blob: bdde71691887f3f8d461b0b3e46bd3159468b940 [file] [log] [blame]
/*
* (C) Copyright 2010
* Texas Instruments, <www.ti.com>
*
* Aneesh V <aneesh@ti.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <dm.h>
#include <spl.h>
#include <asm/u-boot.h>
#include <nand.h>
#include <fat.h>
#include <version.h>
#include <i2c.h>
#include <image.h>
#include <malloc.h>
#include <dm/root.h>
#include <linux/compiler.h>
DECLARE_GLOBAL_DATA_PTR;
#ifndef CONFIG_SYS_UBOOT_START
#define CONFIG_SYS_UBOOT_START CONFIG_SYS_TEXT_BASE
#endif
#ifndef CONFIG_SYS_MONITOR_LEN
/* Unknown U-Boot size, let's assume it will not be more than 200 KB */
#define CONFIG_SYS_MONITOR_LEN (200 * 1024)
#endif
u32 *boot_params_ptr = NULL;
struct spl_image_info spl_image;
/* Define board data structure */
static bd_t bdata __attribute__ ((section(".data")));
/*
* Default function to determine if u-boot or the OS should
* be started. This implementation always returns 1.
*
* Please implement your own board specific funcion to do this.
*
* RETURN
* 0 to not start u-boot
* positive if u-boot should start
*/
#ifdef CONFIG_SPL_OS_BOOT
__weak int spl_start_uboot(void)
{
puts("SPL: Please implement spl_start_uboot() for your board\n");
puts("SPL: Direct Linux boot not active!\n");
return 1;
}
#endif
/*
* Weak default function for board specific cleanup/preparation before
* Linux boot. Some boards/platforms might not need it, so just provide
* an empty stub here.
*/
__weak void spl_board_prepare_for_linux(void)
{
/* Nothing to do! */
}
__weak void spl_board_prepare_for_boot(void)
{
/* Nothing to do! */
}
void spl_set_header_raw_uboot(void)
{
spl_image.size = CONFIG_SYS_MONITOR_LEN;
spl_image.entry_point = CONFIG_SYS_UBOOT_START;
spl_image.load_addr = CONFIG_SYS_TEXT_BASE;
spl_image.os = IH_OS_U_BOOT;
spl_image.name = "U-Boot";
}
int spl_parse_image_header(const struct image_header *header)
{
u32 header_size = sizeof(struct image_header);
if (image_get_magic(header) == IH_MAGIC) {
if (spl_image.flags & SPL_COPY_PAYLOAD_ONLY) {
/*
* On some system (e.g. powerpc), the load-address and
* entry-point is located at address 0. We can't load
* to 0-0x40. So skip header in this case.
*/
spl_image.load_addr = image_get_load(header);
spl_image.entry_point = image_get_ep(header);
spl_image.size = image_get_data_size(header);
} else {
spl_image.entry_point = image_get_load(header);
/* Load including the header */
spl_image.load_addr = spl_image.entry_point -
header_size;
spl_image.size = image_get_data_size(header) +
header_size;
}
spl_image.os = image_get_os(header);
spl_image.name = image_get_name(header);
debug("spl: payload image: %.*s load addr: 0x%x size: %d\n",
(int)sizeof(spl_image.name), spl_image.name,
spl_image.load_addr, spl_image.size);
} else {
#ifdef CONFIG_SPL_PANIC_ON_RAW_IMAGE
/*
* CONFIG_SPL_PANIC_ON_RAW_IMAGE is defined when the
* code which loads images in SPL cannot guarantee that
* absolutely all read errors will be reported.
* An example is the LPC32XX MLC NAND driver, which
* will consider that a completely unreadable NAND block
* is bad, and thus should be skipped silently.
*/
panic("** no mkimage signature but raw image not supported");
#elif defined(CONFIG_SPL_ABORT_ON_RAW_IMAGE)
/* Signature not found, proceed to other boot methods. */
return -EINVAL;
#else
/* Signature not found - assume u-boot.bin */
debug("mkimage signature not found - ih_magic = %x\n",
header->ih_magic);
spl_set_header_raw_uboot();
#endif
}
return 0;
}
__weak void __noreturn jump_to_image_no_args(struct spl_image_info *spl_image)
{
typedef void __noreturn (*image_entry_noargs_t)(void);
image_entry_noargs_t image_entry =
(image_entry_noargs_t)(unsigned long)spl_image->entry_point;
debug("image entry point: 0x%X\n", spl_image->entry_point);
image_entry();
}
#ifndef CONFIG_SPL_LOAD_FIT_ADDRESS
# define CONFIG_SPL_LOAD_FIT_ADDRESS 0
#endif
#ifdef CONFIG_SPL_RAM_DEVICE
static ulong spl_ram_load_read(struct spl_load_info *load, ulong sector,
ulong count, void *buf)
{
debug("%s: sector %lx, count %lx, buf %lx\n",
__func__, sector, count, (ulong)buf);
memcpy(buf, (void *)(CONFIG_SPL_LOAD_FIT_ADDRESS + sector), count);
return count;
}
static int spl_ram_load_image(void)
{
struct image_header *header;
header = (struct image_header *)CONFIG_SPL_LOAD_FIT_ADDRESS;
if (IS_ENABLED(CONFIG_SPL_LOAD_FIT) &&
image_get_magic(header) == FDT_MAGIC) {
struct spl_load_info load;
debug("Found FIT\n");
load.bl_len = 1;
load.read = spl_ram_load_read;
spl_load_simple_fit(&load, 0, header);
} else {
debug("Legacy image\n");
/*
* Get the header. It will point to an address defined by
* handoff which will tell where the image located inside
* the flash. For now, it will temporary fixed to address
* pointed by U-Boot.
*/
header = (struct image_header *)
(CONFIG_SYS_TEXT_BASE - sizeof(struct image_header));
spl_parse_image_header(header);
}
return 0;
}
#endif
int spl_init(void)
{
int ret;
debug("spl_init()\n");
#if defined(CONFIG_SYS_MALLOC_F_LEN)
gd->malloc_limit = CONFIG_SYS_MALLOC_F_LEN;
gd->malloc_ptr = 0;
#endif
if (CONFIG_IS_ENABLED(OF_CONTROL)) {
ret = fdtdec_setup();
if (ret) {
debug("fdtdec_setup() returned error %d\n", ret);
return ret;
}
}
if (IS_ENABLED(CONFIG_SPL_DM)) {
ret = dm_init_and_scan(true);
if (ret) {
debug("dm_init_and_scan() returned error %d\n", ret);
return ret;
}
}
gd->flags |= GD_FLG_SPL_INIT;
return 0;
}
#ifndef BOOT_DEVICE_NONE
#define BOOT_DEVICE_NONE 0xdeadbeef
#endif
static u32 spl_boot_list[] = {
BOOT_DEVICE_NONE,
BOOT_DEVICE_NONE,
BOOT_DEVICE_NONE,
BOOT_DEVICE_NONE,
BOOT_DEVICE_NONE,
};
__weak void board_boot_order(u32 *spl_boot_list)
{
spl_boot_list[0] = spl_boot_device();
}
#ifdef CONFIG_SPL_BOARD_LOAD_IMAGE
__weak void spl_board_announce_boot_device(void) { }
#endif
#ifdef CONFIG_SPL_LIBCOMMON_SUPPORT
struct boot_device_name {
u32 boot_dev;
const char *name;
};
struct boot_device_name boot_name_table[] = {
#ifdef CONFIG_SPL_RAM_DEVICE
{ BOOT_DEVICE_RAM, "RAM" },
#endif
#ifdef CONFIG_SPL_MMC_SUPPORT
{ BOOT_DEVICE_MMC1, "MMC1" },
{ BOOT_DEVICE_MMC2, "MMC2" },
{ BOOT_DEVICE_MMC2_2, "MMC2_2" },
#endif
#ifdef CONFIG_SPL_NAND_SUPPORT
{ BOOT_DEVICE_NAND, "NAND" },
#endif
#ifdef CONFIG_SPL_ONENAND_SUPPORT
{ BOOT_DEVICE_ONENAND, "OneNAND" },
#endif
#ifdef CONFIG_SPL_NOR_SUPPORT
{ BOOT_DEVICE_NOR, "NOR" },
#endif
#ifdef CONFIG_SPL_YMODEM_SUPPORT
{ BOOT_DEVICE_UART, "UART" },
#endif
#ifdef CONFIG_SPL_SPI_SUPPORT
{ BOOT_DEVICE_SPI, "SPI" },
#endif
#ifdef CONFIG_SPL_ETH_SUPPORT
#ifdef CONFIG_SPL_ETH_DEVICE
{ BOOT_DEVICE_CPGMAC, "eth device" },
#else
{ BOOT_DEVICE_CPGMAC, "net" },
#endif
#endif
#ifdef CONFIG_SPL_USBETH_SUPPORT
{ BOOT_DEVICE_USBETH, "USB eth" },
#endif
#ifdef CONFIG_SPL_USB_SUPPORT
{ BOOT_DEVICE_USB, "USB" },
#endif
#ifdef CONFIG_SPL_SATA_SUPPORT
{ BOOT_DEVICE_SATA, "SATA" },
#endif
/* Keep this entry last */
{ BOOT_DEVICE_NONE, "unknown boot device" },
};
static void announce_boot_device(u32 boot_device)
{
int i;
puts("Trying to boot from ");
#ifdef CONFIG_SPL_BOARD_LOAD_IMAGE
if (boot_device == BOOT_DEVICE_BOARD) {
spl_board_announce_boot_device();
puts("\n");
return;
}
#endif
for (i = 0; i < ARRAY_SIZE(boot_name_table) - 1; i++) {
if (boot_name_table[i].boot_dev == boot_device)
break;
}
printf("%s\n", boot_name_table[i].name);
}
#else
static inline void announce_boot_device(u32 boot_device) { }
#endif
static int spl_load_image(u32 boot_device)
{
switch (boot_device) {
#ifdef CONFIG_SPL_RAM_DEVICE
case BOOT_DEVICE_RAM:
return spl_ram_load_image();
#endif
#ifdef CONFIG_SPL_MMC_SUPPORT
case BOOT_DEVICE_MMC1:
case BOOT_DEVICE_MMC2:
case BOOT_DEVICE_MMC2_2:
return spl_mmc_load_image(boot_device);
#endif
#ifdef CONFIG_SPL_NAND_SUPPORT
case BOOT_DEVICE_NAND:
return spl_nand_load_image();
#endif
#ifdef CONFIG_SPL_ONENAND_SUPPORT
case BOOT_DEVICE_ONENAND:
return spl_onenand_load_image();
#endif
#ifdef CONFIG_SPL_NOR_SUPPORT
case BOOT_DEVICE_NOR:
return spl_nor_load_image();
#endif
#ifdef CONFIG_SPL_YMODEM_SUPPORT
case BOOT_DEVICE_UART:
return spl_ymodem_load_image();
#endif
#ifdef CONFIG_SPL_SPI_SUPPORT
case BOOT_DEVICE_SPI:
return spl_spi_load_image();
#endif
#ifdef CONFIG_SPL_ETH_SUPPORT
case BOOT_DEVICE_CPGMAC:
#ifdef CONFIG_SPL_ETH_DEVICE
return spl_net_load_image(CONFIG_SPL_ETH_DEVICE);
#else
return spl_net_load_image(NULL);
#endif
#endif
#ifdef CONFIG_SPL_USBETH_SUPPORT
case BOOT_DEVICE_USBETH:
return spl_net_load_image("usb_ether");
#endif
#ifdef CONFIG_SPL_USB_SUPPORT
case BOOT_DEVICE_USB:
return spl_usb_load_image();
#endif
#ifdef CONFIG_SPL_SATA_SUPPORT
case BOOT_DEVICE_SATA:
return spl_sata_load_image();
#endif
#ifdef CONFIG_SPL_BOARD_LOAD_IMAGE
case BOOT_DEVICE_BOARD:
return spl_board_load_image();
#endif
default:
#if defined(CONFIG_SPL_SERIAL_SUPPORT) && defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
puts("SPL: Unsupported Boot Device!\n");
#endif
return -ENODEV;
}
return -EINVAL;
}
void board_init_r(gd_t *dummy1, ulong dummy2)
{
int i;
debug(">>spl:board_init_r()\n");
#if defined(CONFIG_SYS_SPL_MALLOC_START)
mem_malloc_init(CONFIG_SYS_SPL_MALLOC_START,
CONFIG_SYS_SPL_MALLOC_SIZE);
gd->flags |= GD_FLG_FULL_MALLOC_INIT;
#endif
if (!(gd->flags & GD_FLG_SPL_INIT)) {
if (spl_init())
hang();
}
#ifndef CONFIG_PPC
/*
* timer_init() does not exist on PPC systems. The timer is initialized
* and enabled (decrementer) in interrupt_init() here.
*/
timer_init();
#endif
#ifdef CONFIG_SPL_BOARD_INIT
spl_board_init();
#endif
board_boot_order(spl_boot_list);
for (i = 0; i < ARRAY_SIZE(spl_boot_list) &&
spl_boot_list[i] != BOOT_DEVICE_NONE; i++) {
announce_boot_device(spl_boot_list[i]);
if (!spl_load_image(spl_boot_list[i]))
break;
}
if (i == ARRAY_SIZE(spl_boot_list) ||
spl_boot_list[i] == BOOT_DEVICE_NONE) {
puts("SPL: failed to boot from all boot devices\n");
hang();
}
switch (spl_image.os) {
case IH_OS_U_BOOT:
debug("Jumping to U-Boot\n");
break;
#ifdef CONFIG_SPL_OS_BOOT
case IH_OS_LINUX:
debug("Jumping to Linux\n");
spl_board_prepare_for_linux();
jump_to_image_linux((void *)CONFIG_SYS_SPL_ARGS_ADDR);
#endif
default:
debug("Unsupported OS image.. Jumping nevertheless..\n");
}
#if defined(CONFIG_SYS_MALLOC_F_LEN) && !defined(CONFIG_SYS_SPL_MALLOC_SIZE)
debug("SPL malloc() used %#lx bytes (%ld KB)\n", gd->malloc_ptr,
gd->malloc_ptr / 1024);
#endif
debug("loaded - jumping to U-Boot...");
spl_board_prepare_for_boot();
jump_to_image_no_args(&spl_image);
}
/*
* This requires UART clocks to be enabled. In order for this to work the
* caller must ensure that the gd pointer is valid.
*/
void preloader_console_init(void)
{
gd->bd = &bdata;
gd->baudrate = CONFIG_BAUDRATE;
serial_init(); /* serial communications setup */
gd->have_console = 1;
puts("\nU-Boot SPL " PLAIN_VERSION " (" U_BOOT_DATE " - " \
U_BOOT_TIME ")\n");
#ifdef CONFIG_SPL_DISPLAY_PRINT
spl_display_print();
#endif
}
/**
* spl_relocate_stack_gd() - Relocate stack ready for board_init_r() execution
*
* Sometimes board_init_f() runs with a stack in SRAM but we want to use SDRAM
* for the main board_init_r() execution. This is typically because we need
* more stack space for things like the MMC sub-system.
*
* This function calculates the stack position, copies the global_data into
* place, sets the new gd (except for ARM, for which setting GD within a C
* function may not always work) and returns the new stack position. The
* caller is responsible for setting up the sp register and, in the case
* of ARM, setting up gd.
*
* All of this is done using the same layout and alignments as done in
* board_init_f_init_reserve() / board_init_f_alloc_reserve().
*
* @return new stack location, or 0 to use the same stack
*/
ulong spl_relocate_stack_gd(void)
{
#ifdef CONFIG_SPL_STACK_R
gd_t *new_gd;
ulong ptr = CONFIG_SPL_STACK_R_ADDR;
#ifdef CONFIG_SPL_SYS_MALLOC_SIMPLE
if (CONFIG_SPL_STACK_R_MALLOC_SIMPLE_LEN) {
if (!(gd->flags & GD_FLG_SPL_INIT))
panic_str("spl_init must be called before heap reloc");
ptr -= CONFIG_SPL_STACK_R_MALLOC_SIMPLE_LEN;
gd->malloc_base = ptr;
gd->malloc_limit = CONFIG_SPL_STACK_R_MALLOC_SIMPLE_LEN;
gd->malloc_ptr = 0;
}
#endif
/* Get stack position: use 8-byte alignment for ABI compliance */
ptr = CONFIG_SPL_STACK_R_ADDR - roundup(sizeof(gd_t),16);
new_gd = (gd_t *)ptr;
memcpy(new_gd, (void *)gd, sizeof(gd_t));
#if !defined(CONFIG_ARM)
gd = new_gd;
#endif
return ptr;
#else
return 0;
#endif
}