blob: 8e0de935385887727429d03fa644e6dab5b77da4 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2014-2016 Stefan Roese <sr@denx.de>
*/
#include <common.h>
#include <ahci.h>
#include <cpu_func.h>
#include <init.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/mbus.h>
#include <asm/io.h>
#include <asm/pl310.h>
#include <asm/arch/cpu.h>
#include <asm/arch/soc.h>
#include <asm/spl.h>
#include <sdhci.h>
#define DDR_BASE_CS_OFF(n) (0x0000 + ((n) << 3))
#define DDR_SIZE_CS_OFF(n) (0x0004 + ((n) << 3))
static const struct mbus_win windows[] = {
/* SPI */
{ MBUS_SPI_BASE, MBUS_SPI_SIZE,
CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_SPIFLASH },
/* BootROM */
{ MBUS_BOOTROM_BASE, MBUS_BOOTROM_SIZE,
CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_BOOTROM },
#ifdef CONFIG_ARMADA_MSYS
/* DFX */
{ MBUS_DFX_BASE, MBUS_DFX_SIZE, CPU_TARGET_DFX, 0 },
#endif
};
/* SPI0 CS0 Flash of size MBUS_SPI_SIZE is mapped to address MBUS_SPI_BASE */
#if CONFIG_ENV_SPI_BUS == 0 && CONFIG_ENV_SPI_CS == 0 && \
CONFIG_ENV_OFFSET + CONFIG_ENV_SIZE <= MBUS_SPI_SIZE
void *env_sf_get_env_addr(void)
{
return (void *)MBUS_SPI_BASE + CONFIG_ENV_OFFSET;
}
#endif
void lowlevel_init(void)
{
/*
* Dummy implementation, we only need LOWLEVEL_INIT
* on Armada to configure CP15 in start.S / cpu_init_cp15()
*/
}
void reset_cpu(void)
{
struct mvebu_system_registers *reg =
(struct mvebu_system_registers *)MVEBU_SYSTEM_REG_BASE;
writel(readl(&reg->rstoutn_mask) | 1, &reg->rstoutn_mask);
writel(readl(&reg->sys_soft_rst) | 1, &reg->sys_soft_rst);
while (1)
;
}
u32 get_boot_device(void)
{
u32 val;
u32 boot_device;
u32 boot_err_mode;
#ifdef CONFIG_ARMADA_38X
u32 boot_err_code;
#endif
/*
* First check, if UART boot-mode is active. This can only
* be done, via the bootrom error register. Here the
* MSB marks if the UART mode is active.
*/
val = readl(BOOTROM_ERR_REG);
boot_err_mode = (val & BOOTROM_ERR_MODE_MASK) >> BOOTROM_ERR_MODE_OFFS;
debug("BOOTROM_ERR_REG=0x%08x boot_err_mode=0x%x\n", val, boot_err_mode);
if (boot_err_mode == BOOTROM_ERR_MODE_UART)
return BOOT_DEVICE_UART;
#ifdef CONFIG_ARMADA_38X
/*
* If the bootrom error code contains any other than zeros it's an
* error condition and the bootROM has fallen back to UART boot
*/
boot_err_code = (val & BOOTROM_ERR_CODE_MASK) >> BOOTROM_ERR_CODE_OFFS;
debug("boot_err_code=0x%x\n", boot_err_code);
if (boot_err_code)
return BOOT_DEVICE_UART;
#endif
/*
* Now check the SAR register for the strapped boot-device
*/
val = readl(CFG_SAR_REG); /* SAR - Sample At Reset */
boot_device = (val & BOOT_DEV_SEL_MASK) >> BOOT_DEV_SEL_OFFS;
debug("SAR_REG=0x%08x boot_device=0x%x\n", val, boot_device);
#ifdef BOOT_FROM_NAND
if (BOOT_FROM_NAND(boot_device))
return BOOT_DEVICE_NAND;
#endif
#ifdef BOOT_FROM_MMC
if (BOOT_FROM_MMC(boot_device))
return BOOT_DEVICE_MMC1;
#endif
#ifdef BOOT_FROM_UART
if (BOOT_FROM_UART(boot_device))
return BOOT_DEVICE_UART;
#endif
#ifdef BOOT_FROM_SATA
if (BOOT_FROM_SATA(boot_device))
return BOOT_DEVICE_SATA;
#endif
#ifdef BOOT_FROM_SPI
if (BOOT_FROM_SPI(boot_device))
return BOOT_DEVICE_SPI;
#endif
return BOOT_DEVICE_BOOTROM;
}
#if defined(CONFIG_DISPLAY_CPUINFO)
#if defined(CONFIG_ARMADA_375)
/* SAR frequency values for Armada 375 */
static const struct sar_freq_modes sar_freq_tab[] = {
{ 0, 0x0, 266, 133, 266 },
{ 1, 0x0, 333, 167, 167 },
{ 2, 0x0, 333, 167, 222 },
{ 3, 0x0, 333, 167, 333 },
{ 4, 0x0, 400, 200, 200 },
{ 5, 0x0, 400, 200, 267 },
{ 6, 0x0, 400, 200, 400 },
{ 7, 0x0, 500, 250, 250 },
{ 8, 0x0, 500, 250, 334 },
{ 9, 0x0, 500, 250, 500 },
{ 10, 0x0, 533, 267, 267 },
{ 11, 0x0, 533, 267, 356 },
{ 12, 0x0, 533, 267, 533 },
{ 13, 0x0, 600, 300, 300 },
{ 14, 0x0, 600, 300, 400 },
{ 15, 0x0, 600, 300, 600 },
{ 16, 0x0, 666, 333, 333 },
{ 17, 0x0, 666, 333, 444 },
{ 18, 0x0, 666, 333, 666 },
{ 19, 0x0, 800, 400, 267 },
{ 20, 0x0, 800, 400, 400 },
{ 21, 0x0, 800, 400, 534 },
{ 22, 0x0, 900, 450, 300 },
{ 23, 0x0, 900, 450, 450 },
{ 24, 0x0, 900, 450, 600 },
{ 25, 0x0, 1000, 500, 500 },
{ 26, 0x0, 1000, 500, 667 },
{ 27, 0x0, 1000, 333, 500 },
{ 28, 0x0, 400, 400, 400 },
{ 29, 0x0, 1100, 550, 550 },
{ 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */
};
#elif defined(CONFIG_ARMADA_38X)
/* SAR frequency values for Armada 38x */
static const struct sar_freq_modes sar_freq_tab[] = {
{ 0x0, 0x0, 666, 333, 333 },
{ 0x2, 0x0, 800, 400, 400 },
{ 0x4, 0x0, 1066, 533, 533 },
{ 0x6, 0x0, 1200, 600, 600 },
{ 0x8, 0x0, 1332, 666, 666 },
{ 0xc, 0x0, 1600, 800, 800 },
{ 0x10, 0x0, 1866, 933, 933 },
{ 0x13, 0x0, 2000, 1000, 933 },
{ 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */
};
#elif defined(CONFIG_ARMADA_MSYS)
static const struct sar_freq_modes sar_freq_tab[] = {
{ 0x0, 0x0, 400, 400, 400 },
{ 0x2, 0x0, 667, 333, 667 },
{ 0x3, 0x0, 800, 400, 800 },
{ 0x5, 0x0, 800, 400, 800 },
{ 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */
};
#else
/* SAR frequency values for Armada XP */
static const struct sar_freq_modes sar_freq_tab[] = {
{ 0xa, 0x5, 800, 400, 400 },
{ 0x1, 0x5, 1066, 533, 533 },
{ 0x2, 0x5, 1200, 600, 600 },
{ 0x2, 0x9, 1200, 600, 400 },
{ 0x3, 0x5, 1333, 667, 667 },
{ 0x4, 0x5, 1500, 750, 750 },
{ 0x4, 0x9, 1500, 750, 500 },
{ 0xb, 0x9, 1600, 800, 533 },
{ 0xb, 0xa, 1600, 800, 640 },
{ 0xb, 0x5, 1600, 800, 800 },
{ 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */
};
#endif
void get_sar_freq(struct sar_freq_modes *sar_freq)
{
u32 val;
u32 freq;
int i;
#if defined(CONFIG_ARMADA_375) || defined(CONFIG_ARMADA_MSYS)
val = readl(CFG_SAR2_REG); /* SAR - Sample At Reset */
#else
val = readl(CFG_SAR_REG); /* SAR - Sample At Reset */
#endif
freq = (val & SAR_CPU_FREQ_MASK) >> SAR_CPU_FREQ_OFFS;
#if defined(SAR2_CPU_FREQ_MASK)
/*
* Shift CPU0 clock frequency select bit from SAR2 register
* into correct position
*/
freq |= ((readl(CFG_SAR2_REG) & SAR2_CPU_FREQ_MASK)
>> SAR2_CPU_FREQ_OFFS) << 3;
#endif
for (i = 0; sar_freq_tab[i].val != 0xff; i++) {
if (sar_freq_tab[i].val == freq) {
#if defined(CONFIG_ARMADA_375) || defined(CONFIG_ARMADA_38X) || defined(CONFIG_ARMADA_MSYS)
*sar_freq = sar_freq_tab[i];
return;
#else
int k;
u8 ffc;
ffc = (val & SAR_FFC_FREQ_MASK) >>
SAR_FFC_FREQ_OFFS;
for (k = i; sar_freq_tab[k].ffc != 0xff; k++) {
if (sar_freq_tab[k].ffc == ffc) {
*sar_freq = sar_freq_tab[k];
return;
}
}
i = k;
#endif
}
}
/* SAR value not found, return 0 for frequencies */
*sar_freq = sar_freq_tab[i - 1];
}
int print_cpuinfo(void)
{
u16 devid = (readl(MVEBU_REG_PCIE_DEVID) >> 16) & 0xffff;
u8 revid = readl(MVEBU_REG_PCIE_REVID) & 0xff;
struct sar_freq_modes sar_freq;
puts("SoC: ");
switch (devid) {
case SOC_MV78230_ID:
puts("MV78230-");
break;
case SOC_MV78260_ID:
puts("MV78260-");
break;
case SOC_MV78460_ID:
puts("MV78460-");
break;
case SOC_88F6720_ID:
puts("MV88F6720-");
break;
case SOC_88F6810_ID:
puts("MV88F6810-");
break;
case SOC_88F6820_ID:
puts("MV88F6820-");
break;
case SOC_88F6828_ID:
puts("MV88F6828-");
break;
case SOC_98DX3236_ID:
puts("98DX3236-");
break;
case SOC_98DX3336_ID:
puts("98DX3336-");
break;
case SOC_98DX4251_ID:
puts("98DX4251-");
break;
default:
puts("Unknown-");
break;
}
switch (devid) {
case SOC_MV78230_ID:
case SOC_MV78260_ID:
case SOC_MV78460_ID:
switch (revid) {
case 1:
puts("A0");
break;
case 2:
puts("B0");
break;
default:
printf("?? (%x)", revid);
break;
}
break;
case SOC_88F6720_ID:
switch (revid) {
case MV_88F67XX_A0_ID:
puts("A0");
break;
default:
printf("?? (%x)", revid);
break;
}
break;
case SOC_88F6810_ID:
case SOC_88F6820_ID:
case SOC_88F6828_ID:
switch (revid) {
case MV_88F68XX_Z1_ID:
puts("Z1");
break;
case MV_88F68XX_A0_ID:
puts("A0");
break;
case MV_88F68XX_B0_ID:
puts("B0");
break;
default:
printf("?? (%x)", revid);
break;
}
break;
case SOC_98DX3236_ID:
case SOC_98DX3336_ID:
case SOC_98DX4251_ID:
switch (revid) {
case 3:
puts("A0");
break;
case 4:
puts("A1");
break;
default:
printf("?? (%x)", revid);
break;
}
break;
default:
printf("?? (%x)", revid);
break;
}
get_sar_freq(&sar_freq);
printf(" at %d MHz\n", sar_freq.p_clk);
return 0;
}
#endif /* CONFIG_DISPLAY_CPUINFO */
/*
* This function initialize Controller DRAM Fastpath windows.
* It takes the CS size information from the 0x1500 scratch registers
* and sets the correct windows sizes and base addresses accordingly.
*
* These values are set in the scratch registers by the Marvell
* DDR3 training code, which is executed by the SPL before the
* main payload (U-Boot) is executed.
*/
static void update_sdram_window_sizes(void)
{
u64 base = 0;
u32 size, temp;
int i;
for (i = 0; i < SDRAM_MAX_CS; i++) {
size = readl((MVEBU_SDRAM_SCRATCH + (i * 8))) & SDRAM_ADDR_MASK;
if (size != 0) {
size |= ~(SDRAM_ADDR_MASK);
/* Set Base Address */
temp = (base & 0xFF000000ll) | ((base >> 32) & 0xF);
writel(temp, MVEBU_SDRAM_BASE + DDR_BASE_CS_OFF(i));
/*
* Check if out of max window size and resize
* the window
*/
temp = (readl(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i)) &
~(SDRAM_ADDR_MASK)) | 1;
temp |= (size & SDRAM_ADDR_MASK);
writel(temp, MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i));
base += ((u64)size + 1);
} else {
/*
* Disable window if not used, otherwise this
* leads to overlapping enabled windows with
* pretty strange results
*/
clrbits_le32(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i), 1);
}
}
}
#ifdef CONFIG_ARCH_CPU_INIT
#define MV_USB_PHY_BASE (MVEBU_AXP_USB_BASE + 0x800)
#define MV_USB_PHY_PLL_REG(reg) (MV_USB_PHY_BASE | (((reg) & 0xF) << 2))
#define MV_USB_X3_BASE(addr) (MVEBU_AXP_USB_BASE | BIT(11) | \
(((addr) & 0xF) << 6))
#define MV_USB_X3_PHY_CHANNEL(dev, reg) (MV_USB_X3_BASE((dev) + 1) | \
(((reg) & 0xF) << 2))
static void setup_usb_phys(void)
{
int dev;
/*
* USB PLL init
*/
/* Setup PLL frequency */
/* USB REF frequency = 25 MHz */
clrsetbits_le32(MV_USB_PHY_PLL_REG(1), 0x3ff, 0x605);
/* Power up PLL and PHY channel */
setbits_le32(MV_USB_PHY_PLL_REG(2), BIT(9));
/* Assert VCOCAL_START */
setbits_le32(MV_USB_PHY_PLL_REG(1), BIT(21));
mdelay(1);
/*
* USB PHY init (change from defaults) specific for 40nm (78X30 78X60)
*/
for (dev = 0; dev < 3; dev++) {
setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 3), BIT(15));
/* Assert REG_RCAL_START in channel REG 1 */
setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12));
udelay(40);
clrbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12));
}
}
/*
* This function is not called from the SPL U-Boot version
*/
int arch_cpu_init(void)
{
/*
* We need to call mvebu_mbus_probe() before calling
* update_sdram_window_sizes() as it disables all previously
* configured mbus windows and then configures them as
* required for U-Boot. Calling update_sdram_window_sizes()
* without this configuration will not work, as the internal
* registers can't be accessed reliably because of potenial
* double mapping.
* After updating the SDRAM access windows we need to call
* mvebu_mbus_probe() again, as this now correctly configures
* the SDRAM areas that are later used by the MVEBU drivers
* (e.g. USB, NETA).
*/
/*
* First disable all windows
*/
mvebu_mbus_probe(NULL, 0);
if (IS_ENABLED(CONFIG_ARMADA_XP)) {
/*
* Now the SDRAM access windows can be reconfigured using
* the information in the SDRAM scratch pad registers
*/
update_sdram_window_sizes();
}
/*
* Finally the mbus windows can be configured with the
* updated SDRAM sizes
*/
mvebu_mbus_probe(windows, ARRAY_SIZE(windows));
if (IS_ENABLED(CONFIG_ARMADA_XP)) {
/* Enable GBE0, GBE1, LCD and NFC PUP */
clrsetbits_le32(ARMADA_XP_PUP_ENABLE, 0,
GE0_PUP_EN | GE1_PUP_EN | LCD_PUP_EN |
NAND_PUP_EN | SPI_PUP_EN);
/* Configure USB PLL and PHYs on AXP */
setup_usb_phys();
}
/* Enable NAND and NAND arbiter */
clrsetbits_le32(MVEBU_SOC_DEV_MUX_REG, 0, NAND_EN | NAND_ARBITER_EN);
/* Disable MBUS error propagation */
clrsetbits_le32(SOC_COHERENCY_FABRIC_CTRL_REG, MBUS_ERR_PROP_EN, 0);
return 0;
}
#endif /* CONFIG_ARCH_CPU_INIT */
u32 mvebu_get_nand_clock(void)
{
u32 reg;
if (IS_ENABLED(CONFIG_ARMADA_38X))
reg = MVEBU_DFX_DIV_CLK_CTRL(1);
else if (IS_ENABLED(CONFIG_ARMADA_MSYS))
reg = MVEBU_DFX_DIV_CLK_CTRL(8);
else
reg = MVEBU_CORE_DIV_CLK_CTRL(1);
return CONFIG_SYS_MVEBU_PLL_CLOCK /
((readl(reg) &
NAND_ECC_DIVCKL_RATIO_MASK) >> NAND_ECC_DIVCKL_RATIO_OFFS);
}
#if defined(CONFIG_MMC_SDHCI_MV) && !defined(CONFIG_DM_MMC)
int board_mmc_init(struct bd_info *bis)
{
mv_sdh_init(MVEBU_SDIO_BASE, 0, 0,
SDHCI_QUIRK_32BIT_DMA_ADDR | SDHCI_QUIRK_WAIT_SEND_CMD);
return 0;
}
#endif
#define AHCI_VENDOR_SPECIFIC_0_ADDR 0xa0
#define AHCI_VENDOR_SPECIFIC_0_DATA 0xa4
#define AHCI_WINDOW_CTRL(win) (0x60 + ((win) << 4))
#define AHCI_WINDOW_BASE(win) (0x64 + ((win) << 4))
#define AHCI_WINDOW_SIZE(win) (0x68 + ((win) << 4))
static void ahci_mvebu_mbus_config(void __iomem *base)
{
const struct mbus_dram_target_info *dram;
int i;
/* mbus is not initialized in SPL; keep the ROM settings */
if (IS_ENABLED(CONFIG_SPL_BUILD))
return;
dram = mvebu_mbus_dram_info();
for (i = 0; i < 4; i++) {
writel(0, base + AHCI_WINDOW_CTRL(i));
writel(0, base + AHCI_WINDOW_BASE(i));
writel(0, base + AHCI_WINDOW_SIZE(i));
}
for (i = 0; i < dram->num_cs; i++) {
const struct mbus_dram_window *cs = dram->cs + i;
writel((cs->mbus_attr << 8) |
(dram->mbus_dram_target_id << 4) | 1,
base + AHCI_WINDOW_CTRL(i));
writel(cs->base >> 16, base + AHCI_WINDOW_BASE(i));
writel(((cs->size - 1) & 0xffff0000),
base + AHCI_WINDOW_SIZE(i));
}
}
static void ahci_mvebu_regret_option(void __iomem *base)
{
/*
* Enable the regret bit to allow the SATA unit to regret a
* request that didn't receive an acknowlegde and avoid a
* deadlock
*/
writel(0x4, base + AHCI_VENDOR_SPECIFIC_0_ADDR);
writel(0x80, base + AHCI_VENDOR_SPECIFIC_0_DATA);
}
int board_ahci_enable(void)
{
ahci_mvebu_mbus_config((void __iomem *)MVEBU_SATA0_BASE);
ahci_mvebu_regret_option((void __iomem *)MVEBU_SATA0_BASE);
return 0;
}
#ifdef CONFIG_USB_XHCI_MVEBU
#define USB3_MAX_WINDOWS 4
#define USB3_WIN_CTRL(w) (0x0 + ((w) * 8))
#define USB3_WIN_BASE(w) (0x4 + ((w) * 8))
static void xhci_mvebu_mbus_config(void __iomem *base,
const struct mbus_dram_target_info *dram)
{
int i;
for (i = 0; i < USB3_MAX_WINDOWS; i++) {
writel(0, base + USB3_WIN_CTRL(i));
writel(0, base + USB3_WIN_BASE(i));
}
for (i = 0; i < dram->num_cs; i++) {
const struct mbus_dram_window *cs = dram->cs + i;
/* Write size, attributes and target id to control register */
writel(((cs->size - 1) & 0xffff0000) | (cs->mbus_attr << 8) |
(dram->mbus_dram_target_id << 4) | 1,
base + USB3_WIN_CTRL(i));
/* Write base address to base register */
writel((cs->base & 0xffff0000), base + USB3_WIN_BASE(i));
}
}
int board_xhci_enable(fdt_addr_t base)
{
const struct mbus_dram_target_info *dram;
printf("MVEBU XHCI INIT controller @ 0x%llx\n", (fdt64_t)base);
dram = mvebu_mbus_dram_info();
xhci_mvebu_mbus_config((void __iomem *)base, dram);
return 0;
}
#endif
void enable_caches(void)
{
/* Avoid problem with e.g. neta ethernet driver */
invalidate_dcache_all();
/*
* Armada 375 still has some problems with d-cache enabled in the
* ethernet driver (mvpp2). So lets keep the d-cache disabled
* until this is solved.
*/
if (!IS_ENABLED(CONFIG_ARMADA_375)) {
/* Enable D-cache. I-cache is already enabled in start.S */
dcache_enable();
}
}
void v7_outer_cache_enable(void)
{
struct pl310_regs *const pl310 =
(struct pl310_regs *)CFG_SYS_PL310_BASE;
/* The L2 cache is already disabled at this point */
/*
* For now L2 cache will be enabled only for Armada XP and Armada 38x.
* It can be enabled also for other SoCs after testing that it works fine.
*/
if (!IS_ENABLED(CONFIG_ARMADA_XP) && !IS_ENABLED(CONFIG_ARMADA_38X))
return;
if (IS_ENABLED(CONFIG_ARMADA_XP)) {
u32 u;
/*
* For Aurora cache in no outer mode, enable via the CP15
* coprocessor broadcasting of cache commands to L2.
*/
asm volatile("mrc p15, 1, %0, c15, c2, 0" : "=r" (u));
u |= BIT(8); /* Set the FW bit */
asm volatile("mcr p15, 1, %0, c15, c2, 0" : : "r" (u));
isb();
}
/* Enable the L2 cache */
setbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
}
void v7_outer_cache_disable(void)
{
struct pl310_regs *const pl310 =
(struct pl310_regs *)CFG_SYS_PL310_BASE;
clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
}