blob: 51e28bf07b87cd02800aa826a76b91b6dc8a9b65 [file] [log] [blame]
/*
* SPI Flash Core
*
* Copyright (C) 2015 Jagan Teki <jteki@openedev.com>
* Copyright (C) 2013 Jagannadha Sutradharudu Teki, Xilinx Inc.
* Copyright (C) 2010 Reinhard Meyer, EMK Elektronik
* Copyright (C) 2008 Atmel Corporation
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <errno.h>
#include <malloc.h>
#include <mapmem.h>
#include <spi.h>
#include <spi_flash.h>
#include <linux/log2.h>
#include <dma.h>
#include "sf_internal.h"
DECLARE_GLOBAL_DATA_PTR;
static void spi_flash_addr(u32 addr, u8 *cmd)
{
/* cmd[0] is actual command */
cmd[1] = addr >> 16;
cmd[2] = addr >> 8;
cmd[3] = addr >> 0;
}
static int read_sr(struct spi_flash *flash, u8 *rs)
{
int ret;
u8 cmd;
cmd = CMD_READ_STATUS;
ret = spi_flash_read_common(flash, &cmd, 1, rs, 1);
if (ret < 0) {
debug("SF: fail to read status register\n");
return ret;
}
return 0;
}
static int read_fsr(struct spi_flash *flash, u8 *fsr)
{
int ret;
const u8 cmd = CMD_FLAG_STATUS;
ret = spi_flash_read_common(flash, &cmd, 1, fsr, 1);
if (ret < 0) {
debug("SF: fail to read flag status register\n");
return ret;
}
return 0;
}
static int write_sr(struct spi_flash *flash, u8 ws)
{
u8 cmd;
int ret;
cmd = CMD_WRITE_STATUS;
ret = spi_flash_write_common(flash, &cmd, 1, &ws, 1);
if (ret < 0) {
debug("SF: fail to write status register\n");
return ret;
}
return 0;
}
#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
static int read_cr(struct spi_flash *flash, u8 *rc)
{
int ret;
u8 cmd;
cmd = CMD_READ_CONFIG;
ret = spi_flash_read_common(flash, &cmd, 1, rc, 1);
if (ret < 0) {
debug("SF: fail to read config register\n");
return ret;
}
return 0;
}
static int write_cr(struct spi_flash *flash, u8 wc)
{
u8 data[2];
u8 cmd;
int ret;
ret = read_sr(flash, &data[0]);
if (ret < 0)
return ret;
cmd = CMD_WRITE_STATUS;
data[1] = wc;
ret = spi_flash_write_common(flash, &cmd, 1, &data, 2);
if (ret) {
debug("SF: fail to write config register\n");
return ret;
}
return 0;
}
#endif
#ifdef CONFIG_SPI_FLASH_BAR
/*
* This "clean_bar" is necessary in a situation when one was accessing
* spi flash memory > 16 MiB by using Bank Address Register's BA24 bit.
*
* After it the BA24 bit shall be cleared to allow access to correct
* memory region after SW reset (by calling "reset" command).
*
* Otherwise, the BA24 bit may be left set and then after reset, the
* ROM would read/write/erase SPL from 16 MiB * bank_sel address.
*/
static int clean_bar(struct spi_flash *flash)
{
u8 cmd, bank_sel = 0;
if (flash->bank_curr == 0)
return 0;
cmd = flash->bank_write_cmd;
return spi_flash_write_common(flash, &cmd, 1, &bank_sel, 1);
}
static int write_bar(struct spi_flash *flash, u32 offset)
{
u8 cmd, bank_sel;
int ret;
bank_sel = offset / (SPI_FLASH_16MB_BOUN << flash->shift);
if (bank_sel == flash->bank_curr)
goto bar_end;
cmd = flash->bank_write_cmd;
ret = spi_flash_write_common(flash, &cmd, 1, &bank_sel, 1);
if (ret < 0) {
debug("SF: fail to write bank register\n");
return ret;
}
bar_end:
flash->bank_curr = bank_sel;
return flash->bank_curr;
}
static int read_bar(struct spi_flash *flash, const struct spi_flash_info *info)
{
u8 curr_bank = 0;
int ret;
if (flash->size <= SPI_FLASH_16MB_BOUN)
goto bar_end;
switch (JEDEC_MFR(info)) {
case SPI_FLASH_CFI_MFR_SPANSION:
flash->bank_read_cmd = CMD_BANKADDR_BRRD;
flash->bank_write_cmd = CMD_BANKADDR_BRWR;
break;
default:
flash->bank_read_cmd = CMD_EXTNADDR_RDEAR;
flash->bank_write_cmd = CMD_EXTNADDR_WREAR;
}
ret = spi_flash_read_common(flash, &flash->bank_read_cmd, 1,
&curr_bank, 1);
if (ret) {
debug("SF: fail to read bank addr register\n");
return ret;
}
bar_end:
flash->bank_curr = curr_bank;
return 0;
}
#endif
#ifdef CONFIG_SF_DUAL_FLASH
static void spi_flash_dual(struct spi_flash *flash, u32 *addr)
{
switch (flash->dual_flash) {
case SF_DUAL_STACKED_FLASH:
if (*addr >= (flash->size >> 1)) {
*addr -= flash->size >> 1;
flash->flags |= SNOR_F_USE_UPAGE;
} else {
flash->flags &= ~SNOR_F_USE_UPAGE;
}
break;
case SF_DUAL_PARALLEL_FLASH:
*addr >>= flash->shift;
break;
default:
debug("SF: Unsupported dual_flash=%d\n", flash->dual_flash);
break;
}
}
#endif
static int spi_flash_sr_ready(struct spi_flash *flash)
{
u8 sr;
int ret;
ret = read_sr(flash, &sr);
if (ret < 0)
return ret;
return !(sr & STATUS_WIP);
}
static int spi_flash_fsr_ready(struct spi_flash *flash)
{
u8 fsr;
int ret;
ret = read_fsr(flash, &fsr);
if (ret < 0)
return ret;
return fsr & STATUS_PEC;
}
static int spi_flash_ready(struct spi_flash *flash)
{
int sr, fsr;
sr = spi_flash_sr_ready(flash);
if (sr < 0)
return sr;
fsr = 1;
if (flash->flags & SNOR_F_USE_FSR) {
fsr = spi_flash_fsr_ready(flash);
if (fsr < 0)
return fsr;
}
return sr && fsr;
}
static int spi_flash_wait_till_ready(struct spi_flash *flash,
unsigned long timeout)
{
unsigned long timebase;
int ret;
timebase = get_timer(0);
while (get_timer(timebase) < timeout) {
ret = spi_flash_ready(flash);
if (ret < 0)
return ret;
if (ret)
return 0;
}
printf("SF: Timeout!\n");
return -ETIMEDOUT;
}
int spi_flash_write_common(struct spi_flash *flash, const u8 *cmd,
size_t cmd_len, const void *buf, size_t buf_len)
{
struct spi_slave *spi = flash->spi;
unsigned long timeout = SPI_FLASH_PROG_TIMEOUT;
int ret;
if (buf == NULL)
timeout = SPI_FLASH_PAGE_ERASE_TIMEOUT;
ret = spi_claim_bus(spi);
if (ret) {
debug("SF: unable to claim SPI bus\n");
return ret;
}
ret = spi_flash_cmd_write_enable(flash);
if (ret < 0) {
debug("SF: enabling write failed\n");
return ret;
}
ret = spi_flash_cmd_write(spi, cmd, cmd_len, buf, buf_len);
if (ret < 0) {
debug("SF: write cmd failed\n");
return ret;
}
ret = spi_flash_wait_till_ready(flash, timeout);
if (ret < 0) {
debug("SF: write %s timed out\n",
timeout == SPI_FLASH_PROG_TIMEOUT ?
"program" : "page erase");
return ret;
}
spi_release_bus(spi);
return ret;
}
int spi_flash_cmd_erase_ops(struct spi_flash *flash, u32 offset, size_t len)
{
u32 erase_size, erase_addr;
u8 cmd[SPI_FLASH_CMD_LEN];
int ret = -1;
erase_size = flash->erase_size;
if (offset % erase_size || len % erase_size) {
debug("SF: Erase offset/length not multiple of erase size\n");
return -1;
}
if (flash->flash_is_locked) {
if (flash->flash_is_locked(flash, offset, len) > 0) {
printf("offset 0x%x is protected and cannot be erased\n",
offset);
return -EINVAL;
}
}
cmd[0] = flash->erase_cmd;
while (len) {
erase_addr = offset;
#ifdef CONFIG_SF_DUAL_FLASH
if (flash->dual_flash > SF_SINGLE_FLASH)
spi_flash_dual(flash, &erase_addr);
#endif
#ifdef CONFIG_SPI_FLASH_BAR
ret = write_bar(flash, erase_addr);
if (ret < 0)
return ret;
#endif
spi_flash_addr(erase_addr, cmd);
debug("SF: erase %2x %2x %2x %2x (%x)\n", cmd[0], cmd[1],
cmd[2], cmd[3], erase_addr);
ret = spi_flash_write_common(flash, cmd, sizeof(cmd), NULL, 0);
if (ret < 0) {
debug("SF: erase failed\n");
break;
}
offset += erase_size;
len -= erase_size;
}
#ifdef CONFIG_SPI_FLASH_BAR
ret = clean_bar(flash);
#endif
return ret;
}
int spi_flash_cmd_write_ops(struct spi_flash *flash, u32 offset,
size_t len, const void *buf)
{
struct spi_slave *spi = flash->spi;
unsigned long byte_addr, page_size;
u32 write_addr;
size_t chunk_len, actual;
u8 cmd[SPI_FLASH_CMD_LEN];
int ret = -1;
page_size = flash->page_size;
if (flash->flash_is_locked) {
if (flash->flash_is_locked(flash, offset, len) > 0) {
printf("offset 0x%x is protected and cannot be written\n",
offset);
return -EINVAL;
}
}
cmd[0] = flash->write_cmd;
for (actual = 0; actual < len; actual += chunk_len) {
write_addr = offset;
#ifdef CONFIG_SF_DUAL_FLASH
if (flash->dual_flash > SF_SINGLE_FLASH)
spi_flash_dual(flash, &write_addr);
#endif
#ifdef CONFIG_SPI_FLASH_BAR
ret = write_bar(flash, write_addr);
if (ret < 0)
return ret;
#endif
byte_addr = offset % page_size;
chunk_len = min(len - actual, (size_t)(page_size - byte_addr));
if (spi->max_write_size)
chunk_len = min(chunk_len,
(size_t)spi->max_write_size);
spi_flash_addr(write_addr, cmd);
debug("SF: 0x%p => cmd = { 0x%02x 0x%02x%02x%02x } chunk_len = %zu\n",
buf + actual, cmd[0], cmd[1], cmd[2], cmd[3], chunk_len);
ret = spi_flash_write_common(flash, cmd, sizeof(cmd),
buf + actual, chunk_len);
if (ret < 0) {
debug("SF: write failed\n");
break;
}
offset += chunk_len;
}
#ifdef CONFIG_SPI_FLASH_BAR
ret = clean_bar(flash);
#endif
return ret;
}
int spi_flash_read_common(struct spi_flash *flash, const u8 *cmd,
size_t cmd_len, void *data, size_t data_len)
{
struct spi_slave *spi = flash->spi;
int ret;
ret = spi_claim_bus(spi);
if (ret) {
debug("SF: unable to claim SPI bus\n");
return ret;
}
ret = spi_flash_cmd_read(spi, cmd, cmd_len, data, data_len);
if (ret < 0) {
debug("SF: read cmd failed\n");
return ret;
}
spi_release_bus(spi);
return ret;
}
/*
* TODO: remove the weak after all the other spi_flash_copy_mmap
* implementations removed from drivers
*/
void __weak spi_flash_copy_mmap(void *data, void *offset, size_t len)
{
#ifdef CONFIG_DMA
if (!dma_memcpy(data, offset, len))
return;
#endif
memcpy(data, offset, len);
}
int spi_flash_cmd_read_ops(struct spi_flash *flash, u32 offset,
size_t len, void *data)
{
struct spi_slave *spi = flash->spi;
u8 *cmd, cmdsz;
u32 remain_len, read_len, read_addr;
int bank_sel = 0;
int ret = -1;
/* Handle memory-mapped SPI */
if (flash->memory_map) {
ret = spi_claim_bus(spi);
if (ret) {
debug("SF: unable to claim SPI bus\n");
return ret;
}
spi_xfer(spi, 0, NULL, NULL, SPI_XFER_MMAP);
spi_flash_copy_mmap(data, flash->memory_map + offset, len);
spi_xfer(spi, 0, NULL, NULL, SPI_XFER_MMAP_END);
spi_release_bus(spi);
return 0;
}
cmdsz = SPI_FLASH_CMD_LEN + flash->dummy_byte;
cmd = calloc(1, cmdsz);
if (!cmd) {
debug("SF: Failed to allocate cmd\n");
return -ENOMEM;
}
cmd[0] = flash->read_cmd;
while (len) {
read_addr = offset;
#ifdef CONFIG_SF_DUAL_FLASH
if (flash->dual_flash > SF_SINGLE_FLASH)
spi_flash_dual(flash, &read_addr);
#endif
#ifdef CONFIG_SPI_FLASH_BAR
ret = write_bar(flash, read_addr);
if (ret < 0)
return ret;
bank_sel = flash->bank_curr;
#endif
remain_len = ((SPI_FLASH_16MB_BOUN << flash->shift) *
(bank_sel + 1)) - offset;
if (len < remain_len)
read_len = len;
else
read_len = remain_len;
spi_flash_addr(read_addr, cmd);
ret = spi_flash_read_common(flash, cmd, cmdsz, data, read_len);
if (ret < 0) {
debug("SF: read failed\n");
break;
}
offset += read_len;
len -= read_len;
data += read_len;
}
#ifdef CONFIG_SPI_FLASH_BAR
ret = clean_bar(flash);
#endif
free(cmd);
return ret;
}
#ifdef CONFIG_SPI_FLASH_SST
static int sst_byte_write(struct spi_flash *flash, u32 offset, const void *buf)
{
struct spi_slave *spi = flash->spi;
int ret;
u8 cmd[4] = {
CMD_SST_BP,
offset >> 16,
offset >> 8,
offset,
};
debug("BP[%02x]: 0x%p => cmd = { 0x%02x 0x%06x }\n",
spi_w8r8(spi, CMD_READ_STATUS), buf, cmd[0], offset);
ret = spi_flash_cmd_write_enable(flash);
if (ret)
return ret;
ret = spi_flash_cmd_write(spi, cmd, sizeof(cmd), buf, 1);
if (ret)
return ret;
return spi_flash_wait_till_ready(flash, SPI_FLASH_PROG_TIMEOUT);
}
int sst_write_wp(struct spi_flash *flash, u32 offset, size_t len,
const void *buf)
{
struct spi_slave *spi = flash->spi;
size_t actual, cmd_len;
int ret;
u8 cmd[4];
ret = spi_claim_bus(spi);
if (ret) {
debug("SF: Unable to claim SPI bus\n");
return ret;
}
/* If the data is not word aligned, write out leading single byte */
actual = offset % 2;
if (actual) {
ret = sst_byte_write(flash, offset, buf);
if (ret)
goto done;
}
offset += actual;
ret = spi_flash_cmd_write_enable(flash);
if (ret)
goto done;
cmd_len = 4;
cmd[0] = CMD_SST_AAI_WP;
cmd[1] = offset >> 16;
cmd[2] = offset >> 8;
cmd[3] = offset;
for (; actual < len - 1; actual += 2) {
debug("WP[%02x]: 0x%p => cmd = { 0x%02x 0x%06x }\n",
spi_w8r8(spi, CMD_READ_STATUS), buf + actual,
cmd[0], offset);
ret = spi_flash_cmd_write(spi, cmd, cmd_len,
buf + actual, 2);
if (ret) {
debug("SF: sst word program failed\n");
break;
}
ret = spi_flash_wait_till_ready(flash, SPI_FLASH_PROG_TIMEOUT);
if (ret)
break;
cmd_len = 1;
offset += 2;
}
if (!ret)
ret = spi_flash_cmd_write_disable(flash);
/* If there is a single trailing byte, write it out */
if (!ret && actual != len)
ret = sst_byte_write(flash, offset, buf + actual);
done:
debug("SF: sst: program %s %zu bytes @ 0x%zx\n",
ret ? "failure" : "success", len, offset - actual);
spi_release_bus(spi);
return ret;
}
int sst_write_bp(struct spi_flash *flash, u32 offset, size_t len,
const void *buf)
{
struct spi_slave *spi = flash->spi;
size_t actual;
int ret;
ret = spi_claim_bus(spi);
if (ret) {
debug("SF: Unable to claim SPI bus\n");
return ret;
}
for (actual = 0; actual < len; actual++) {
ret = sst_byte_write(flash, offset, buf + actual);
if (ret) {
debug("SF: sst byte program failed\n");
break;
}
offset++;
}
if (!ret)
ret = spi_flash_cmd_write_disable(flash);
debug("SF: sst: program %s %zu bytes @ 0x%zx\n",
ret ? "failure" : "success", len, offset - actual);
spi_release_bus(spi);
return ret;
}
#endif
#if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
static void stm_get_locked_range(struct spi_flash *flash, u8 sr, loff_t *ofs,
u64 *len)
{
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
int shift = ffs(mask) - 1;
int pow;
if (!(sr & mask)) {
/* No protection */
*ofs = 0;
*len = 0;
} else {
pow = ((sr & mask) ^ mask) >> shift;
*len = flash->size >> pow;
*ofs = flash->size - *len;
}
}
/*
* Return 1 if the entire region is locked, 0 otherwise
*/
static int stm_is_locked_sr(struct spi_flash *flash, loff_t ofs, u64 len,
u8 sr)
{
loff_t lock_offs;
u64 lock_len;
stm_get_locked_range(flash, sr, &lock_offs, &lock_len);
return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
}
/*
* Check if a region of the flash is (completely) locked. See stm_lock() for
* more info.
*
* Returns 1 if entire region is locked, 0 if any portion is unlocked, and
* negative on errors.
*/
int stm_is_locked(struct spi_flash *flash, u32 ofs, size_t len)
{
int status;
u8 sr;
status = read_sr(flash, &sr);
if (status < 0)
return status;
return stm_is_locked_sr(flash, ofs, len, sr);
}
/*
* Lock a region of the flash. Compatible with ST Micro and similar flash.
* Supports only the block protection bits BP{0,1,2} in the status register
* (SR). Does not support these features found in newer SR bitfields:
* - TB: top/bottom protect - only handle TB=0 (top protect)
* - SEC: sector/block protect - only handle SEC=0 (block protect)
* - CMP: complement protect - only support CMP=0 (range is not complemented)
*
* Sample table portion for 8MB flash (Winbond w25q64fw):
*
* SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
* --------------------------------------------------------------------------
* X | X | 0 | 0 | 0 | NONE | NONE
* 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
* 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
* 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
* 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
* 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
* 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
* X | X | 1 | 1 | 1 | 8 MB | ALL
*
* Returns negative on errors, 0 on success.
*/
int stm_lock(struct spi_flash *flash, u32 ofs, size_t len)
{
u8 status_old, status_new;
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
u8 shift = ffs(mask) - 1, pow, val;
int ret;
ret = read_sr(flash, &status_old);
if (ret < 0)
return ret;
/* SPI NOR always locks to the end */
if (ofs + len != flash->size) {
/* Does combined region extend to end? */
if (!stm_is_locked_sr(flash, ofs + len, flash->size - ofs - len,
status_old))
return -EINVAL;
len = flash->size - ofs;
}
/*
* Need smallest pow such that:
*
* 1 / (2^pow) <= (len / size)
*
* so (assuming power-of-2 size) we do:
*
* pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
*/
pow = ilog2(flash->size) - ilog2(len);
val = mask - (pow << shift);
if (val & ~mask)
return -EINVAL;
/* Don't "lock" with no region! */
if (!(val & mask))
return -EINVAL;
status_new = (status_old & ~mask) | val;
/* Only modify protection if it will not unlock other areas */
if ((status_new & mask) <= (status_old & mask))
return -EINVAL;
write_sr(flash, status_new);
return 0;
}
/*
* Unlock a region of the flash. See stm_lock() for more info
*
* Returns negative on errors, 0 on success.
*/
int stm_unlock(struct spi_flash *flash, u32 ofs, size_t len)
{
uint8_t status_old, status_new;
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
u8 shift = ffs(mask) - 1, pow, val;
int ret;
ret = read_sr(flash, &status_old);
if (ret < 0)
return ret;
/* Cannot unlock; would unlock larger region than requested */
if (stm_is_locked_sr(flash, ofs - flash->erase_size, flash->erase_size,
status_old))
return -EINVAL;
/*
* Need largest pow such that:
*
* 1 / (2^pow) >= (len / size)
*
* so (assuming power-of-2 size) we do:
*
* pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
*/
pow = ilog2(flash->size) - order_base_2(flash->size - (ofs + len));
if (ofs + len == flash->size) {
val = 0; /* fully unlocked */
} else {
val = mask - (pow << shift);
/* Some power-of-two sizes are not supported */
if (val & ~mask)
return -EINVAL;
}
status_new = (status_old & ~mask) | val;
/* Only modify protection if it will not lock other areas */
if ((status_new & mask) >= (status_old & mask))
return -EINVAL;
write_sr(flash, status_new);
return 0;
}
#endif
#ifdef CONFIG_SPI_FLASH_MACRONIX
static int macronix_quad_enable(struct spi_flash *flash)
{
u8 qeb_status;
int ret;
ret = read_sr(flash, &qeb_status);
if (ret < 0)
return ret;
if (qeb_status & STATUS_QEB_MXIC)
return 0;
ret = write_sr(flash, qeb_status | STATUS_QEB_MXIC);
if (ret < 0)
return ret;
/* read SR and check it */
ret = read_sr(flash, &qeb_status);
if (!(ret >= 0 && (qeb_status & STATUS_QEB_MXIC))) {
printf("SF: Macronix SR Quad bit not clear\n");
return -EINVAL;
}
return ret;
}
#endif
#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
static int spansion_quad_enable(struct spi_flash *flash)
{
u8 qeb_status;
int ret;
ret = read_cr(flash, &qeb_status);
if (ret < 0)
return ret;
if (qeb_status & STATUS_QEB_WINSPAN)
return 0;
ret = write_cr(flash, qeb_status | STATUS_QEB_WINSPAN);
if (ret < 0)
return ret;
/* read CR and check it */
ret = read_cr(flash, &qeb_status);
if (!(ret >= 0 && (qeb_status & STATUS_QEB_WINSPAN))) {
printf("SF: Spansion CR Quad bit not clear\n");
return -EINVAL;
}
return ret;
}
#endif
static const struct spi_flash_info *spi_flash_read_id(struct spi_flash *flash)
{
int tmp;
u8 id[SPI_FLASH_MAX_ID_LEN];
const struct spi_flash_info *info;
tmp = spi_flash_cmd(flash->spi, CMD_READ_ID, id, SPI_FLASH_MAX_ID_LEN);
if (tmp < 0) {
printf("SF: error %d reading JEDEC ID\n", tmp);
return ERR_PTR(tmp);
}
info = spi_flash_ids;
for (; info->name != NULL; info++) {
if (info->id_len) {
if (!memcmp(info->id, id, info->id_len))
return info;
}
}
printf("SF: unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
id[0], id[1], id[2]);
return ERR_PTR(-ENODEV);
}
static int set_quad_mode(struct spi_flash *flash,
const struct spi_flash_info *info)
{
switch (JEDEC_MFR(info)) {
#ifdef CONFIG_SPI_FLASH_MACRONIX
case SPI_FLASH_CFI_MFR_MACRONIX:
return macronix_quad_enable(flash);
#endif
#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
case SPI_FLASH_CFI_MFR_SPANSION:
case SPI_FLASH_CFI_MFR_WINBOND:
return spansion_quad_enable(flash);
#endif
#ifdef CONFIG_SPI_FLASH_STMICRO
case SPI_FLASH_CFI_MFR_STMICRO:
debug("SF: QEB is volatile for %02x flash\n", JEDEC_MFR(info));
return 0;
#endif
default:
printf("SF: Need set QEB func for %02x flash\n",
JEDEC_MFR(info));
return -1;
}
}
#if CONFIG_IS_ENABLED(OF_CONTROL)
int spi_flash_decode_fdt(struct spi_flash *flash)
{
#ifdef CONFIG_DM_SPI_FLASH
fdt_addr_t addr;
fdt_size_t size;
addr = dev_read_addr_size(flash->dev, "memory-map", &size);
if (addr == FDT_ADDR_T_NONE) {
debug("%s: Cannot decode address\n", __func__);
return 0;
}
if (flash->size > size) {
debug("%s: Memory map must cover entire device\n", __func__);
return -1;
}
flash->memory_map = map_sysmem(addr, size);
#endif
return 0;
}
#endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
int spi_flash_scan(struct spi_flash *flash)
{
struct spi_slave *spi = flash->spi;
const struct spi_flash_info *info = NULL;
int ret;
info = spi_flash_read_id(flash);
if (IS_ERR_OR_NULL(info))
return -ENOENT;
/*
* Flash powers up read-only, so clear BP# bits.
*
* Note on some flash (like Macronix), QE (quad enable) bit is in the
* same status register as BP# bits, and we need preserve its original
* value during a reboot cycle as this is required by some platforms
* (like Intel ICH SPI controller working under descriptor mode).
*/
if (JEDEC_MFR(info) == SPI_FLASH_CFI_MFR_ATMEL ||
(JEDEC_MFR(info) == SPI_FLASH_CFI_MFR_SST) ||
(JEDEC_MFR(info) == SPI_FLASH_CFI_MFR_MACRONIX)) {
u8 sr = 0;
if (JEDEC_MFR(info) == SPI_FLASH_CFI_MFR_MACRONIX) {
read_sr(flash, &sr);
sr &= STATUS_QEB_MXIC;
}
write_sr(flash, sr);
}
flash->name = info->name;
flash->memory_map = spi->memory_map;
if (info->flags & SST_WR)
flash->flags |= SNOR_F_SST_WR;
#ifndef CONFIG_DM_SPI_FLASH
flash->write = spi_flash_cmd_write_ops;
#if defined(CONFIG_SPI_FLASH_SST)
if (flash->flags & SNOR_F_SST_WR) {
if (spi->mode & SPI_TX_BYTE)
flash->write = sst_write_bp;
else
flash->write = sst_write_wp;
}
#endif
flash->erase = spi_flash_cmd_erase_ops;
flash->read = spi_flash_cmd_read_ops;
#endif
#if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
/* NOR protection support for STmicro/Micron chips and similar */
if (JEDEC_MFR(info) == SPI_FLASH_CFI_MFR_STMICRO ||
JEDEC_MFR(info) == SPI_FLASH_CFI_MFR_SST) {
flash->flash_lock = stm_lock;
flash->flash_unlock = stm_unlock;
flash->flash_is_locked = stm_is_locked;
}
#endif
/* Compute the flash size */
flash->shift = (flash->dual_flash & SF_DUAL_PARALLEL_FLASH) ? 1 : 0;
flash->page_size = info->page_size;
/*
* The Spansion S25FL032P and S25FL064P have 256b pages, yet use the
* 0x4d00 Extended JEDEC code. The rest of the Spansion flashes with
* the 0x4d00 Extended JEDEC code have 512b pages. All of the others
* have 256b pages.
*/
if (JEDEC_EXT(info) == 0x4d00) {
if ((JEDEC_ID(info) != 0x0215) &&
(JEDEC_ID(info) != 0x0216))
flash->page_size = 512;
}
flash->page_size <<= flash->shift;
flash->sector_size = info->sector_size << flash->shift;
flash->size = flash->sector_size * info->n_sectors << flash->shift;
#ifdef CONFIG_SF_DUAL_FLASH
if (flash->dual_flash & SF_DUAL_STACKED_FLASH)
flash->size <<= 1;
#endif
#ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS
/* Compute erase sector and command */
if (info->flags & SECT_4K) {
flash->erase_cmd = CMD_ERASE_4K;
flash->erase_size = 4096 << flash->shift;
} else
#endif
{
flash->erase_cmd = CMD_ERASE_64K;
flash->erase_size = flash->sector_size;
}
/* Now erase size becomes valid sector size */
flash->sector_size = flash->erase_size;
/* Look for read commands */
flash->read_cmd = CMD_READ_ARRAY_FAST;
if (spi->mode & SPI_RX_SLOW)
flash->read_cmd = CMD_READ_ARRAY_SLOW;
else if (spi->mode & SPI_RX_QUAD && info->flags & RD_QUAD)
flash->read_cmd = CMD_READ_QUAD_OUTPUT_FAST;
else if (spi->mode & SPI_RX_DUAL && info->flags & RD_DUAL)
flash->read_cmd = CMD_READ_DUAL_OUTPUT_FAST;
/* Look for write commands */
if (info->flags & WR_QPP && spi->mode & SPI_TX_QUAD)
flash->write_cmd = CMD_QUAD_PAGE_PROGRAM;
else
/* Go for default supported write cmd */
flash->write_cmd = CMD_PAGE_PROGRAM;
/* Set the quad enable bit - only for quad commands */
if ((flash->read_cmd == CMD_READ_QUAD_OUTPUT_FAST) ||
(flash->read_cmd == CMD_READ_QUAD_IO_FAST) ||
(flash->write_cmd == CMD_QUAD_PAGE_PROGRAM)) {
ret = set_quad_mode(flash, info);
if (ret) {
debug("SF: Fail to set QEB for %02x\n",
JEDEC_MFR(info));
return -EINVAL;
}
}
/* Read dummy_byte: dummy byte is determined based on the
* dummy cycles of a particular command.
* Fast commands - dummy_byte = dummy_cycles/8
* I/O commands- dummy_byte = (dummy_cycles * no.of lines)/8
* For I/O commands except cmd[0] everything goes on no.of lines
* based on particular command but incase of fast commands except
* data all go on single line irrespective of command.
*/
switch (flash->read_cmd) {
case CMD_READ_QUAD_IO_FAST:
flash->dummy_byte = 2;
break;
case CMD_READ_ARRAY_SLOW:
flash->dummy_byte = 0;
break;
default:
flash->dummy_byte = 1;
}
#ifdef CONFIG_SPI_FLASH_STMICRO
if (info->flags & E_FSR)
flash->flags |= SNOR_F_USE_FSR;
#endif
/* Configure the BAR - discover bank cmds and read current bank */
#ifdef CONFIG_SPI_FLASH_BAR
ret = read_bar(flash, info);
if (ret < 0)
return ret;
#endif
#if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
ret = spi_flash_decode_fdt(flash);
if (ret) {
debug("SF: FDT decode error\n");
return -EINVAL;
}
#endif
#ifndef CONFIG_SPL_BUILD
printf("SF: Detected %s with page size ", flash->name);
print_size(flash->page_size, ", erase size ");
print_size(flash->erase_size, ", total ");
print_size(flash->size, "");
if (flash->memory_map)
printf(", mapped at %p", flash->memory_map);
puts("\n");
#endif
#ifndef CONFIG_SPI_FLASH_BAR
if (((flash->dual_flash == SF_SINGLE_FLASH) &&
(flash->size > SPI_FLASH_16MB_BOUN)) ||
((flash->dual_flash > SF_SINGLE_FLASH) &&
(flash->size > SPI_FLASH_16MB_BOUN << 1))) {
puts("SF: Warning - Only lower 16MiB accessible,");
puts(" Full access #define CONFIG_SPI_FLASH_BAR\n");
}
#endif
return 0;
}