| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) 2006-2009 Freescale Semiconductor, Inc. |
| * |
| * Dave Liu <daveliu@freescale.com> |
| * based on source code of Shlomi Gridish |
| */ |
| |
| #include <common.h> |
| #include <malloc.h> |
| #include <command.h> |
| #include <asm/global_data.h> |
| #include <linux/errno.h> |
| #include <asm/io.h> |
| #include <linux/immap_qe.h> |
| #include <fsl_qe.h> |
| #include <mmc.h> |
| #include <u-boot/crc.h> |
| |
| #ifdef CONFIG_ARCH_LS1021A |
| #include <asm/arch/immap_ls102xa.h> |
| #endif |
| #ifdef CONFIG_ARM64 |
| #include <asm/armv8/mmu.h> |
| #include <asm/arch/cpu.h> |
| #endif |
| |
| #define MPC85xx_DEVDISR_QE_DISABLE 0x1 |
| |
| qe_map_t *qe_immr; |
| #ifdef CONFIG_QE |
| static qe_snum_t snums[QE_NUM_OF_SNUM]; |
| #endif |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| void qe_issue_cmd(uint cmd, uint sbc, u8 mcn, u32 cmd_data) |
| { |
| u32 cecr; |
| |
| if (cmd == QE_RESET) { |
| out_be32(&qe_immr->cp.cecr, (u32)(cmd | QE_CR_FLG)); |
| } else { |
| out_be32(&qe_immr->cp.cecdr, cmd_data); |
| out_be32(&qe_immr->cp.cecr, (sbc | QE_CR_FLG | |
| ((u32)mcn << QE_CR_PROTOCOL_SHIFT) | cmd)); |
| } |
| /* Wait for the QE_CR_FLG to clear */ |
| do { |
| cecr = in_be32(&qe_immr->cp.cecr); |
| } while (cecr & QE_CR_FLG); |
| } |
| |
| #ifdef CONFIG_QE |
| uint qe_muram_alloc(uint size, uint align) |
| { |
| uint retloc; |
| uint align_mask, off; |
| uint savebase; |
| |
| align_mask = align - 1; |
| savebase = gd->arch.mp_alloc_base; |
| |
| off = gd->arch.mp_alloc_base & align_mask; |
| if (off != 0) |
| gd->arch.mp_alloc_base += (align - off); |
| |
| off = size & align_mask; |
| if (off != 0) |
| size += (align - off); |
| |
| if ((gd->arch.mp_alloc_base + size) >= gd->arch.mp_alloc_top) { |
| gd->arch.mp_alloc_base = savebase; |
| printf("%s: ran out of ram.\n", __func__); |
| } |
| |
| retloc = gd->arch.mp_alloc_base; |
| gd->arch.mp_alloc_base += size; |
| |
| memset((void *)&qe_immr->muram[retloc], 0, size); |
| |
| __asm__ __volatile__("sync"); |
| |
| return retloc; |
| } |
| #endif |
| |
| void *qe_muram_addr(uint offset) |
| { |
| return (void *)&qe_immr->muram[offset]; |
| } |
| |
| #ifdef CONFIG_QE |
| static void qe_sdma_init(void) |
| { |
| sdma_t *p; |
| uint sdma_buffer_base; |
| |
| p = (sdma_t *)&qe_immr->sdma; |
| |
| /* All of DMA transaction in bus 1 */ |
| out_be32(&p->sdaqr, 0); |
| out_be32(&p->sdaqmr, 0); |
| |
| /* Allocate 2KB temporary buffer for sdma */ |
| sdma_buffer_base = qe_muram_alloc(2048, 4096); |
| out_be32(&p->sdwbcr, sdma_buffer_base & QE_SDEBCR_BA_MASK); |
| |
| /* Clear sdma status */ |
| out_be32(&p->sdsr, 0x03000000); |
| |
| /* Enable global mode on bus 1, and 2KB buffer size */ |
| out_be32(&p->sdmr, QE_SDMR_GLB_1_MSK | (0x3 << QE_SDMR_CEN_SHIFT)); |
| } |
| |
| /* This table is a list of the serial numbers of the Threads, taken from the |
| * "SNUM Table" chart in the QE Reference Manual. The order is not important, |
| * we just need to know what the SNUMs are for the threads. |
| */ |
| static u8 thread_snum[] = { |
| /* Evthreads 16-29 are not supported in MPC8309 */ |
| #if !defined(CONFIG_ARCH_MPC8309) |
| 0x04, 0x05, 0x0c, 0x0d, |
| 0x14, 0x15, 0x1c, 0x1d, |
| 0x24, 0x25, 0x2c, 0x2d, |
| 0x34, 0x35, |
| #endif |
| 0x88, 0x89, 0x98, 0x99, |
| 0xa8, 0xa9, 0xb8, 0xb9, |
| 0xc8, 0xc9, 0xd8, 0xd9, |
| 0xe8, 0xe9, 0x08, 0x09, |
| 0x18, 0x19, 0x28, 0x29, |
| 0x38, 0x39, 0x48, 0x49, |
| 0x58, 0x59, 0x68, 0x69, |
| 0x78, 0x79, 0x80, 0x81 |
| }; |
| |
| static void qe_snums_init(void) |
| { |
| int i; |
| |
| for (i = 0; i < QE_NUM_OF_SNUM; i++) { |
| snums[i].state = QE_SNUM_STATE_FREE; |
| snums[i].num = thread_snum[i]; |
| } |
| } |
| |
| int qe_get_snum(void) |
| { |
| int snum = -EBUSY; |
| int i; |
| |
| for (i = 0; i < QE_NUM_OF_SNUM; i++) { |
| if (snums[i].state == QE_SNUM_STATE_FREE) { |
| snums[i].state = QE_SNUM_STATE_USED; |
| snum = snums[i].num; |
| break; |
| } |
| } |
| |
| return snum; |
| } |
| |
| void qe_put_snum(u8 snum) |
| { |
| int i; |
| |
| for (i = 0; i < QE_NUM_OF_SNUM; i++) { |
| if (snums[i].num == snum) { |
| snums[i].state = QE_SNUM_STATE_FREE; |
| break; |
| } |
| } |
| } |
| |
| #ifdef CONFIG_TFABOOT |
| void qe_init(uint qe_base) |
| { |
| enum boot_src src = get_boot_src(); |
| |
| /* Init the QE IMMR base */ |
| qe_immr = (qe_map_t *)qe_base; |
| |
| if (src == BOOT_SOURCE_IFC_NOR) { |
| /* |
| * Upload microcode to IRAM for those SOCs |
| * which do not have ROM in QE. |
| */ |
| qe_upload_firmware((const void *)(CONFIG_SYS_QE_FW_ADDR + |
| CONFIG_SYS_FSL_IFC_BASE)); |
| |
| /* enable the microcode in IRAM */ |
| out_be32(&qe_immr->iram.iready, QE_IRAM_READY); |
| } |
| |
| gd->arch.mp_alloc_base = QE_DATAONLY_BASE; |
| gd->arch.mp_alloc_top = gd->arch.mp_alloc_base + QE_DATAONLY_SIZE; |
| |
| qe_sdma_init(); |
| qe_snums_init(); |
| } |
| #else |
| void qe_init(uint qe_base) |
| { |
| /* Init the QE IMMR base */ |
| qe_immr = (qe_map_t *)qe_base; |
| |
| #ifdef CONFIG_SYS_QE_FMAN_FW_IN_NOR |
| /* |
| * Upload microcode to IRAM for those SOCs which do not have ROM in QE. |
| */ |
| qe_upload_firmware((const void *)CONFIG_SYS_QE_FW_ADDR); |
| |
| /* enable the microcode in IRAM */ |
| out_be32(&qe_immr->iram.iready, QE_IRAM_READY); |
| #endif |
| |
| gd->arch.mp_alloc_base = QE_DATAONLY_BASE; |
| gd->arch.mp_alloc_top = gd->arch.mp_alloc_base + QE_DATAONLY_SIZE; |
| |
| qe_sdma_init(); |
| qe_snums_init(); |
| } |
| #endif |
| #endif |
| |
| #ifdef CONFIG_U_QE |
| #ifdef CONFIG_TFABOOT |
| void u_qe_init(void) |
| { |
| enum boot_src src = get_boot_src(); |
| |
| qe_immr = (qe_map_t *)(CONFIG_SYS_IMMR + QE_IMMR_OFFSET); |
| |
| void *addr = (void *)CONFIG_SYS_QE_FW_ADDR; |
| |
| if (src == BOOT_SOURCE_IFC_NOR) |
| addr = (void *)(CONFIG_SYS_QE_FW_ADDR + |
| CONFIG_SYS_FSL_IFC_BASE); |
| |
| if (src == BOOT_SOURCE_QSPI_NOR) |
| addr = (void *)(CONFIG_SYS_QE_FW_ADDR + |
| CONFIG_SYS_FSL_QSPI_BASE); |
| |
| if (src == BOOT_SOURCE_SD_MMC) { |
| int dev = CONFIG_SYS_MMC_ENV_DEV; |
| u32 cnt = CONFIG_SYS_QE_FMAN_FW_LENGTH / 512; |
| u32 blk = CONFIG_SYS_QE_FW_ADDR / 512; |
| |
| if (mmc_initialize(gd->bd)) { |
| printf("%s: mmc_initialize() failed\n", __func__); |
| return; |
| } |
| addr = malloc(CONFIG_SYS_QE_FMAN_FW_LENGTH); |
| struct mmc *mmc = find_mmc_device(CONFIG_SYS_MMC_ENV_DEV); |
| |
| if (!mmc) { |
| free(addr); |
| printf("\nMMC cannot find device for ucode\n"); |
| } else { |
| printf("\nMMC read: dev # %u, block # %u, count %u ...\n", |
| dev, blk, cnt); |
| mmc_init(mmc); |
| (void)blk_dread(mmc_get_blk_desc(mmc), blk, cnt, |
| addr); |
| } |
| } |
| if (!u_qe_upload_firmware(addr)) |
| out_be32(&qe_immr->iram.iready, QE_IRAM_READY); |
| if (src == BOOT_SOURCE_SD_MMC) |
| free(addr); |
| } |
| #else |
| void u_qe_init(void) |
| { |
| qe_immr = (qe_map_t *)(CONFIG_SYS_IMMR + QE_IMMR_OFFSET); |
| |
| void *addr = (void *)CONFIG_SYS_QE_FW_ADDR; |
| #ifdef CONFIG_SYS_QE_FMAN_FW_IN_MMC |
| int dev = CONFIG_SYS_MMC_ENV_DEV; |
| u32 cnt = CONFIG_SYS_QE_FMAN_FW_LENGTH / 512; |
| u32 blk = CONFIG_SYS_QE_FW_ADDR / 512; |
| |
| if (mmc_initialize(gd->bd)) { |
| printf("%s: mmc_initialize() failed\n", __func__); |
| return; |
| } |
| addr = malloc(CONFIG_SYS_QE_FMAN_FW_LENGTH); |
| struct mmc *mmc = find_mmc_device(CONFIG_SYS_MMC_ENV_DEV); |
| |
| if (!mmc) { |
| printf("\nMMC cannot find device for ucode\n"); |
| } else { |
| printf("\nMMC read: dev # %u, block # %u, count %u ...\n", |
| dev, blk, cnt); |
| mmc_init(mmc); |
| (void)blk_dread(mmc_get_blk_desc(mmc), blk, cnt, |
| addr); |
| } |
| #endif |
| if (!u_qe_upload_firmware(addr)) |
| out_be32(&qe_immr->iram.iready, QE_IRAM_READY); |
| #ifdef CONFIG_SYS_QE_FMAN_FW_IN_MMC |
| free(addr); |
| #endif |
| } |
| #endif |
| #endif |
| |
| #ifdef CONFIG_U_QE |
| void u_qe_resume(void) |
| { |
| qe_map_t *qe_immrr; |
| |
| qe_immrr = (qe_map_t *)(CONFIG_SYS_IMMR + QE_IMMR_OFFSET); |
| u_qe_firmware_resume((const void *)CONFIG_SYS_QE_FW_ADDR, qe_immrr); |
| out_be32(&qe_immrr->iram.iready, QE_IRAM_READY); |
| } |
| #endif |
| |
| void qe_reset(void) |
| { |
| qe_issue_cmd(QE_RESET, QE_CR_SUBBLOCK_INVALID, |
| (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0); |
| } |
| |
| #ifdef CONFIG_QE |
| void qe_assign_page(uint snum, uint para_ram_base) |
| { |
| u32 cecr; |
| |
| out_be32(&qe_immr->cp.cecdr, para_ram_base); |
| out_be32(&qe_immr->cp.cecr, ((u32)snum << QE_CR_ASSIGN_PAGE_SNUM_SHIFT) |
| | QE_CR_FLG | QE_ASSIGN_PAGE); |
| |
| /* Wait for the QE_CR_FLG to clear */ |
| do { |
| cecr = in_be32(&qe_immr->cp.cecr); |
| } while (cecr & QE_CR_FLG); |
| } |
| #endif |
| |
| /* |
| * brg: 0~15 as BRG1~BRG16 |
| * rate: baud rate |
| * BRG input clock comes from the BRGCLK (internal clock generated from |
| * the QE clock, it is one-half of the QE clock), If need the clock source |
| * from CLKn pin, we have te change the function. |
| */ |
| |
| #define BRG_CLK (gd->arch.brg_clk) |
| |
| #ifdef CONFIG_QE |
| int qe_set_brg(uint brg, uint rate) |
| { |
| uint *bp; |
| u32 divisor; |
| u32 val; |
| int div16 = 0; |
| |
| if (brg >= QE_NUM_OF_BRGS) |
| return -EINVAL; |
| |
| bp = (uint *)&qe_immr->brg.brgc1; |
| bp += brg; |
| |
| divisor = (BRG_CLK / rate); |
| if (divisor > QE_BRGC_DIVISOR_MAX + 1) { |
| div16 = 1; |
| divisor /= 16; |
| } |
| |
| /* CHECK TODO */ |
| /* |
| * was |
| * *bp = ((divisor - 1) << QE_BRGC_DIVISOR_SHIFT) | QE_BRGC_ENABLE; |
| * __asm__ __volatile__("sync"); |
| */ |
| |
| val = ((divisor - 1) << QE_BRGC_DIVISOR_SHIFT) | QE_BRGC_ENABLE; |
| if (div16) |
| val |= QE_BRGC_DIV16; |
| |
| out_be32(bp, val); |
| |
| return 0; |
| } |
| #endif |
| |
| /* Set ethernet MII clock master */ |
| int qe_set_mii_clk_src(int ucc_num) |
| { |
| u32 cmxgcr; |
| |
| /* check if the UCC number is in range. */ |
| if ((ucc_num > UCC_MAX_NUM - 1) || ucc_num < 0) { |
| printf("%s: ucc num not in ranges\n", __func__); |
| return -EINVAL; |
| } |
| |
| cmxgcr = in_be32(&qe_immr->qmx.cmxgcr); |
| cmxgcr &= ~QE_CMXGCR_MII_ENET_MNG_MASK; |
| cmxgcr |= (ucc_num << QE_CMXGCR_MII_ENET_MNG_SHIFT); |
| out_be32(&qe_immr->qmx.cmxgcr, cmxgcr); |
| |
| return 0; |
| } |
| |
| /* Firmware information stored here for qe_get_firmware_info() */ |
| static struct qe_firmware_info qe_firmware_info; |
| |
| /* |
| * Set to 1 if QE firmware has been uploaded, and therefore |
| * qe_firmware_info contains valid data. |
| */ |
| static int qe_firmware_uploaded; |
| |
| /* |
| * Upload a QE microcode |
| * |
| * This function is a worker function for qe_upload_firmware(). It does |
| * the actual uploading of the microcode. |
| */ |
| static void qe_upload_microcode(const void *base, |
| const struct qe_microcode *ucode) |
| { |
| const u32 *code = base + be32_to_cpu(ucode->code_offset); |
| unsigned int i; |
| |
| if (ucode->major || ucode->minor || ucode->revision) |
| printf("QE: uploading microcode '%s' version %u.%u.%u\n", |
| (char *)ucode->id, (u16)ucode->major, (u16)ucode->minor, |
| (u16)ucode->revision); |
| else |
| printf("QE: uploading microcode '%s'\n", (char *)ucode->id); |
| |
| /* Use auto-increment */ |
| out_be32(&qe_immr->iram.iadd, be32_to_cpu(ucode->iram_offset) | |
| QE_IRAM_IADD_AIE | QE_IRAM_IADD_BADDR); |
| |
| for (i = 0; i < be32_to_cpu(ucode->count); i++) |
| out_be32(&qe_immr->iram.idata, be32_to_cpu(code[i])); |
| } |
| |
| /* |
| * Upload a microcode to the I-RAM at a specific address. |
| * |
| * See Documentation/powerpc/qe_firmware.rst in the Linux kernel tree for |
| * information on QE microcode uploading. |
| * |
| * Currently, only version 1 is supported, so the 'version' field must be |
| * set to 1. |
| * |
| * The SOC model and revision are not validated, they are only displayed for |
| * informational purposes. |
| * |
| * 'calc_size' is the calculated size, in bytes, of the firmware structure and |
| * all of the microcode structures, minus the CRC. |
| * |
| * 'length' is the size that the structure says it is, including the CRC. |
| */ |
| int qe_upload_firmware(const struct qe_firmware *firmware) |
| { |
| unsigned int i; |
| unsigned int j; |
| u32 crc; |
| size_t calc_size = sizeof(struct qe_firmware); |
| size_t length; |
| const struct qe_header *hdr; |
| #ifdef CONFIG_DEEP_SLEEP |
| #ifdef CONFIG_ARCH_LS1021A |
| struct ccsr_gur __iomem *gur = (void *)CONFIG_SYS_FSL_GUTS_ADDR; |
| #else |
| ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR); |
| #endif |
| #endif |
| if (!firmware) { |
| printf("Invalid address\n"); |
| return -EINVAL; |
| } |
| |
| hdr = &firmware->header; |
| length = be32_to_cpu(hdr->length); |
| |
| /* Check the magic */ |
| if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') || |
| (hdr->magic[2] != 'F')) { |
| printf("QE microcode not found\n"); |
| #ifdef CONFIG_DEEP_SLEEP |
| setbits_be32(&gur->devdisr, MPC85xx_DEVDISR_QE_DISABLE); |
| #endif |
| return -EPERM; |
| } |
| |
| /* Check the version */ |
| if (hdr->version != 1) { |
| printf("Unsupported version\n"); |
| return -EPERM; |
| } |
| |
| /* Validate some of the fields */ |
| if (firmware->count < 1 || firmware->count > MAX_QE_RISC) { |
| printf("Invalid data\n"); |
| return -EINVAL; |
| } |
| |
| /* Validate the length and check if there's a CRC */ |
| calc_size += (firmware->count - 1) * sizeof(struct qe_microcode); |
| |
| for (i = 0; i < firmware->count; i++) |
| /* |
| * For situations where the second RISC uses the same microcode |
| * as the first, the 'code_offset' and 'count' fields will be |
| * zero, so it's okay to add those. |
| */ |
| calc_size += sizeof(u32) * |
| be32_to_cpu(firmware->microcode[i].count); |
| |
| /* Validate the length */ |
| if (length != calc_size + sizeof(u32)) { |
| printf("Invalid length\n"); |
| return -EPERM; |
| } |
| |
| /* |
| * Validate the CRC. We would normally call crc32_no_comp(), but that |
| * function isn't available unless you turn on JFFS support. |
| */ |
| crc = be32_to_cpu(*(u32 *)((void *)firmware + calc_size)); |
| if (crc != (crc32(-1, (const void *)firmware, calc_size) ^ -1)) { |
| printf("Firmware CRC is invalid\n"); |
| return -EIO; |
| } |
| |
| /* |
| * If the microcode calls for it, split the I-RAM. |
| */ |
| if (!firmware->split) { |
| out_be16(&qe_immr->cp.cercr, |
| in_be16(&qe_immr->cp.cercr) | QE_CP_CERCR_CIR); |
| } |
| |
| if (firmware->soc.model) |
| printf("Firmware '%s' for %u V%u.%u\n", |
| firmware->id, be16_to_cpu(firmware->soc.model), |
| firmware->soc.major, firmware->soc.minor); |
| else |
| printf("Firmware '%s'\n", firmware->id); |
| |
| /* |
| * The QE only supports one microcode per RISC, so clear out all the |
| * saved microcode information and put in the new. |
| */ |
| memset(&qe_firmware_info, 0, sizeof(qe_firmware_info)); |
| strncpy(qe_firmware_info.id, (char *)firmware->id, 62); |
| qe_firmware_info.extended_modes = firmware->extended_modes; |
| memcpy(qe_firmware_info.vtraps, firmware->vtraps, |
| sizeof(firmware->vtraps)); |
| qe_firmware_uploaded = 1; |
| |
| /* Loop through each microcode. */ |
| for (i = 0; i < firmware->count; i++) { |
| const struct qe_microcode *ucode = &firmware->microcode[i]; |
| |
| /* Upload a microcode if it's present */ |
| if (ucode->code_offset) |
| qe_upload_microcode(firmware, ucode); |
| |
| /* Program the traps for this processor */ |
| for (j = 0; j < 16; j++) { |
| u32 trap = be32_to_cpu(ucode->traps[j]); |
| |
| if (trap) |
| out_be32(&qe_immr->rsp[i].tibcr[j], trap); |
| } |
| |
| /* Enable traps */ |
| out_be32(&qe_immr->rsp[i].eccr, be32_to_cpu(ucode->eccr)); |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_U_QE |
| /* |
| * Upload a microcode to the I-RAM at a specific address. |
| * |
| * See Documentation/powerpc/qe_firmware.rst in the Linux kernel tree for |
| * information on QE microcode uploading. |
| * |
| * Currently, only version 1 is supported, so the 'version' field must be |
| * set to 1. |
| * |
| * The SOC model and revision are not validated, they are only displayed for |
| * informational purposes. |
| * |
| * 'calc_size' is the calculated size, in bytes, of the firmware structure and |
| * all of the microcode structures, minus the CRC. |
| * |
| * 'length' is the size that the structure says it is, including the CRC. |
| */ |
| int u_qe_upload_firmware(const struct qe_firmware *firmware) |
| { |
| unsigned int i; |
| unsigned int j; |
| u32 crc; |
| size_t calc_size = sizeof(struct qe_firmware); |
| size_t length; |
| const struct qe_header *hdr; |
| #ifdef CONFIG_DEEP_SLEEP |
| #ifdef CONFIG_ARCH_LS1021A |
| struct ccsr_gur __iomem *gur = (void *)CONFIG_SYS_FSL_GUTS_ADDR; |
| #else |
| ccsr_gur_t __iomem *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR); |
| #endif |
| #endif |
| if (!firmware) { |
| printf("Invalid address\n"); |
| return -EINVAL; |
| } |
| |
| hdr = &firmware->header; |
| length = be32_to_cpu(hdr->length); |
| |
| /* Check the magic */ |
| if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') || |
| (hdr->magic[2] != 'F')) { |
| printf("Not a microcode\n"); |
| #ifdef CONFIG_DEEP_SLEEP |
| setbits_be32(&gur->devdisr, MPC85xx_DEVDISR_QE_DISABLE); |
| #endif |
| return -EPERM; |
| } |
| |
| /* Check the version */ |
| if (hdr->version != 1) { |
| printf("Unsupported version\n"); |
| return -EPERM; |
| } |
| |
| /* Validate some of the fields */ |
| if (firmware->count < 1 || firmware->count > MAX_QE_RISC) { |
| printf("Invalid data\n"); |
| return -EINVAL; |
| } |
| |
| /* Validate the length and check if there's a CRC */ |
| calc_size += (firmware->count - 1) * sizeof(struct qe_microcode); |
| |
| for (i = 0; i < firmware->count; i++) |
| /* |
| * For situations where the second RISC uses the same microcode |
| * as the first, the 'code_offset' and 'count' fields will be |
| * zero, so it's okay to add those. |
| */ |
| calc_size += sizeof(u32) * |
| be32_to_cpu(firmware->microcode[i].count); |
| |
| /* Validate the length */ |
| if (length != calc_size + sizeof(u32)) { |
| printf("Invalid length\n"); |
| return -EPERM; |
| } |
| |
| /* |
| * Validate the CRC. We would normally call crc32_no_comp(), but that |
| * function isn't available unless you turn on JFFS support. |
| */ |
| crc = be32_to_cpu(*(u32 *)((void *)firmware + calc_size)); |
| if (crc != (crc32(-1, (const void *)firmware, calc_size) ^ -1)) { |
| printf("Firmware CRC is invalid\n"); |
| return -EIO; |
| } |
| |
| /* |
| * If the microcode calls for it, split the I-RAM. |
| */ |
| if (!firmware->split) { |
| out_be16(&qe_immr->cp.cercr, |
| in_be16(&qe_immr->cp.cercr) | QE_CP_CERCR_CIR); |
| } |
| |
| if (firmware->soc.model) |
| printf("Firmware '%s' for %u V%u.%u\n", |
| firmware->id, be16_to_cpu(firmware->soc.model), |
| firmware->soc.major, firmware->soc.minor); |
| else |
| printf("Firmware '%s'\n", firmware->id); |
| |
| /* Loop through each microcode. */ |
| for (i = 0; i < firmware->count; i++) { |
| const struct qe_microcode *ucode = &firmware->microcode[i]; |
| |
| /* Upload a microcode if it's present */ |
| if (ucode->code_offset) |
| qe_upload_microcode(firmware, ucode); |
| |
| /* Program the traps for this processor */ |
| for (j = 0; j < 16; j++) { |
| u32 trap = be32_to_cpu(ucode->traps[j]); |
| |
| if (trap) |
| out_be32(&qe_immr->rsp[i].tibcr[j], trap); |
| } |
| |
| /* Enable traps */ |
| out_be32(&qe_immr->rsp[i].eccr, be32_to_cpu(ucode->eccr)); |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_U_QE |
| int u_qe_firmware_resume(const struct qe_firmware *firmware, qe_map_t *qe_immrr) |
| { |
| unsigned int i; |
| unsigned int j; |
| const struct qe_header *hdr; |
| const u32 *code; |
| #ifdef CONFIG_DEEP_SLEEP |
| #ifdef CONFIG_PPC |
| ccsr_gur_t __iomem *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR); |
| #else |
| struct ccsr_gur __iomem *gur = (void *)CONFIG_SYS_FSL_GUTS_ADDR; |
| #endif |
| #endif |
| |
| if (!firmware) |
| return -EINVAL; |
| |
| hdr = &firmware->header; |
| |
| /* Check the magic */ |
| if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') || |
| (hdr->magic[2] != 'F')) { |
| #ifdef CONFIG_DEEP_SLEEP |
| setbits_be32(&gur->devdisr, MPC85xx_DEVDISR_QE_DISABLE); |
| #endif |
| return -EPERM; |
| } |
| |
| /* |
| * If the microcode calls for it, split the I-RAM. |
| */ |
| if (!firmware->split) { |
| out_be16(&qe_immrr->cp.cercr, |
| in_be16(&qe_immrr->cp.cercr) | QE_CP_CERCR_CIR); |
| } |
| |
| /* Loop through each microcode. */ |
| for (i = 0; i < firmware->count; i++) { |
| const struct qe_microcode *ucode = &firmware->microcode[i]; |
| |
| /* Upload a microcode if it's present */ |
| if (!ucode->code_offset) |
| return 0; |
| |
| code = (const void *)firmware + be32_to_cpu(ucode->code_offset); |
| |
| /* Use auto-increment */ |
| out_be32(&qe_immrr->iram.iadd, be32_to_cpu(ucode->iram_offset) | |
| QE_IRAM_IADD_AIE | QE_IRAM_IADD_BADDR); |
| |
| for (i = 0; i < be32_to_cpu(ucode->count); i++) |
| out_be32(&qe_immrr->iram.idata, be32_to_cpu(code[i])); |
| |
| /* Program the traps for this processor */ |
| for (j = 0; j < 16; j++) { |
| u32 trap = be32_to_cpu(ucode->traps[j]); |
| |
| if (trap) |
| out_be32(&qe_immrr->rsp[i].tibcr[j], trap); |
| } |
| |
| /* Enable traps */ |
| out_be32(&qe_immrr->rsp[i].eccr, be32_to_cpu(ucode->eccr)); |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| struct qe_firmware_info *qe_get_firmware_info(void) |
| { |
| return qe_firmware_uploaded ? &qe_firmware_info : NULL; |
| } |
| |
| static int qe_cmd(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) |
| { |
| ulong addr; |
| |
| if (argc < 3) |
| return cmd_usage(cmdtp); |
| |
| if (strcmp(argv[1], "fw") == 0) { |
| addr = hextoul(argv[2], NULL); |
| |
| if (!addr) { |
| printf("Invalid address\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * If a length was supplied, compare that with the 'length' |
| * field. |
| */ |
| |
| if (argc > 3) { |
| ulong length = hextoul(argv[3], NULL); |
| struct qe_firmware *firmware = (void *)addr; |
| |
| if (length != be32_to_cpu(firmware->header.length)) { |
| printf("Length mismatch\n"); |
| return -EINVAL; |
| } |
| } |
| |
| return qe_upload_firmware((const struct qe_firmware *)addr); |
| } |
| |
| return cmd_usage(cmdtp); |
| } |
| |
| U_BOOT_CMD( |
| qe, 4, 0, qe_cmd, |
| "QUICC Engine commands", |
| "fw <addr> [<length>] - Upload firmware binary at address <addr> to the QE,\n" |
| "\twith optional length <length> verification." |
| ); |