| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) 2014-2016 Stefan Roese <sr@denx.de> |
| */ |
| |
| #include <common.h> |
| #include <ahci.h> |
| #include <cpu_func.h> |
| #include <init.h> |
| #include <linux/bitops.h> |
| #include <linux/delay.h> |
| #include <linux/mbus.h> |
| #include <asm/io.h> |
| #include <asm/pl310.h> |
| #include <asm/arch/cpu.h> |
| #include <asm/arch/soc.h> |
| #include <asm/spl.h> |
| #include <sdhci.h> |
| |
| #define DDR_BASE_CS_OFF(n) (0x0000 + ((n) << 3)) |
| #define DDR_SIZE_CS_OFF(n) (0x0004 + ((n) << 3)) |
| |
| static const struct mbus_win windows[] = { |
| /* SPI */ |
| { MBUS_SPI_BASE, MBUS_SPI_SIZE, |
| CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_SPIFLASH }, |
| |
| /* BootROM */ |
| { MBUS_BOOTROM_BASE, MBUS_BOOTROM_SIZE, |
| CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_BOOTROM }, |
| |
| #ifdef CONFIG_ARMADA_MSYS |
| /* DFX */ |
| { MBUS_DFX_BASE, MBUS_DFX_SIZE, CPU_TARGET_DFX, 0 }, |
| #endif |
| }; |
| |
| /* SPI0 CS0 Flash of size MBUS_SPI_SIZE is mapped to address MBUS_SPI_BASE */ |
| #if CONFIG_ENV_SPI_BUS == 0 && CONFIG_ENV_SPI_CS == 0 && \ |
| CONFIG_ENV_OFFSET + CONFIG_ENV_SIZE <= MBUS_SPI_SIZE |
| void *env_sf_get_env_addr(void) |
| { |
| return (void *)MBUS_SPI_BASE + CONFIG_ENV_OFFSET; |
| } |
| #endif |
| |
| void lowlevel_init(void) |
| { |
| /* |
| * Dummy implementation, we only need LOWLEVEL_INIT |
| * on Armada to configure CP15 in start.S / cpu_init_cp15() |
| */ |
| } |
| |
| void reset_cpu(void) |
| { |
| struct mvebu_system_registers *reg = |
| (struct mvebu_system_registers *)MVEBU_SYSTEM_REG_BASE; |
| |
| writel(readl(®->rstoutn_mask) | 1, ®->rstoutn_mask); |
| writel(readl(®->sys_soft_rst) | 1, ®->sys_soft_rst); |
| while (1) |
| ; |
| } |
| |
| u32 get_boot_device(void) |
| { |
| u32 val; |
| u32 boot_device; |
| u32 boot_err_mode; |
| #ifdef CONFIG_ARMADA_38X |
| u32 boot_err_code; |
| #endif |
| |
| /* |
| * First check, if UART boot-mode is active. This can only |
| * be done, via the bootrom error register. Here the |
| * MSB marks if the UART mode is active. |
| */ |
| val = readl(BOOTROM_ERR_REG); |
| boot_err_mode = (val & BOOTROM_ERR_MODE_MASK) >> BOOTROM_ERR_MODE_OFFS; |
| debug("BOOTROM_ERR_REG=0x%08x boot_err_mode=0x%x\n", val, boot_err_mode); |
| if (boot_err_mode == BOOTROM_ERR_MODE_UART) |
| return BOOT_DEVICE_UART; |
| |
| #ifdef CONFIG_ARMADA_38X |
| /* |
| * If the bootrom error code contains any other than zeros it's an |
| * error condition and the bootROM has fallen back to UART boot |
| */ |
| boot_err_code = (val & BOOTROM_ERR_CODE_MASK) >> BOOTROM_ERR_CODE_OFFS; |
| debug("boot_err_code=0x%x\n", boot_err_code); |
| if (boot_err_code) |
| return BOOT_DEVICE_UART; |
| #endif |
| |
| /* |
| * Now check the SAR register for the strapped boot-device |
| */ |
| val = readl(CFG_SAR_REG); /* SAR - Sample At Reset */ |
| boot_device = (val & BOOT_DEV_SEL_MASK) >> BOOT_DEV_SEL_OFFS; |
| debug("SAR_REG=0x%08x boot_device=0x%x\n", val, boot_device); |
| #ifdef BOOT_FROM_NAND |
| if (BOOT_FROM_NAND(boot_device)) |
| return BOOT_DEVICE_NAND; |
| #endif |
| #ifdef BOOT_FROM_MMC |
| if (BOOT_FROM_MMC(boot_device)) |
| return BOOT_DEVICE_MMC1; |
| #endif |
| #ifdef BOOT_FROM_UART |
| if (BOOT_FROM_UART(boot_device)) |
| return BOOT_DEVICE_UART; |
| #endif |
| #ifdef BOOT_FROM_SATA |
| if (BOOT_FROM_SATA(boot_device)) |
| return BOOT_DEVICE_SATA; |
| #endif |
| #ifdef BOOT_FROM_SPI |
| if (BOOT_FROM_SPI(boot_device)) |
| return BOOT_DEVICE_SPI; |
| #endif |
| return BOOT_DEVICE_BOOTROM; |
| } |
| |
| #if defined(CONFIG_DISPLAY_CPUINFO) |
| |
| #if defined(CONFIG_ARMADA_375) |
| /* SAR frequency values for Armada 375 */ |
| static const struct sar_freq_modes sar_freq_tab[] = { |
| { 0, 0x0, 266, 133, 266 }, |
| { 1, 0x0, 333, 167, 167 }, |
| { 2, 0x0, 333, 167, 222 }, |
| { 3, 0x0, 333, 167, 333 }, |
| { 4, 0x0, 400, 200, 200 }, |
| { 5, 0x0, 400, 200, 267 }, |
| { 6, 0x0, 400, 200, 400 }, |
| { 7, 0x0, 500, 250, 250 }, |
| { 8, 0x0, 500, 250, 334 }, |
| { 9, 0x0, 500, 250, 500 }, |
| { 10, 0x0, 533, 267, 267 }, |
| { 11, 0x0, 533, 267, 356 }, |
| { 12, 0x0, 533, 267, 533 }, |
| { 13, 0x0, 600, 300, 300 }, |
| { 14, 0x0, 600, 300, 400 }, |
| { 15, 0x0, 600, 300, 600 }, |
| { 16, 0x0, 666, 333, 333 }, |
| { 17, 0x0, 666, 333, 444 }, |
| { 18, 0x0, 666, 333, 666 }, |
| { 19, 0x0, 800, 400, 267 }, |
| { 20, 0x0, 800, 400, 400 }, |
| { 21, 0x0, 800, 400, 534 }, |
| { 22, 0x0, 900, 450, 300 }, |
| { 23, 0x0, 900, 450, 450 }, |
| { 24, 0x0, 900, 450, 600 }, |
| { 25, 0x0, 1000, 500, 500 }, |
| { 26, 0x0, 1000, 500, 667 }, |
| { 27, 0x0, 1000, 333, 500 }, |
| { 28, 0x0, 400, 400, 400 }, |
| { 29, 0x0, 1100, 550, 550 }, |
| { 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */ |
| }; |
| #elif defined(CONFIG_ARMADA_38X) |
| /* SAR frequency values for Armada 38x */ |
| static const struct sar_freq_modes sar_freq_tab[] = { |
| { 0x0, 0x0, 666, 333, 333 }, |
| { 0x2, 0x0, 800, 400, 400 }, |
| { 0x4, 0x0, 1066, 533, 533 }, |
| { 0x6, 0x0, 1200, 600, 600 }, |
| { 0x8, 0x0, 1332, 666, 666 }, |
| { 0xc, 0x0, 1600, 800, 800 }, |
| { 0x10, 0x0, 1866, 933, 933 }, |
| { 0x13, 0x0, 2000, 1000, 933 }, |
| { 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */ |
| }; |
| #elif defined(CONFIG_ARMADA_MSYS) |
| static const struct sar_freq_modes sar_freq_tab[] = { |
| { 0x0, 0x0, 400, 400, 400 }, |
| { 0x2, 0x0, 667, 333, 667 }, |
| { 0x3, 0x0, 800, 400, 800 }, |
| { 0x5, 0x0, 800, 400, 800 }, |
| { 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */ |
| }; |
| #else |
| /* SAR frequency values for Armada XP */ |
| static const struct sar_freq_modes sar_freq_tab[] = { |
| { 0xa, 0x5, 800, 400, 400 }, |
| { 0x1, 0x5, 1066, 533, 533 }, |
| { 0x2, 0x5, 1200, 600, 600 }, |
| { 0x2, 0x9, 1200, 600, 400 }, |
| { 0x3, 0x5, 1333, 667, 667 }, |
| { 0x4, 0x5, 1500, 750, 750 }, |
| { 0x4, 0x9, 1500, 750, 500 }, |
| { 0xb, 0x9, 1600, 800, 533 }, |
| { 0xb, 0xa, 1600, 800, 640 }, |
| { 0xb, 0x5, 1600, 800, 800 }, |
| { 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */ |
| }; |
| #endif |
| |
| void get_sar_freq(struct sar_freq_modes *sar_freq) |
| { |
| u32 val; |
| u32 freq; |
| int i; |
| |
| #if defined(CONFIG_ARMADA_375) || defined(CONFIG_ARMADA_MSYS) |
| val = readl(CFG_SAR2_REG); /* SAR - Sample At Reset */ |
| #else |
| val = readl(CFG_SAR_REG); /* SAR - Sample At Reset */ |
| #endif |
| freq = (val & SAR_CPU_FREQ_MASK) >> SAR_CPU_FREQ_OFFS; |
| #if defined(SAR2_CPU_FREQ_MASK) |
| /* |
| * Shift CPU0 clock frequency select bit from SAR2 register |
| * into correct position |
| */ |
| freq |= ((readl(CFG_SAR2_REG) & SAR2_CPU_FREQ_MASK) |
| >> SAR2_CPU_FREQ_OFFS) << 3; |
| #endif |
| for (i = 0; sar_freq_tab[i].val != 0xff; i++) { |
| if (sar_freq_tab[i].val == freq) { |
| #if defined(CONFIG_ARMADA_375) || defined(CONFIG_ARMADA_38X) || defined(CONFIG_ARMADA_MSYS) |
| *sar_freq = sar_freq_tab[i]; |
| return; |
| #else |
| int k; |
| u8 ffc; |
| |
| ffc = (val & SAR_FFC_FREQ_MASK) >> |
| SAR_FFC_FREQ_OFFS; |
| for (k = i; sar_freq_tab[k].ffc != 0xff; k++) { |
| if (sar_freq_tab[k].ffc == ffc) { |
| *sar_freq = sar_freq_tab[k]; |
| return; |
| } |
| } |
| i = k; |
| #endif |
| } |
| } |
| |
| /* SAR value not found, return 0 for frequencies */ |
| *sar_freq = sar_freq_tab[i - 1]; |
| } |
| |
| int print_cpuinfo(void) |
| { |
| u16 devid = (readl(MVEBU_REG_PCIE_DEVID) >> 16) & 0xffff; |
| u8 revid = readl(MVEBU_REG_PCIE_REVID) & 0xff; |
| struct sar_freq_modes sar_freq; |
| |
| puts("SoC: "); |
| |
| switch (devid) { |
| case SOC_MV78230_ID: |
| puts("MV78230-"); |
| break; |
| case SOC_MV78260_ID: |
| puts("MV78260-"); |
| break; |
| case SOC_MV78460_ID: |
| puts("MV78460-"); |
| break; |
| case SOC_88F6720_ID: |
| puts("MV88F6720-"); |
| break; |
| case SOC_88F6810_ID: |
| puts("MV88F6810-"); |
| break; |
| case SOC_88F6820_ID: |
| puts("MV88F6820-"); |
| break; |
| case SOC_88F6828_ID: |
| puts("MV88F6828-"); |
| break; |
| case SOC_98DX3236_ID: |
| puts("98DX3236-"); |
| break; |
| case SOC_98DX3336_ID: |
| puts("98DX3336-"); |
| break; |
| case SOC_98DX4251_ID: |
| puts("98DX4251-"); |
| break; |
| default: |
| puts("Unknown-"); |
| break; |
| } |
| |
| switch (devid) { |
| case SOC_MV78230_ID: |
| case SOC_MV78260_ID: |
| case SOC_MV78460_ID: |
| switch (revid) { |
| case 1: |
| puts("A0"); |
| break; |
| case 2: |
| puts("B0"); |
| break; |
| default: |
| printf("?? (%x)", revid); |
| break; |
| } |
| break; |
| |
| case SOC_88F6720_ID: |
| switch (revid) { |
| case MV_88F67XX_A0_ID: |
| puts("A0"); |
| break; |
| default: |
| printf("?? (%x)", revid); |
| break; |
| } |
| break; |
| |
| case SOC_88F6810_ID: |
| case SOC_88F6820_ID: |
| case SOC_88F6828_ID: |
| switch (revid) { |
| case MV_88F68XX_Z1_ID: |
| puts("Z1"); |
| break; |
| case MV_88F68XX_A0_ID: |
| puts("A0"); |
| break; |
| case MV_88F68XX_B0_ID: |
| puts("B0"); |
| break; |
| default: |
| printf("?? (%x)", revid); |
| break; |
| } |
| break; |
| |
| case SOC_98DX3236_ID: |
| case SOC_98DX3336_ID: |
| case SOC_98DX4251_ID: |
| switch (revid) { |
| case 3: |
| puts("A0"); |
| break; |
| case 4: |
| puts("A1"); |
| break; |
| default: |
| printf("?? (%x)", revid); |
| break; |
| } |
| break; |
| |
| default: |
| printf("?? (%x)", revid); |
| break; |
| } |
| |
| get_sar_freq(&sar_freq); |
| printf(" at %d MHz\n", sar_freq.p_clk); |
| |
| return 0; |
| } |
| #endif /* CONFIG_DISPLAY_CPUINFO */ |
| |
| /* |
| * This function initialize Controller DRAM Fastpath windows. |
| * It takes the CS size information from the 0x1500 scratch registers |
| * and sets the correct windows sizes and base addresses accordingly. |
| * |
| * These values are set in the scratch registers by the Marvell |
| * DDR3 training code, which is executed by the SPL before the |
| * main payload (U-Boot) is executed. |
| */ |
| static void update_sdram_window_sizes(void) |
| { |
| u64 base = 0; |
| u32 size, temp; |
| int i; |
| |
| for (i = 0; i < SDRAM_MAX_CS; i++) { |
| size = readl((MVEBU_SDRAM_SCRATCH + (i * 8))) & SDRAM_ADDR_MASK; |
| if (size != 0) { |
| size |= ~(SDRAM_ADDR_MASK); |
| |
| /* Set Base Address */ |
| temp = (base & 0xFF000000ll) | ((base >> 32) & 0xF); |
| writel(temp, MVEBU_SDRAM_BASE + DDR_BASE_CS_OFF(i)); |
| |
| /* |
| * Check if out of max window size and resize |
| * the window |
| */ |
| temp = (readl(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i)) & |
| ~(SDRAM_ADDR_MASK)) | 1; |
| temp |= (size & SDRAM_ADDR_MASK); |
| writel(temp, MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i)); |
| |
| base += ((u64)size + 1); |
| } else { |
| /* |
| * Disable window if not used, otherwise this |
| * leads to overlapping enabled windows with |
| * pretty strange results |
| */ |
| clrbits_le32(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i), 1); |
| } |
| } |
| } |
| |
| #ifdef CONFIG_ARCH_CPU_INIT |
| #define MV_USB_PHY_BASE (MVEBU_AXP_USB_BASE + 0x800) |
| #define MV_USB_PHY_PLL_REG(reg) (MV_USB_PHY_BASE | (((reg) & 0xF) << 2)) |
| #define MV_USB_X3_BASE(addr) (MVEBU_AXP_USB_BASE | BIT(11) | \ |
| (((addr) & 0xF) << 6)) |
| #define MV_USB_X3_PHY_CHANNEL(dev, reg) (MV_USB_X3_BASE((dev) + 1) | \ |
| (((reg) & 0xF) << 2)) |
| |
| static void setup_usb_phys(void) |
| { |
| int dev; |
| |
| /* |
| * USB PLL init |
| */ |
| |
| /* Setup PLL frequency */ |
| /* USB REF frequency = 25 MHz */ |
| clrsetbits_le32(MV_USB_PHY_PLL_REG(1), 0x3ff, 0x605); |
| |
| /* Power up PLL and PHY channel */ |
| setbits_le32(MV_USB_PHY_PLL_REG(2), BIT(9)); |
| |
| /* Assert VCOCAL_START */ |
| setbits_le32(MV_USB_PHY_PLL_REG(1), BIT(21)); |
| |
| mdelay(1); |
| |
| /* |
| * USB PHY init (change from defaults) specific for 40nm (78X30 78X60) |
| */ |
| |
| for (dev = 0; dev < 3; dev++) { |
| setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 3), BIT(15)); |
| |
| /* Assert REG_RCAL_START in channel REG 1 */ |
| setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12)); |
| udelay(40); |
| clrbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12)); |
| } |
| } |
| |
| /* |
| * This function is not called from the SPL U-Boot version |
| */ |
| int arch_cpu_init(void) |
| { |
| /* |
| * We need to call mvebu_mbus_probe() before calling |
| * update_sdram_window_sizes() as it disables all previously |
| * configured mbus windows and then configures them as |
| * required for U-Boot. Calling update_sdram_window_sizes() |
| * without this configuration will not work, as the internal |
| * registers can't be accessed reliably because of potenial |
| * double mapping. |
| * After updating the SDRAM access windows we need to call |
| * mvebu_mbus_probe() again, as this now correctly configures |
| * the SDRAM areas that are later used by the MVEBU drivers |
| * (e.g. USB, NETA). |
| */ |
| |
| /* |
| * First disable all windows |
| */ |
| mvebu_mbus_probe(NULL, 0); |
| |
| if (IS_ENABLED(CONFIG_ARMADA_XP)) { |
| /* |
| * Now the SDRAM access windows can be reconfigured using |
| * the information in the SDRAM scratch pad registers |
| */ |
| update_sdram_window_sizes(); |
| } |
| |
| /* |
| * Finally the mbus windows can be configured with the |
| * updated SDRAM sizes |
| */ |
| mvebu_mbus_probe(windows, ARRAY_SIZE(windows)); |
| |
| if (IS_ENABLED(CONFIG_ARMADA_XP)) { |
| /* Enable GBE0, GBE1, LCD and NFC PUP */ |
| clrsetbits_le32(ARMADA_XP_PUP_ENABLE, 0, |
| GE0_PUP_EN | GE1_PUP_EN | LCD_PUP_EN | |
| NAND_PUP_EN | SPI_PUP_EN); |
| |
| /* Configure USB PLL and PHYs on AXP */ |
| setup_usb_phys(); |
| } |
| |
| /* Enable NAND and NAND arbiter */ |
| clrsetbits_le32(MVEBU_SOC_DEV_MUX_REG, 0, NAND_EN | NAND_ARBITER_EN); |
| |
| /* Disable MBUS error propagation */ |
| clrsetbits_le32(SOC_COHERENCY_FABRIC_CTRL_REG, MBUS_ERR_PROP_EN, 0); |
| |
| return 0; |
| } |
| #endif /* CONFIG_ARCH_CPU_INIT */ |
| |
| u32 mvebu_get_nand_clock(void) |
| { |
| u32 reg; |
| |
| if (IS_ENABLED(CONFIG_ARMADA_38X)) |
| reg = MVEBU_DFX_DIV_CLK_CTRL(1); |
| else if (IS_ENABLED(CONFIG_ARMADA_MSYS)) |
| reg = MVEBU_DFX_DIV_CLK_CTRL(8); |
| else |
| reg = MVEBU_CORE_DIV_CLK_CTRL(1); |
| |
| return CONFIG_SYS_MVEBU_PLL_CLOCK / |
| ((readl(reg) & |
| NAND_ECC_DIVCKL_RATIO_MASK) >> NAND_ECC_DIVCKL_RATIO_OFFS); |
| } |
| |
| #if defined(CONFIG_MMC_SDHCI_MV) && !defined(CONFIG_DM_MMC) |
| int board_mmc_init(struct bd_info *bis) |
| { |
| mv_sdh_init(MVEBU_SDIO_BASE, 0, 0, |
| SDHCI_QUIRK_32BIT_DMA_ADDR | SDHCI_QUIRK_WAIT_SEND_CMD); |
| |
| return 0; |
| } |
| #endif |
| |
| #define AHCI_VENDOR_SPECIFIC_0_ADDR 0xa0 |
| #define AHCI_VENDOR_SPECIFIC_0_DATA 0xa4 |
| |
| #define AHCI_WINDOW_CTRL(win) (0x60 + ((win) << 4)) |
| #define AHCI_WINDOW_BASE(win) (0x64 + ((win) << 4)) |
| #define AHCI_WINDOW_SIZE(win) (0x68 + ((win) << 4)) |
| |
| static void ahci_mvebu_mbus_config(void __iomem *base) |
| { |
| const struct mbus_dram_target_info *dram; |
| int i; |
| |
| /* mbus is not initialized in SPL; keep the ROM settings */ |
| if (IS_ENABLED(CONFIG_SPL_BUILD)) |
| return; |
| |
| dram = mvebu_mbus_dram_info(); |
| |
| for (i = 0; i < 4; i++) { |
| writel(0, base + AHCI_WINDOW_CTRL(i)); |
| writel(0, base + AHCI_WINDOW_BASE(i)); |
| writel(0, base + AHCI_WINDOW_SIZE(i)); |
| } |
| |
| for (i = 0; i < dram->num_cs; i++) { |
| const struct mbus_dram_window *cs = dram->cs + i; |
| |
| writel((cs->mbus_attr << 8) | |
| (dram->mbus_dram_target_id << 4) | 1, |
| base + AHCI_WINDOW_CTRL(i)); |
| writel(cs->base >> 16, base + AHCI_WINDOW_BASE(i)); |
| writel(((cs->size - 1) & 0xffff0000), |
| base + AHCI_WINDOW_SIZE(i)); |
| } |
| } |
| |
| static void ahci_mvebu_regret_option(void __iomem *base) |
| { |
| /* |
| * Enable the regret bit to allow the SATA unit to regret a |
| * request that didn't receive an acknowlegde and avoid a |
| * deadlock |
| */ |
| writel(0x4, base + AHCI_VENDOR_SPECIFIC_0_ADDR); |
| writel(0x80, base + AHCI_VENDOR_SPECIFIC_0_DATA); |
| } |
| |
| int board_ahci_enable(void) |
| { |
| ahci_mvebu_mbus_config((void __iomem *)MVEBU_SATA0_BASE); |
| ahci_mvebu_regret_option((void __iomem *)MVEBU_SATA0_BASE); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_USB_XHCI_MVEBU |
| #define USB3_MAX_WINDOWS 4 |
| #define USB3_WIN_CTRL(w) (0x0 + ((w) * 8)) |
| #define USB3_WIN_BASE(w) (0x4 + ((w) * 8)) |
| |
| static void xhci_mvebu_mbus_config(void __iomem *base, |
| const struct mbus_dram_target_info *dram) |
| { |
| int i; |
| |
| for (i = 0; i < USB3_MAX_WINDOWS; i++) { |
| writel(0, base + USB3_WIN_CTRL(i)); |
| writel(0, base + USB3_WIN_BASE(i)); |
| } |
| |
| for (i = 0; i < dram->num_cs; i++) { |
| const struct mbus_dram_window *cs = dram->cs + i; |
| |
| /* Write size, attributes and target id to control register */ |
| writel(((cs->size - 1) & 0xffff0000) | (cs->mbus_attr << 8) | |
| (dram->mbus_dram_target_id << 4) | 1, |
| base + USB3_WIN_CTRL(i)); |
| |
| /* Write base address to base register */ |
| writel((cs->base & 0xffff0000), base + USB3_WIN_BASE(i)); |
| } |
| } |
| |
| int board_xhci_enable(fdt_addr_t base) |
| { |
| const struct mbus_dram_target_info *dram; |
| |
| printf("MVEBU XHCI INIT controller @ 0x%llx\n", (fdt64_t)base); |
| |
| dram = mvebu_mbus_dram_info(); |
| xhci_mvebu_mbus_config((void __iomem *)base, dram); |
| |
| return 0; |
| } |
| #endif |
| |
| void enable_caches(void) |
| { |
| /* Avoid problem with e.g. neta ethernet driver */ |
| invalidate_dcache_all(); |
| |
| /* |
| * Armada 375 still has some problems with d-cache enabled in the |
| * ethernet driver (mvpp2). So lets keep the d-cache disabled |
| * until this is solved. |
| */ |
| if (!IS_ENABLED(CONFIG_ARMADA_375)) { |
| /* Enable D-cache. I-cache is already enabled in start.S */ |
| dcache_enable(); |
| } |
| } |
| |
| void v7_outer_cache_enable(void) |
| { |
| struct pl310_regs *const pl310 = |
| (struct pl310_regs *)CFG_SYS_PL310_BASE; |
| |
| /* The L2 cache is already disabled at this point */ |
| |
| /* |
| * For now L2 cache will be enabled only for Armada XP and Armada 38x. |
| * It can be enabled also for other SoCs after testing that it works fine. |
| */ |
| if (!IS_ENABLED(CONFIG_ARMADA_XP) && !IS_ENABLED(CONFIG_ARMADA_38X)) |
| return; |
| |
| if (IS_ENABLED(CONFIG_ARMADA_XP)) { |
| u32 u; |
| |
| /* |
| * For Aurora cache in no outer mode, enable via the CP15 |
| * coprocessor broadcasting of cache commands to L2. |
| */ |
| asm volatile("mrc p15, 1, %0, c15, c2, 0" : "=r" (u)); |
| u |= BIT(8); /* Set the FW bit */ |
| asm volatile("mcr p15, 1, %0, c15, c2, 0" : : "r" (u)); |
| |
| isb(); |
| } |
| |
| /* Enable the L2 cache */ |
| setbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN); |
| } |
| |
| void v7_outer_cache_disable(void) |
| { |
| struct pl310_regs *const pl310 = |
| (struct pl310_regs *)CFG_SYS_PL310_BASE; |
| |
| clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN); |
| } |