blob: 34f870ab43a9acdd0b6774a13afccbe70f53ba65 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* EMIF: DDR3 test commands
*
* Copyright (C) 2012-2017 Texas Instruments Incorporated, <www.ti.com>
*/
#include <asm/arch/hardware.h>
#include <asm/cache.h>
#include <asm/emif.h>
#include <common.h>
#include <command.h>
DECLARE_GLOBAL_DATA_PTR;
#ifdef CONFIG_ARCH_KEYSTONE
#include <asm/arch/ddr3.h>
#define DDR_MIN_ADDR CONFIG_SYS_SDRAM_BASE
#define STACKSIZE (512 << 10) /* 512 KiB */
#define DDR_REMAP_ADDR 0x80000000
#define ECC_START_ADDR1 ((DDR_MIN_ADDR - DDR_REMAP_ADDR) >> 17)
#define ECC_END_ADDR1 (((gd->start_addr_sp - DDR_REMAP_ADDR - \
STACKSIZE) >> 17) - 2)
#endif
#define DDR_TEST_BURST_SIZE 1024
static int ddr_memory_test(u32 start_address, u32 end_address, int quick)
{
u32 index_start, value, index;
index_start = start_address;
while (1) {
/* Write a pattern */
for (index = index_start;
index < index_start + DDR_TEST_BURST_SIZE;
index += 4)
__raw_writel(index, index);
/* Read and check the pattern */
for (index = index_start;
index < index_start + DDR_TEST_BURST_SIZE;
index += 4) {
value = __raw_readl(index);
if (value != index) {
printf("ddr_memory_test: Failed at address index = 0x%x value = 0x%x *(index) = 0x%x\n",
index, value, __raw_readl(index));
return -1;
}
}
index_start += DDR_TEST_BURST_SIZE;
if (index_start >= end_address)
break;
if (quick)
continue;
/* Write a pattern for complementary values */
for (index = index_start;
index < index_start + DDR_TEST_BURST_SIZE;
index += 4)
__raw_writel((u32)~index, index);
/* Read and check the pattern */
for (index = index_start;
index < index_start + DDR_TEST_BURST_SIZE;
index += 4) {
value = __raw_readl(index);
if (value != ~index) {
printf("ddr_memory_test: Failed at address index = 0x%x value = 0x%x *(index) = 0x%x\n",
index, value, __raw_readl(index));
return -1;
}
}
index_start += DDR_TEST_BURST_SIZE;
if (index_start >= end_address)
break;
/* Write a pattern */
for (index = index_start;
index < index_start + DDR_TEST_BURST_SIZE;
index += 2)
__raw_writew((u16)index, index);
/* Read and check the pattern */
for (index = index_start;
index < index_start + DDR_TEST_BURST_SIZE;
index += 2) {
value = __raw_readw(index);
if (value != (u16)index) {
printf("ddr_memory_test: Failed at address index = 0x%x value = 0x%x *(index) = 0x%x\n",
index, value, __raw_readw(index));
return -1;
}
}
index_start += DDR_TEST_BURST_SIZE;
if (index_start >= end_address)
break;
/* Write a pattern */
for (index = index_start;
index < index_start + DDR_TEST_BURST_SIZE;
index += 1)
__raw_writeb((u8)index, index);
/* Read and check the pattern */
for (index = index_start;
index < index_start + DDR_TEST_BURST_SIZE;
index += 1) {
value = __raw_readb(index);
if (value != (u8)index) {
printf("ddr_memory_test: Failed at address index = 0x%x value = 0x%x *(index) = 0x%x\n",
index, value, __raw_readb(index));
return -1;
}
}
index_start += DDR_TEST_BURST_SIZE;
if (index_start >= end_address)
break;
}
puts("ddr memory test PASSED!\n");
return 0;
}
static int ddr_memory_compare(u32 address1, u32 address2, u32 size)
{
u32 index, value, index2, value2;
for (index = address1, index2 = address2;
index < address1 + size;
index += 4, index2 += 4) {
value = __raw_readl(index);
value2 = __raw_readl(index2);
if (value != value2) {
printf("ddr_memory_test: Compare failed at address = 0x%x value = 0x%x, address2 = 0x%x value2 = 0x%x\n",
index, value, index2, value2);
return -1;
}
}
puts("ddr memory compare PASSED!\n");
return 0;
}
static void ddr_check_ecc_status(void)
{
struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
u32 err_1b = readl(&emif->emif_1b_ecc_err_cnt);
u32 int_status = readl(&emif->emif_irqstatus_raw_sys);
int ecc_test = 0;
char *env;
env = env_get("ecc_test");
if (env)
ecc_test = simple_strtol(env, NULL, 0);
puts("ECC test Status:\n");
if (int_status & EMIF_INT_WR_ECC_ERR_SYS_MASK)
puts("\tECC test: DDR ECC write error interrupted\n");
if (int_status & EMIF_INT_TWOBIT_ECC_ERR_SYS_MASK)
if (!ecc_test)
panic("\tECC test: DDR ECC 2-bit error interrupted");
if (int_status & EMIF_INT_ONEBIT_ECC_ERR_SYS_MASK)
puts("\tECC test: DDR ECC 1-bit error interrupted\n");
if (err_1b)
printf("\tECC test: 1-bit ECC err count: 0x%x\n", err_1b);
}
static int ddr_memory_ecc_err(u32 addr, u32 ecc_err)
{
struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
u32 ecc_ctrl = readl(&emif->emif_ecc_ctrl_reg);
u32 val1, val2, val3;
debug("Disabling D-Cache before ECC test\n");
dcache_disable();
invalidate_dcache_all();
puts("Testing DDR ECC:\n");
puts("\tECC test: Disabling DDR ECC ...\n");
writel(0, &emif->emif_ecc_ctrl_reg);
val1 = readl(addr);
val2 = val1 ^ ecc_err;
writel(val2, addr);
val3 = readl(addr);
printf("\tECC test: addr 0x%x, read data 0x%x, written data 0x%x, err pattern: 0x%x, read after write data 0x%x\n",
addr, val1, val2, ecc_err, val3);
puts("\tECC test: Enabling DDR ECC ...\n");
#ifdef CONFIG_ARCH_KEYSTONE
ecc_ctrl = ECC_START_ADDR1 | (ECC_END_ADDR1 << 16);
writel(ecc_ctrl, EMIF1_BASE + KS2_DDR3_ECC_ADDR_RANGE1_OFFSET);
ddr3_enable_ecc(EMIF1_BASE, 1);
#else
writel(ecc_ctrl, &emif->emif_ecc_ctrl_reg);
#endif
val1 = readl(addr);
printf("\tECC test: addr 0x%x, read data 0x%x\n", addr, val1);
ddr_check_ecc_status();
debug("Enabling D-cache back after ECC test\n");
enable_caches();
return 0;
}
static int is_addr_valid(u32 addr)
{
struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
u32 start_addr, end_addr, range, ecc_ctrl;
#ifdef CONFIG_ARCH_KEYSTONE
ecc_ctrl = EMIF_ECC_REG_ECC_ADDR_RGN_1_EN_MASK;
range = ECC_START_ADDR1 | (ECC_END_ADDR1 << 16);
#else
ecc_ctrl = readl(&emif->emif_ecc_ctrl_reg);
range = readl(&emif->emif_ecc_address_range_1);
#endif
/* Check in ecc address range 1 */
if (ecc_ctrl & EMIF_ECC_REG_ECC_ADDR_RGN_1_EN_MASK) {
start_addr = ((range & EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16)
+ CONFIG_SYS_SDRAM_BASE;
end_addr = (range & EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0xFFFF +
CONFIG_SYS_SDRAM_BASE;
if ((addr >= start_addr) && (addr <= end_addr))
/* addr within ecc address range 1 */
return 1;
}
/* Check in ecc address range 2 */
if (ecc_ctrl & EMIF_ECC_REG_ECC_ADDR_RGN_2_EN_MASK) {
range = readl(&emif->emif_ecc_address_range_2);
start_addr = ((range & EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16)
+ CONFIG_SYS_SDRAM_BASE;
end_addr = (range & EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0xFFFF +
CONFIG_SYS_SDRAM_BASE;
if ((addr >= start_addr) && (addr <= end_addr))
/* addr within ecc address range 2 */
return 1;
}
return 0;
}
static int is_ecc_enabled(void)
{
struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
u32 ecc_ctrl = readl(&emif->emif_ecc_ctrl_reg);
return (ecc_ctrl & EMIF_ECC_CTRL_REG_ECC_EN_MASK) &&
(ecc_ctrl & EMIF_ECC_REG_RMW_EN_MASK);
}
static int do_ddr_test(cmd_tbl_t *cmdtp,
int flag, int argc, char * const argv[])
{
u32 start_addr, end_addr, size, ecc_err;
if ((argc == 4) && (strncmp(argv[1], "ecc_err", 8) == 0)) {
if (!is_ecc_enabled()) {
puts("ECC not enabled. Please Enable ECC any try again\n");
return CMD_RET_FAILURE;
}
start_addr = simple_strtoul(argv[2], NULL, 16);
ecc_err = simple_strtoul(argv[3], NULL, 16);
if (!is_addr_valid(start_addr)) {
puts("Invalid address. Please enter ECC supported address!\n");
return CMD_RET_FAILURE;
}
ddr_memory_ecc_err(start_addr, ecc_err);
return 0;
}
if (!(((argc == 4) && (strncmp(argv[1], "test", 5) == 0)) ||
((argc == 5) && (strncmp(argv[1], "compare", 8) == 0))))
return cmd_usage(cmdtp);
start_addr = simple_strtoul(argv[2], NULL, 16);
end_addr = simple_strtoul(argv[3], NULL, 16);
if ((start_addr < CONFIG_SYS_SDRAM_BASE) ||
(start_addr > (CONFIG_SYS_SDRAM_BASE +
get_effective_memsize() - 1)) ||
(end_addr < CONFIG_SYS_SDRAM_BASE) ||
(end_addr > (CONFIG_SYS_SDRAM_BASE +
get_effective_memsize() - 1)) || (start_addr >= end_addr)) {
puts("Invalid start or end address!\n");
return cmd_usage(cmdtp);
}
puts("Please wait ...\n");
if (argc == 5) {
size = simple_strtoul(argv[4], NULL, 16);
ddr_memory_compare(start_addr, end_addr, size);
} else {
ddr_memory_test(start_addr, end_addr, 0);
}
return 0;
}
U_BOOT_CMD(ddr, 5, 1, do_ddr_test,
"DDR3 test",
"test <start_addr in hex> <end_addr in hex> - test DDR from start\n"
" address to end address\n"
"ddr compare <start_addr in hex> <end_addr in hex> <size in hex> -\n"
" compare DDR data of (size) bytes from start address to end\n"
" address\n"
"ddr ecc_err <addr in hex> <bit_err in hex> - generate bit errors\n"
" in DDR data at <addr>, the command will read a 32-bit data\n"
" from <addr>, and write (data ^ bit_err) back to <addr>\n"
);