
| struct elf_rela *rel = (void*)&__efi_runtime_rel_start; |
| #else |
| struct elf_rel *rel = (void*)&__efi_runtime_rel_start; |
| static ulong lastoff = CONFIG_SYS_TEXT_BASE; |
| #endif |
| |
| debug("%s: Relocating to offset=%lx\n", __func__, offset); |
| for (; (ulong)rel < (ulong)&__efi_runtime_rel_stop; rel++) { |
| ulong base = CONFIG_SYS_TEXT_BASE; |
| ulong *p; |
| ulong newaddr; |
| |
| p = (void*)((ulong)rel->offset - base) + gd->relocaddr; |
| |
| debug("%s: rel->info=%#lx *p=%#lx rel->offset=%p\n", __func__, rel->info, *p, rel->offset); |
| |
| switch (rel->info & R_MASK) { |
| case R_RELATIVE: |
| #ifdef IS_RELA |
| newaddr = rel->addend + offset - CONFIG_SYS_TEXT_BASE; |
| #else |
| newaddr = *p - lastoff + offset; |
| #endif |
| break; |
| #ifdef R_ABSOLUTE |
| case R_ABSOLUTE: { |
| ulong symidx = rel->info >> SYM_INDEX; |
| extern struct dyn_sym __dyn_sym_start[]; |
| newaddr = __dyn_sym_start[symidx].addr + offset; |
| break; |
| } |
| #endif |
| default: |
| continue; |
| } |
| |
| /* Check if the relocation is inside bounds */ |
| if (map && ((newaddr < map->virtual_start) || |
| newaddr > (map->virtual_start + |
| (map->num_pages << EFI_PAGE_SHIFT)))) { |
| if (!efi_runtime_tobedetached(p)) |
| printf("U-Boot EFI: Relocation at %p is out of " |
| "range (%lx)\n", p, newaddr); |
| continue; |
| } |
| |
| debug("%s: Setting %p to %lx\n", __func__, p, newaddr); |
| *p = newaddr; |
| flush_dcache_range((ulong)p & ~(EFI_CACHELINE_SIZE - 1), |
| ALIGN((ulong)&p[1], EFI_CACHELINE_SIZE)); |
| } |
| |
| #ifndef IS_RELA |
| lastoff = offset; |
| #endif |
| |
| invalidate_icache_all(); |
| } |
| |
| static efi_status_t EFIAPI efi_set_virtual_address_map( |
| unsigned long memory_map_size, |
| unsigned long descriptor_size, |
| uint32_t descriptor_version, |
| struct efi_mem_desc *virtmap) |
| { |
| ulong runtime_start = (ulong)&__efi_runtime_start & |
| ~(ulong)EFI_PAGE_MASK; |
| int n = memory_map_size / descriptor_size; |
| int i; |
| |
| EFI_ENTRY("%lx %lx %x %p", memory_map_size, descriptor_size, |
| descriptor_version, virtmap); |
| |
| /* Rebind mmio pointers */ |
| for (i = 0; i < n; i++) { |
| struct efi_mem_desc *map = (void*)virtmap + |
| (descriptor_size * i); |
| struct list_head *lhandle; |
| efi_physical_addr_t map_start = map->physical_start; |
| efi_physical_addr_t map_len = map->num_pages << EFI_PAGE_SHIFT; |
| efi_physical_addr_t map_end = map_start + map_len; |
| |
| /* Adjust all mmio pointers in this region */ |
| list_for_each(lhandle, &efi_runtime_mmio) { |
| struct efi_runtime_mmio_list *lmmio; |
| |
| lmmio = list_entry(lhandle, |
| struct efi_runtime_mmio_list, |
| link); |
| if ((map_start <= lmmio->paddr) && |
| (map_end >= lmmio->paddr)) { |
| u64 off = map->virtual_start - map_start; |
| uintptr_t new_addr = lmmio->paddr + off; |
| *lmmio->ptr = (void *)new_addr; |
| } |
| } |
| } |
| |
| /* Move the actual runtime code over */ |
| for (i = 0; i < n; i++) { |
| struct efi_mem_desc *map; |
| |
| map = (void*)virtmap + (descriptor_size * i); |
| if (map->type == EFI_RUNTIME_SERVICES_CODE) { |
| ulong new_offset = map->virtual_start - |
| (runtime_start - gd->relocaddr); |
| |
| efi_runtime_relocate(new_offset, map); |
| /* Once we're virtual, we can no longer handle |
| complex callbacks */ |
| efi_runtime_detach(new_offset); |
| return EFI_EXIT(EFI_SUCCESS); |
| } |
| } |
| |
| return EFI_EXIT(EFI_INVALID_PARAMETER); |
| } |
| |
| efi_status_t efi_add_runtime_mmio(void *mmio_ptr, u64 len) |
| { |
| struct efi_runtime_mmio_list *newmmio; |
| u64 pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT; |
| uint64_t addr = *(uintptr_t *)mmio_ptr; |
| uint64_t retaddr; |
| |
| retaddr = efi_add_memory_map(addr, pages, EFI_MMAP_IO, false); |
| if (retaddr != addr) |
| return EFI_OUT_OF_RESOURCES; |
| |
| newmmio = calloc(1, sizeof(*newmmio)); |
| if (!newmmio) |
| return EFI_OUT_OF_RESOURCES; |
| newmmio->ptr = mmio_ptr; |
| newmmio->paddr = *(uintptr_t *)mmio_ptr; |
| newmmio->len = len; |
| list_add_tail(&newmmio->link, &efi_runtime_mmio); |
| |
| return EFI_SUCCESS; |
| } |
| |
| /* |
| * In the second stage, U-Boot has disappeared. To isolate our runtime code |
| * that at this point still exists from the rest, we put it into a special |
| * section. |
| * |
| * !!WARNING!! |
| * |
| * This means that we can not rely on any code outside of this file in any |
| * function or variable below this line. |
| * |
| * Please keep everything fully self-contained and annotated with |
| * __efi_runtime and __efi_runtime_data markers. |
| */ |
| |
| /* |
| * Relocate the EFI runtime stub to a different place. We need to call this |
| * the first time we expose the runtime interface to a user and on set virtual |
| * address map calls. |
| */ |
| |
| static efi_status_t __efi_runtime EFIAPI efi_unimplemented(void) |
| { |
| return EFI_UNSUPPORTED; |
| } |
| |
| static efi_status_t __efi_runtime EFIAPI efi_device_error(void) |
| { |
| return EFI_DEVICE_ERROR; |
| } |
| |
| static efi_status_t __efi_runtime EFIAPI efi_invalid_parameter(void) |
| { |
| return EFI_INVALID_PARAMETER; |
| } |
| |
| efi_status_t __efi_runtime EFIAPI efi_update_capsule( |
| struct efi_capsule_header **capsule_header_array, |
| efi_uintn_t capsule_count, |
| u64 scatter_gather_list) |
| { |
| return EFI_UNSUPPORTED; |
| } |
| |
| efi_status_t __efi_runtime EFIAPI efi_query_capsule_caps( |
| struct efi_capsule_header **capsule_header_array, |
| efi_uintn_t capsule_count, |
| u64 maximum_capsule_size, |
| u32 reset_type) |
| { |
| return EFI_UNSUPPORTED; |
| } |
| |
| efi_status_t __efi_runtime EFIAPI efi_query_variable_info( |
| u32 attributes, |
| u64 *maximum_variable_storage_size, |
| u64 *remaining_variable_storage_size, |
| u64 *maximum_variable_size) |
| { |
| return EFI_UNSUPPORTED; |
| } |
| |
| struct efi_runtime_services __efi_runtime_data efi_runtime_services = { |
| .hdr = { |
| .signature = EFI_RUNTIME_SERVICES_SIGNATURE, |
| .revision = EFI_RUNTIME_SERVICES_REVISION, |
| .headersize = sizeof(struct efi_table_hdr), |
| }, |
| .get_time = &efi_get_time_boottime, |
| .set_time = (void *)&efi_device_error, |
| .get_wakeup_time = (void *)&efi_unimplemented, |
| .set_wakeup_time = (void *)&efi_unimplemented, |
| .set_virtual_address_map = &efi_set_virtual_address_map, |
| .convert_pointer = (void *)&efi_invalid_parameter, |
| .get_variable = efi_get_variable, |
| .get_next_variable_name = efi_get_next_variable_name, |
| .set_variable = efi_set_variable, |
| .get_next_high_mono_count = (void *)&efi_device_error, |
| .reset_system = &efi_reset_system_boottime, |
| .update_capsule = efi_update_capsule, |
| .query_capsule_caps = efi_query_capsule_caps, |
| .query_variable_info = efi_query_variable_info, |
| }; |