| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Chromium OS cros_ec driver - sandbox emulation |
| * |
| * Copyright (c) 2013 The Chromium OS Authors. |
| */ |
| |
| #define LOG_CATEGORY UCLASS_CROS_EC |
| |
| #include <common.h> |
| #include <cros_ec.h> |
| #include <dm.h> |
| #include <ec_commands.h> |
| #include <errno.h> |
| #include <hash.h> |
| #include <log.h> |
| #include <os.h> |
| #include <u-boot/sha256.h> |
| #include <spi.h> |
| #include <asm/malloc.h> |
| #include <asm/state.h> |
| #include <asm/sdl.h> |
| #include <asm/test.h> |
| #include <linux/input.h> |
| |
| /* |
| * Ultimately it shold be possible to connect an Chrome OS EC emulation |
| * to U-Boot and remove all of this code. But this provides a test |
| * environment for bringing up chromeos_sandbox and demonstrating its |
| * utility. |
| * |
| * This emulation includes the following: |
| * |
| * 1. Emulation of the keyboard, by converting keypresses received from SDL |
| * into key scan data, passed back from the EC as key scan messages. The |
| * key layout is read from the device tree. |
| * |
| * 2. Emulation of vboot context - so this can be read/written as required. |
| * |
| * 3. Save/restore of EC state, so that the vboot context, flash memory |
| * contents and current image can be preserved across boots. This is important |
| * since the EC is supposed to continue running even if the AP resets. |
| * |
| * 4. Some event support, in particular allowing Escape to be pressed on boot |
| * to enter recovery mode. The EC passes this to U-Boot through the normal |
| * event message. |
| * |
| * 5. Flash read/write/erase support, so that software sync works. The |
| * protect messages are supported but no protection is implemented. |
| * |
| * 6. Hashing of the EC image, again to support software sync. |
| * |
| * Other features can be added, although a better path is probably to link |
| * the EC image in with U-Boot (Vic has demonstrated a prototype for this). |
| */ |
| |
| #define KEYBOARD_ROWS 8 |
| #define KEYBOARD_COLS 13 |
| |
| /* A single entry of the key matrix */ |
| struct ec_keymatrix_entry { |
| int row; /* key matrix row */ |
| int col; /* key matrix column */ |
| int keycode; /* corresponding linux key code */ |
| }; |
| |
| enum { |
| VSTORE_SLOT_COUNT = 4, |
| PWM_CHANNEL_COUNT = 4, |
| }; |
| |
| struct vstore_slot { |
| bool locked; |
| u8 data[EC_VSTORE_SLOT_SIZE]; |
| }; |
| |
| struct ec_pwm_channel { |
| uint duty; /* not ns, EC_PWM_MAX_DUTY = 100% */ |
| }; |
| |
| /** |
| * struct ec_state - Information about the EC state |
| * |
| * @vbnv_context: Vboot context data stored by EC |
| * @ec_config: FDT config information about the EC (e.g. flashmap) |
| * @flash_data: Contents of flash memory |
| * @flash_data_len: Size of flash memory |
| * @current_image: Current image the EC is running |
| * @matrix_count: Number of keys to decode in matrix |
| * @matrix: Information about keyboard matrix |
| * @keyscan: Current keyscan information (bit set for each row/column pressed) |
| * @recovery_req: Keyboard recovery requested |
| * @test_flags: Flags that control behaviour for tests |
| * @slot_locked: Locked vstore slots (mask) |
| * @pwm: Information per PWM channel |
| */ |
| struct ec_state { |
| u8 vbnv_context[EC_VBNV_BLOCK_SIZE_V2]; |
| struct fdt_cros_ec ec_config; |
| uint8_t *flash_data; |
| int flash_data_len; |
| enum ec_current_image current_image; |
| int matrix_count; |
| struct ec_keymatrix_entry *matrix; /* the key matrix info */ |
| uint8_t keyscan[KEYBOARD_COLS]; |
| bool recovery_req; |
| uint test_flags; |
| struct vstore_slot slot[VSTORE_SLOT_COUNT]; |
| struct ec_pwm_channel pwm[PWM_CHANNEL_COUNT]; |
| } s_state, *g_state; |
| |
| /** |
| * cros_ec_read_state() - read the sandbox EC state from the state file |
| * |
| * If data is available, then blob and node will provide access to it. If |
| * not this function sets up an empty EC. |
| * |
| * @param blob: Pointer to device tree blob, or NULL if no data to read |
| * @param node: Node offset to read from |
| */ |
| static int cros_ec_read_state(const void *blob, int node) |
| { |
| struct ec_state *ec = &s_state; |
| const char *prop; |
| int len; |
| |
| /* Set everything to defaults */ |
| ec->current_image = EC_IMAGE_RO; |
| if (!blob) |
| return 0; |
| |
| /* Read the data if available */ |
| ec->current_image = fdtdec_get_int(blob, node, "current-image", |
| EC_IMAGE_RO); |
| prop = fdt_getprop(blob, node, "vbnv-context", &len); |
| if (prop && len == sizeof(ec->vbnv_context)) |
| memcpy(ec->vbnv_context, prop, len); |
| |
| prop = fdt_getprop(blob, node, "flash-data", &len); |
| if (prop) { |
| ec->flash_data_len = len; |
| ec->flash_data = malloc(len); |
| if (!ec->flash_data) |
| return -ENOMEM; |
| memcpy(ec->flash_data, prop, len); |
| debug("%s: Loaded EC flash data size %#x\n", __func__, len); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * cros_ec_write_state() - Write out our state to the state file |
| * |
| * The caller will ensure that there is a node ready for the state. The node |
| * may already contain the old state, in which case it is overridden. |
| * |
| * @param blob: Device tree blob holding state |
| * @param node: Node to write our state into |
| */ |
| static int cros_ec_write_state(void *blob, int node) |
| { |
| struct ec_state *ec = g_state; |
| |
| if (!g_state) |
| return 0; |
| |
| /* We are guaranteed enough space to write basic properties */ |
| fdt_setprop_u32(blob, node, "current-image", ec->current_image); |
| fdt_setprop(blob, node, "vbnv-context", ec->vbnv_context, |
| sizeof(ec->vbnv_context)); |
| |
| return state_setprop(node, "flash-data", ec->flash_data, |
| ec->ec_config.flash.length); |
| } |
| |
| SANDBOX_STATE_IO(cros_ec, "google,cros-ec", cros_ec_read_state, |
| cros_ec_write_state); |
| |
| /** |
| * Return the number of bytes used in the specified image. |
| * |
| * This is the actual size of code+data in the image, as opposed to the |
| * amount of space reserved in flash for that image. This code is similar to |
| * that used by the real EC code base. |
| * |
| * @param ec Current emulated EC state |
| * @param entry Flash map entry containing the image to check |
| * @return actual image size in bytes, 0 if the image contains no content or |
| * error. |
| */ |
| static int get_image_used(struct ec_state *ec, struct fmap_entry *entry) |
| { |
| int size; |
| |
| /* |
| * Scan backwards looking for 0xea byte, which is by definition the |
| * last byte of the image. See ec.lds.S for how this is inserted at |
| * the end of the image. |
| */ |
| for (size = entry->length - 1; |
| size > 0 && ec->flash_data[entry->offset + size] != 0xea; |
| size--) |
| ; |
| |
| return size ? size + 1 : 0; /* 0xea byte IS part of the image */ |
| } |
| |
| /** |
| * Read the key matrix from the device tree |
| * |
| * Keymap entries in the fdt take the form of 0xRRCCKKKK where |
| * RR=Row CC=Column KKKK=Key Code |
| * |
| * @param ec Current emulated EC state |
| * @param node Keyboard node of device tree containing keyscan information |
| * @return 0 if ok, -1 on error |
| */ |
| static int keyscan_read_fdt_matrix(struct ec_state *ec, ofnode node) |
| { |
| const u32 *cell; |
| int upto; |
| int len; |
| |
| cell = ofnode_get_property(node, "linux,keymap", &len); |
| if (!cell) |
| return log_msg_ret("prop", -EINVAL); |
| ec->matrix_count = len / 4; |
| ec->matrix = calloc(ec->matrix_count, sizeof(*ec->matrix)); |
| if (!ec->matrix) { |
| return log_msg_ret("mem", -ENOMEM); |
| } |
| |
| /* Now read the data */ |
| for (upto = 0; upto < ec->matrix_count; upto++) { |
| struct ec_keymatrix_entry *matrix = &ec->matrix[upto]; |
| u32 word; |
| |
| word = fdt32_to_cpu(*cell++); |
| matrix->row = word >> 24; |
| matrix->col = (word >> 16) & 0xff; |
| matrix->keycode = word & 0xffff; |
| |
| /* Hard-code some sanity limits for now */ |
| if (matrix->row >= KEYBOARD_ROWS || |
| matrix->col >= KEYBOARD_COLS) { |
| debug("%s: Matrix pos out of range (%d,%d)\n", |
| __func__, matrix->row, matrix->col); |
| return log_msg_ret("matrix", -ERANGE); |
| } |
| } |
| |
| if (upto != ec->matrix_count) { |
| return log_msg_ret("matrix", -E2BIG); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Return the next keyscan message contents |
| * |
| * @param ec Current emulated EC state |
| * @param scan Place to put keyscan bytes for the keyscan message (must hold |
| * enough space for a full keyscan) |
| * @return number of bytes of valid scan data |
| */ |
| static int cros_ec_keyscan(struct ec_state *ec, uint8_t *scan) |
| { |
| const struct ec_keymatrix_entry *matrix; |
| int bytes = KEYBOARD_COLS; |
| int key[8]; /* allow up to 8 keys to be pressed at once */ |
| int count; |
| int i; |
| |
| memset(ec->keyscan, '\0', bytes); |
| count = sandbox_sdl_scan_keys(key, ARRAY_SIZE(key)); |
| |
| /* Look up keycode in matrix */ |
| for (i = 0, matrix = ec->matrix; i < ec->matrix_count; i++, matrix++) { |
| bool found; |
| int j; |
| |
| for (found = false, j = 0; j < count; j++) { |
| if (matrix->keycode == key[j]) |
| found = true; |
| } |
| |
| if (found) { |
| debug("%d: %d,%d\n", matrix->keycode, matrix->row, |
| matrix->col); |
| ec->keyscan[matrix->col] |= 1 << matrix->row; |
| } |
| } |
| |
| memcpy(scan, ec->keyscan, bytes); |
| return bytes; |
| } |
| |
| /** |
| * Process an emulated EC command |
| * |
| * @param ec Current emulated EC state |
| * @param req_hdr Pointer to request header |
| * @param req_data Pointer to body of request |
| * @param resp_hdr Pointer to place to put response header |
| * @param resp_data Pointer to place to put response data, if any |
| * @return length of response data, or 0 for no response data, or -1 on error |
| */ |
| static int process_cmd(struct ec_state *ec, |
| struct ec_host_request *req_hdr, const void *req_data, |
| struct ec_host_response *resp_hdr, void *resp_data) |
| { |
| int len; |
| |
| /* TODO(sjg@chromium.org): Check checksums */ |
| debug("EC command %#0x\n", req_hdr->command); |
| |
| switch (req_hdr->command) { |
| case EC_CMD_HELLO: { |
| const struct ec_params_hello *req = req_data; |
| struct ec_response_hello *resp = resp_data; |
| |
| resp->out_data = req->in_data + 0x01020304; |
| if (ec->test_flags & CROSECT_BREAK_HELLO) |
| resp->out_data++; |
| len = sizeof(*resp); |
| break; |
| } |
| case EC_CMD_GET_VERSION: { |
| struct ec_response_get_version *resp = resp_data; |
| |
| strcpy(resp->version_string_ro, "sandbox_ro"); |
| strcpy(resp->version_string_rw, "sandbox_rw"); |
| resp->current_image = ec->current_image; |
| debug("Current image %d\n", resp->current_image); |
| len = sizeof(*resp); |
| break; |
| } |
| case EC_CMD_VBNV_CONTEXT: { |
| const struct ec_params_vbnvcontext *req = req_data; |
| struct ec_response_vbnvcontext *resp = resp_data; |
| |
| switch (req->op) { |
| case EC_VBNV_CONTEXT_OP_READ: |
| /* TODO(sjg@chromium.org): Support full-size context */ |
| memcpy(resp->block, ec->vbnv_context, |
| EC_VBNV_BLOCK_SIZE); |
| len = 16; |
| break; |
| case EC_VBNV_CONTEXT_OP_WRITE: |
| /* TODO(sjg@chromium.org): Support full-size context */ |
| memcpy(ec->vbnv_context, req->block, |
| EC_VBNV_BLOCK_SIZE); |
| len = 0; |
| break; |
| default: |
| printf(" ** Unknown vbnv_context command %#02x\n", |
| req->op); |
| return -1; |
| } |
| break; |
| } |
| case EC_CMD_REBOOT_EC: { |
| const struct ec_params_reboot_ec *req = req_data; |
| |
| printf("Request reboot type %d\n", req->cmd); |
| switch (req->cmd) { |
| case EC_REBOOT_DISABLE_JUMP: |
| len = 0; |
| break; |
| case EC_REBOOT_JUMP_RW: |
| ec->current_image = EC_IMAGE_RW; |
| len = 0; |
| break; |
| default: |
| puts(" ** Unknown type"); |
| return -1; |
| } |
| break; |
| } |
| case EC_CMD_HOST_EVENT_GET_B: { |
| struct ec_response_host_event_mask *resp = resp_data; |
| |
| resp->mask = 0; |
| if (ec->recovery_req) { |
| resp->mask |= EC_HOST_EVENT_MASK( |
| EC_HOST_EVENT_KEYBOARD_RECOVERY); |
| } |
| if (ec->test_flags & CROSECT_LID_OPEN) |
| resp->mask |= |
| EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_OPEN); |
| len = sizeof(*resp); |
| break; |
| } |
| case EC_CMD_HOST_EVENT_CLEAR_B: { |
| const struct ec_params_host_event_mask *req = req_data; |
| |
| if (req->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_OPEN)) |
| ec->test_flags &= ~CROSECT_LID_OPEN; |
| len = 0; |
| break; |
| } |
| case EC_CMD_VBOOT_HASH: { |
| const struct ec_params_vboot_hash *req = req_data; |
| struct ec_response_vboot_hash *resp = resp_data; |
| struct fmap_entry *entry; |
| int ret, size; |
| |
| entry = &ec->ec_config.region[EC_FLASH_REGION_ACTIVE]; |
| |
| switch (req->cmd) { |
| case EC_VBOOT_HASH_RECALC: |
| case EC_VBOOT_HASH_GET: |
| size = SHA256_SUM_LEN; |
| len = get_image_used(ec, entry); |
| ret = hash_block("sha256", |
| ec->flash_data + entry->offset, |
| len, resp->hash_digest, &size); |
| if (ret) { |
| printf(" ** hash_block() failed\n"); |
| return -1; |
| } |
| resp->status = EC_VBOOT_HASH_STATUS_DONE; |
| resp->hash_type = EC_VBOOT_HASH_TYPE_SHA256; |
| resp->digest_size = size; |
| resp->reserved0 = 0; |
| resp->offset = entry->offset; |
| resp->size = len; |
| len = sizeof(*resp); |
| break; |
| default: |
| printf(" ** EC_CMD_VBOOT_HASH: Unknown command %d\n", |
| req->cmd); |
| return -1; |
| } |
| break; |
| } |
| case EC_CMD_FLASH_PROTECT: { |
| const struct ec_params_flash_protect *req = req_data; |
| struct ec_response_flash_protect *resp = resp_data; |
| uint32_t expect = EC_FLASH_PROTECT_ALL_NOW | |
| EC_FLASH_PROTECT_ALL_AT_BOOT; |
| |
| printf("mask=%#x, flags=%#x\n", req->mask, req->flags); |
| if (req->flags == expect || req->flags == 0) { |
| resp->flags = req->flags ? EC_FLASH_PROTECT_ALL_NOW : |
| 0; |
| resp->valid_flags = EC_FLASH_PROTECT_ALL_NOW; |
| resp->writable_flags = 0; |
| len = sizeof(*resp); |
| } else { |
| puts(" ** unexpected flash protect request\n"); |
| return -1; |
| } |
| break; |
| } |
| case EC_CMD_FLASH_REGION_INFO: { |
| const struct ec_params_flash_region_info *req = req_data; |
| struct ec_response_flash_region_info *resp = resp_data; |
| struct fmap_entry *entry; |
| |
| switch (req->region) { |
| case EC_FLASH_REGION_RO: |
| case EC_FLASH_REGION_ACTIVE: |
| case EC_FLASH_REGION_WP_RO: |
| entry = &ec->ec_config.region[req->region]; |
| resp->offset = entry->offset; |
| resp->size = entry->length; |
| len = sizeof(*resp); |
| printf("EC flash region %d: offset=%#x, size=%#x\n", |
| req->region, resp->offset, resp->size); |
| break; |
| default: |
| printf("** Unknown flash region %d\n", req->region); |
| return -1; |
| } |
| break; |
| } |
| case EC_CMD_FLASH_ERASE: { |
| const struct ec_params_flash_erase *req = req_data; |
| |
| memset(ec->flash_data + req->offset, |
| ec->ec_config.flash_erase_value, |
| req->size); |
| len = 0; |
| break; |
| } |
| case EC_CMD_FLASH_WRITE: { |
| const struct ec_params_flash_write *req = req_data; |
| |
| memcpy(ec->flash_data + req->offset, req + 1, req->size); |
| len = 0; |
| break; |
| } |
| case EC_CMD_MKBP_STATE: |
| len = cros_ec_keyscan(ec, resp_data); |
| break; |
| case EC_CMD_ENTERING_MODE: |
| len = 0; |
| break; |
| case EC_CMD_GET_NEXT_EVENT: { |
| struct ec_response_get_next_event *resp = resp_data; |
| |
| resp->event_type = EC_MKBP_EVENT_KEY_MATRIX; |
| cros_ec_keyscan(ec, resp->data.key_matrix); |
| len = sizeof(*resp); |
| break; |
| } |
| case EC_CMD_GET_SKU_ID: { |
| struct ec_sku_id_info *resp = resp_data; |
| |
| resp->sku_id = 1234; |
| len = sizeof(*resp); |
| break; |
| } |
| case EC_CMD_GET_FEATURES: { |
| struct ec_response_get_features *resp = resp_data; |
| |
| resp->flags[0] = EC_FEATURE_MASK_0(EC_FEATURE_FLASH) | |
| EC_FEATURE_MASK_0(EC_FEATURE_I2C) | |
| EC_FEATURE_MASK_0(EC_FEATURE_VSTORE); |
| resp->flags[1] = |
| EC_FEATURE_MASK_1(EC_FEATURE_UNIFIED_WAKE_MASKS) | |
| EC_FEATURE_MASK_1(EC_FEATURE_ISH); |
| len = sizeof(*resp); |
| break; |
| } |
| case EC_CMD_VSTORE_INFO: { |
| struct ec_response_vstore_info *resp = resp_data; |
| int i; |
| |
| resp->slot_count = VSTORE_SLOT_COUNT; |
| resp->slot_locked = 0; |
| for (i = 0; i < VSTORE_SLOT_COUNT; i++) { |
| if (ec->slot[i].locked) |
| resp->slot_locked |= 1 << i; |
| } |
| len = sizeof(*resp); |
| break; |
| }; |
| case EC_CMD_VSTORE_WRITE: { |
| const struct ec_params_vstore_write *req = req_data; |
| struct vstore_slot *slot; |
| |
| if (req->slot >= EC_VSTORE_SLOT_MAX) |
| return -EINVAL; |
| slot = &ec->slot[req->slot]; |
| slot->locked = true; |
| memcpy(slot->data, req->data, EC_VSTORE_SLOT_SIZE); |
| len = 0; |
| break; |
| } |
| case EC_CMD_VSTORE_READ: { |
| const struct ec_params_vstore_read *req = req_data; |
| struct ec_response_vstore_read *resp = resp_data; |
| struct vstore_slot *slot; |
| |
| if (req->slot >= EC_VSTORE_SLOT_MAX) |
| return -EINVAL; |
| slot = &ec->slot[req->slot]; |
| memcpy(resp->data, slot->data, EC_VSTORE_SLOT_SIZE); |
| len = sizeof(*resp); |
| break; |
| } |
| case EC_CMD_PWM_GET_DUTY: { |
| const struct ec_params_pwm_get_duty *req = req_data; |
| struct ec_response_pwm_get_duty *resp = resp_data; |
| struct ec_pwm_channel *pwm; |
| |
| if (req->pwm_type != EC_PWM_TYPE_GENERIC) |
| return -EINVAL; |
| if (req->index >= PWM_CHANNEL_COUNT) |
| return -EINVAL; |
| pwm = &ec->pwm[req->index]; |
| resp->duty = pwm->duty; |
| len = sizeof(*resp); |
| break; |
| } |
| case EC_CMD_PWM_SET_DUTY: { |
| const struct ec_params_pwm_set_duty *req = req_data; |
| struct ec_pwm_channel *pwm; |
| |
| if (req->pwm_type != EC_PWM_TYPE_GENERIC) |
| return -EINVAL; |
| if (req->index >= PWM_CHANNEL_COUNT) |
| return -EINVAL; |
| pwm = &ec->pwm[req->index]; |
| pwm->duty = req->duty; |
| len = 0; |
| break; |
| } |
| default: |
| printf(" ** Unknown EC command %#02x\n", req_hdr->command); |
| return -1; |
| } |
| |
| return len; |
| } |
| |
| int cros_ec_sandbox_packet(struct udevice *udev, int out_bytes, int in_bytes) |
| { |
| struct cros_ec_dev *dev = dev_get_uclass_priv(udev); |
| struct ec_state *ec = dev_get_priv(dev->dev); |
| struct ec_host_request *req_hdr = (struct ec_host_request *)dev->dout; |
| const void *req_data = req_hdr + 1; |
| struct ec_host_response *resp_hdr = (struct ec_host_response *)dev->din; |
| void *resp_data = resp_hdr + 1; |
| int len; |
| |
| len = process_cmd(ec, req_hdr, req_data, resp_hdr, resp_data); |
| if (len < 0) |
| return len; |
| |
| resp_hdr->struct_version = 3; |
| resp_hdr->result = EC_RES_SUCCESS; |
| resp_hdr->data_len = len; |
| resp_hdr->reserved = 0; |
| len += sizeof(*resp_hdr); |
| resp_hdr->checksum = 0; |
| resp_hdr->checksum = (uint8_t) |
| -cros_ec_calc_checksum((const uint8_t *)resp_hdr, len); |
| |
| return in_bytes; |
| } |
| |
| void cros_ec_check_keyboard(struct udevice *dev) |
| { |
| struct ec_state *ec = dev_get_priv(dev); |
| ulong start; |
| |
| printf("Press keys for EC to detect on reset (ESC=recovery)..."); |
| start = get_timer(0); |
| while (get_timer(start) < 1000) |
| ; |
| putc('\n'); |
| if (!sandbox_sdl_key_pressed(KEY_ESC)) { |
| ec->recovery_req = true; |
| printf(" - EC requests recovery\n"); |
| } |
| } |
| |
| /* Return the byte of EC switch states */ |
| static int cros_ec_sandbox_get_switches(struct udevice *dev) |
| { |
| struct ec_state *ec = dev_get_priv(dev); |
| |
| return ec->test_flags & CROSECT_LID_OPEN ? EC_SWITCH_LID_OPEN : 0; |
| } |
| |
| void sandbox_cros_ec_set_test_flags(struct udevice *dev, uint flags) |
| { |
| struct ec_state *ec = dev_get_priv(dev); |
| |
| ec->test_flags = flags; |
| } |
| |
| int sandbox_cros_ec_get_pwm_duty(struct udevice *dev, uint index, uint *duty) |
| { |
| struct ec_state *ec = dev_get_priv(dev); |
| struct ec_pwm_channel *pwm; |
| |
| if (index >= PWM_CHANNEL_COUNT) |
| return -ENOSPC; |
| pwm = &ec->pwm[index]; |
| *duty = pwm->duty; |
| |
| return 0; |
| } |
| |
| int cros_ec_probe(struct udevice *dev) |
| { |
| struct ec_state *ec = dev_get_priv(dev); |
| struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); |
| struct udevice *keyb_dev; |
| ofnode node; |
| int err; |
| |
| memcpy(ec, &s_state, sizeof(*ec)); |
| err = cros_ec_decode_ec_flash(dev, &ec->ec_config); |
| if (err) { |
| debug("%s: Cannot device EC flash\n", __func__); |
| return err; |
| } |
| |
| node = ofnode_null(); |
| for (device_find_first_child(dev, &keyb_dev); |
| keyb_dev; |
| device_find_next_child(&keyb_dev)) { |
| if (device_get_uclass_id(keyb_dev) == UCLASS_KEYBOARD) { |
| node = dev_ofnode(keyb_dev); |
| break; |
| } |
| } |
| if (!ofnode_valid(node)) { |
| debug("%s: No cros_ec keyboard found\n", __func__); |
| } else if (keyscan_read_fdt_matrix(ec, node)) { |
| debug("%s: Could not read key matrix\n", __func__); |
| return -1; |
| } |
| |
| /* If we loaded EC data, check that the length matches */ |
| if (ec->flash_data && |
| ec->flash_data_len != ec->ec_config.flash.length) { |
| printf("EC data length is %x, expected %x, discarding data\n", |
| ec->flash_data_len, ec->ec_config.flash.length); |
| free(ec->flash_data); |
| ec->flash_data = NULL; |
| } |
| |
| /* Otherwise allocate the memory */ |
| if (!ec->flash_data) { |
| ec->flash_data_len = ec->ec_config.flash.length; |
| ec->flash_data = malloc(ec->flash_data_len); |
| if (!ec->flash_data) |
| return -ENOMEM; |
| } |
| |
| cdev->dev = dev; |
| g_state = ec; |
| return cros_ec_register(dev); |
| } |
| |
| struct dm_cros_ec_ops cros_ec_ops = { |
| .packet = cros_ec_sandbox_packet, |
| .get_switches = cros_ec_sandbox_get_switches, |
| }; |
| |
| static const struct udevice_id cros_ec_ids[] = { |
| { .compatible = "google,cros-ec-sandbox" }, |
| { } |
| }; |
| |
| U_BOOT_DRIVER(google_cros_ec_sandbox) = { |
| .name = "google_cros_ec_sandbox", |
| .id = UCLASS_CROS_EC, |
| .of_match = cros_ec_ids, |
| .probe = cros_ec_probe, |
| .priv_auto = sizeof(struct ec_state), |
| .ops = &cros_ec_ops, |
| }; |