| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) 2009 Texas Instruments Incorporated - http://www.ti.com/ |
| * |
| * Driver for SPI controller on DaVinci. Based on atmel_spi.c |
| * by Atmel Corporation |
| * |
| * Copyright (C) 2007 Atmel Corporation |
| */ |
| |
| #include <common.h> |
| #include <log.h> |
| #include <spi.h> |
| #include <malloc.h> |
| #include <asm/io.h> |
| #include <asm/arch/hardware.h> |
| #include <dm.h> |
| #include <dm/platform_data/spi_davinci.h> |
| #include <linux/bitops.h> |
| #include <linux/delay.h> |
| |
| /* SPIGCR0 */ |
| #define SPIGCR0_SPIENA_MASK 0x1 |
| #define SPIGCR0_SPIRST_MASK 0x0 |
| |
| /* SPIGCR0 */ |
| #define SPIGCR1_CLKMOD_MASK BIT(1) |
| #define SPIGCR1_MASTER_MASK BIT(0) |
| #define SPIGCR1_SPIENA_MASK BIT(24) |
| |
| /* SPIPC0 */ |
| #define SPIPC0_DIFUN_MASK BIT(11) /* SIMO */ |
| #define SPIPC0_DOFUN_MASK BIT(10) /* SOMI */ |
| #define SPIPC0_CLKFUN_MASK BIT(9) /* CLK */ |
| #define SPIPC0_EN0FUN_MASK BIT(0) |
| |
| /* SPIFMT0 */ |
| #define SPIFMT_SHIFTDIR_SHIFT 20 |
| #define SPIFMT_POLARITY_SHIFT 17 |
| #define SPIFMT_PHASE_SHIFT 16 |
| #define SPIFMT_PRESCALE_SHIFT 8 |
| |
| /* SPIDAT1 */ |
| #define SPIDAT1_CSHOLD_SHIFT 28 |
| #define SPIDAT1_CSNR_SHIFT 16 |
| |
| /* SPIDELAY */ |
| #define SPI_C2TDELAY_SHIFT 24 |
| #define SPI_T2CDELAY_SHIFT 16 |
| |
| /* SPIBUF */ |
| #define SPIBUF_RXEMPTY_MASK BIT(31) |
| #define SPIBUF_TXFULL_MASK BIT(29) |
| |
| /* SPIDEF */ |
| #define SPIDEF_CSDEF0_MASK BIT(0) |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| /* davinci spi register set */ |
| struct davinci_spi_regs { |
| dv_reg gcr0; /* 0x00 */ |
| dv_reg gcr1; /* 0x04 */ |
| dv_reg int0; /* 0x08 */ |
| dv_reg lvl; /* 0x0c */ |
| dv_reg flg; /* 0x10 */ |
| dv_reg pc0; /* 0x14 */ |
| dv_reg pc1; /* 0x18 */ |
| dv_reg pc2; /* 0x1c */ |
| dv_reg pc3; /* 0x20 */ |
| dv_reg pc4; /* 0x24 */ |
| dv_reg pc5; /* 0x28 */ |
| dv_reg rsvd[3]; |
| dv_reg dat0; /* 0x38 */ |
| dv_reg dat1; /* 0x3c */ |
| dv_reg buf; /* 0x40 */ |
| dv_reg emu; /* 0x44 */ |
| dv_reg delay; /* 0x48 */ |
| dv_reg def; /* 0x4c */ |
| dv_reg fmt0; /* 0x50 */ |
| dv_reg fmt1; /* 0x54 */ |
| dv_reg fmt2; /* 0x58 */ |
| dv_reg fmt3; /* 0x5c */ |
| dv_reg intvec0; /* 0x60 */ |
| dv_reg intvec1; /* 0x64 */ |
| }; |
| |
| /* davinci spi slave */ |
| struct davinci_spi_slave { |
| struct davinci_spi_regs *regs; |
| unsigned int freq; /* current SPI bus frequency */ |
| unsigned int mode; /* current SPI mode used */ |
| u8 num_cs; /* total no. of CS available */ |
| u8 cur_cs; /* CS of current slave */ |
| bool half_duplex; /* true, if master is half-duplex only */ |
| }; |
| |
| /* |
| * This functions needs to act like a macro to avoid pipeline reloads in the |
| * loops below. Use always_inline. This gains us about 160KiB/s and the bloat |
| * appears to be zero bytes (da830). |
| */ |
| __attribute__((always_inline)) |
| static inline u32 davinci_spi_xfer_data(struct davinci_spi_slave *ds, u32 data) |
| { |
| u32 buf_reg_val; |
| |
| /* send out data */ |
| writel(data, &ds->regs->dat1); |
| |
| /* wait for the data to clock in/out */ |
| while ((buf_reg_val = readl(&ds->regs->buf)) & SPIBUF_RXEMPTY_MASK) |
| ; |
| |
| return buf_reg_val; |
| } |
| |
| static int davinci_spi_read(struct davinci_spi_slave *ds, unsigned int len, |
| u8 *rxp, unsigned long flags) |
| { |
| unsigned int data1_reg_val; |
| |
| /* enable CS hold, CS[n] and clear the data bits */ |
| data1_reg_val = ((1 << SPIDAT1_CSHOLD_SHIFT) | |
| (ds->cur_cs << SPIDAT1_CSNR_SHIFT)); |
| |
| /* wait till TXFULL is deasserted */ |
| while (readl(&ds->regs->buf) & SPIBUF_TXFULL_MASK) |
| ; |
| |
| /* preload the TX buffer to avoid clock starvation */ |
| writel(data1_reg_val, &ds->regs->dat1); |
| |
| /* keep reading 1 byte until only 1 byte left */ |
| while ((len--) > 1) |
| *rxp++ = davinci_spi_xfer_data(ds, data1_reg_val); |
| |
| /* clear CS hold when we reach the end */ |
| if (flags & SPI_XFER_END) |
| data1_reg_val &= ~(1 << SPIDAT1_CSHOLD_SHIFT); |
| |
| /* read the last byte */ |
| *rxp = davinci_spi_xfer_data(ds, data1_reg_val); |
| |
| return 0; |
| } |
| |
| static int davinci_spi_write(struct davinci_spi_slave *ds, unsigned int len, |
| const u8 *txp, unsigned long flags) |
| { |
| unsigned int data1_reg_val; |
| |
| /* enable CS hold and clear the data bits */ |
| data1_reg_val = ((1 << SPIDAT1_CSHOLD_SHIFT) | |
| (ds->cur_cs << SPIDAT1_CSNR_SHIFT)); |
| |
| /* wait till TXFULL is deasserted */ |
| while (readl(&ds->regs->buf) & SPIBUF_TXFULL_MASK) |
| ; |
| |
| /* preload the TX buffer to avoid clock starvation */ |
| if (len > 2) { |
| writel(data1_reg_val | *txp++, &ds->regs->dat1); |
| len--; |
| } |
| |
| /* keep writing 1 byte until only 1 byte left */ |
| while ((len--) > 1) |
| davinci_spi_xfer_data(ds, data1_reg_val | *txp++); |
| |
| /* clear CS hold when we reach the end */ |
| if (flags & SPI_XFER_END) |
| data1_reg_val &= ~(1 << SPIDAT1_CSHOLD_SHIFT); |
| |
| /* write the last byte */ |
| davinci_spi_xfer_data(ds, data1_reg_val | *txp); |
| |
| return 0; |
| } |
| |
| static int davinci_spi_read_write(struct davinci_spi_slave *ds, unsigned |
| int len, u8 *rxp, const u8 *txp, |
| unsigned long flags) |
| { |
| unsigned int data1_reg_val; |
| |
| /* enable CS hold and clear the data bits */ |
| data1_reg_val = ((1 << SPIDAT1_CSHOLD_SHIFT) | |
| (ds->cur_cs << SPIDAT1_CSNR_SHIFT)); |
| |
| /* wait till TXFULL is deasserted */ |
| while (readl(&ds->regs->buf) & SPIBUF_TXFULL_MASK) |
| ; |
| |
| /* keep reading and writing 1 byte until only 1 byte left */ |
| while ((len--) > 1) |
| *rxp++ = davinci_spi_xfer_data(ds, data1_reg_val | *txp++); |
| |
| /* clear CS hold when we reach the end */ |
| if (flags & SPI_XFER_END) |
| data1_reg_val &= ~(1 << SPIDAT1_CSHOLD_SHIFT); |
| |
| /* read and write the last byte */ |
| *rxp = davinci_spi_xfer_data(ds, data1_reg_val | *txp); |
| |
| return 0; |
| } |
| |
| |
| static int __davinci_spi_claim_bus(struct davinci_spi_slave *ds, int cs) |
| { |
| unsigned int mode = 0, scalar; |
| |
| /* Enable the SPI hardware */ |
| writel(SPIGCR0_SPIRST_MASK, &ds->regs->gcr0); |
| udelay(1000); |
| writel(SPIGCR0_SPIENA_MASK, &ds->regs->gcr0); |
| |
| /* Set master mode, powered up and not activated */ |
| writel(SPIGCR1_MASTER_MASK | SPIGCR1_CLKMOD_MASK, &ds->regs->gcr1); |
| |
| /* CS, CLK, SIMO and SOMI are functional pins */ |
| writel(((1 << cs) | SPIPC0_CLKFUN_MASK | |
| SPIPC0_DOFUN_MASK | SPIPC0_DIFUN_MASK), &ds->regs->pc0); |
| |
| /* setup format */ |
| scalar = ((CONFIG_SYS_SPI_CLK / ds->freq) - 1) & 0xFF; |
| |
| /* |
| * Use following format: |
| * character length = 8, |
| * MSB shifted out first |
| */ |
| if (ds->mode & SPI_CPOL) |
| mode |= SPI_CPOL; |
| if (!(ds->mode & SPI_CPHA)) |
| mode |= SPI_CPHA; |
| writel(8 | (scalar << SPIFMT_PRESCALE_SHIFT) | |
| (mode << SPIFMT_PHASE_SHIFT), &ds->regs->fmt0); |
| |
| /* |
| * Including a minor delay. No science here. Should be good even with |
| * no delay |
| */ |
| writel((50 << SPI_C2TDELAY_SHIFT) | |
| (50 << SPI_T2CDELAY_SHIFT), &ds->regs->delay); |
| |
| /* default chip select register */ |
| writel(SPIDEF_CSDEF0_MASK, &ds->regs->def); |
| |
| /* no interrupts */ |
| writel(0, &ds->regs->int0); |
| writel(0, &ds->regs->lvl); |
| |
| /* enable SPI */ |
| writel((readl(&ds->regs->gcr1) | SPIGCR1_SPIENA_MASK), &ds->regs->gcr1); |
| |
| return 0; |
| } |
| |
| static int __davinci_spi_release_bus(struct davinci_spi_slave *ds) |
| { |
| /* Disable the SPI hardware */ |
| writel(SPIGCR0_SPIRST_MASK, &ds->regs->gcr0); |
| |
| return 0; |
| } |
| |
| static int __davinci_spi_xfer(struct davinci_spi_slave *ds, |
| unsigned int bitlen, const void *dout, void *din, |
| unsigned long flags) |
| { |
| unsigned int len; |
| |
| if (bitlen == 0) |
| /* Finish any previously submitted transfers */ |
| goto out; |
| |
| /* |
| * It's not clear how non-8-bit-aligned transfers are supposed to be |
| * represented as a stream of bytes...this is a limitation of |
| * the current SPI interface - here we terminate on receiving such a |
| * transfer request. |
| */ |
| if (bitlen % 8) { |
| /* Errors always terminate an ongoing transfer */ |
| flags |= SPI_XFER_END; |
| goto out; |
| } |
| |
| len = bitlen / 8; |
| |
| if (!dout) |
| return davinci_spi_read(ds, len, din, flags); |
| if (!din) |
| return davinci_spi_write(ds, len, dout, flags); |
| if (!ds->half_duplex) |
| return davinci_spi_read_write(ds, len, din, dout, flags); |
| |
| printf("SPI full duplex not supported\n"); |
| flags |= SPI_XFER_END; |
| |
| out: |
| if (flags & SPI_XFER_END) { |
| u8 dummy = 0; |
| davinci_spi_write(ds, 1, &dummy, flags); |
| } |
| return 0; |
| } |
| |
| static int davinci_spi_set_speed(struct udevice *bus, uint max_hz) |
| { |
| struct davinci_spi_slave *ds = dev_get_priv(bus); |
| |
| debug("%s speed %u\n", __func__, max_hz); |
| if (max_hz > CONFIG_SYS_SPI_CLK / 2) |
| return -EINVAL; |
| |
| ds->freq = max_hz; |
| |
| return 0; |
| } |
| |
| static int davinci_spi_set_mode(struct udevice *bus, uint mode) |
| { |
| struct davinci_spi_slave *ds = dev_get_priv(bus); |
| |
| debug("%s mode %u\n", __func__, mode); |
| ds->mode = mode; |
| |
| return 0; |
| } |
| |
| static int davinci_spi_claim_bus(struct udevice *dev) |
| { |
| struct dm_spi_slave_platdata *slave_plat = |
| dev_get_parent_platdata(dev); |
| struct udevice *bus = dev->parent; |
| struct davinci_spi_slave *ds = dev_get_priv(bus); |
| |
| if (slave_plat->cs >= ds->num_cs) { |
| printf("Invalid SPI chipselect\n"); |
| return -EINVAL; |
| } |
| ds->half_duplex = slave_plat->mode & SPI_PREAMBLE; |
| |
| return __davinci_spi_claim_bus(ds, slave_plat->cs); |
| } |
| |
| static int davinci_spi_release_bus(struct udevice *dev) |
| { |
| struct davinci_spi_slave *ds = dev_get_priv(dev->parent); |
| |
| return __davinci_spi_release_bus(ds); |
| } |
| |
| static int davinci_spi_xfer(struct udevice *dev, unsigned int bitlen, |
| const void *dout, void *din, |
| unsigned long flags) |
| { |
| struct dm_spi_slave_platdata *slave = |
| dev_get_parent_platdata(dev); |
| struct udevice *bus = dev->parent; |
| struct davinci_spi_slave *ds = dev_get_priv(bus); |
| |
| if (slave->cs >= ds->num_cs) { |
| printf("Invalid SPI chipselect\n"); |
| return -EINVAL; |
| } |
| ds->cur_cs = slave->cs; |
| |
| return __davinci_spi_xfer(ds, bitlen, dout, din, flags); |
| } |
| |
| static const struct dm_spi_ops davinci_spi_ops = { |
| .claim_bus = davinci_spi_claim_bus, |
| .release_bus = davinci_spi_release_bus, |
| .xfer = davinci_spi_xfer, |
| .set_speed = davinci_spi_set_speed, |
| .set_mode = davinci_spi_set_mode, |
| }; |
| |
| static int davinci_spi_probe(struct udevice *bus) |
| { |
| struct davinci_spi_slave *ds = dev_get_priv(bus); |
| struct davinci_spi_platdata *plat = bus->platdata; |
| ds->regs = plat->regs; |
| ds->num_cs = plat->num_cs; |
| |
| return 0; |
| } |
| |
| #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA) |
| static int davinci_ofdata_to_platadata(struct udevice *bus) |
| { |
| struct davinci_spi_platdata *plat = bus->platdata; |
| fdt_addr_t addr; |
| |
| addr = dev_read_addr(bus); |
| if (addr == FDT_ADDR_T_NONE) |
| return -EINVAL; |
| |
| plat->regs = (struct davinci_spi_regs *)addr; |
| plat->num_cs = fdtdec_get_int(gd->fdt_blob, dev_of_offset(bus), "num-cs", 4); |
| |
| return 0; |
| } |
| |
| static const struct udevice_id davinci_spi_ids[] = { |
| { .compatible = "ti,keystone-spi" }, |
| { .compatible = "ti,dm6441-spi" }, |
| { .compatible = "ti,da830-spi" }, |
| { } |
| }; |
| #endif |
| |
| U_BOOT_DRIVER(davinci_spi) = { |
| .name = "davinci_spi", |
| .id = UCLASS_SPI, |
| #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA) |
| .of_match = davinci_spi_ids, |
| .ofdata_to_platdata = davinci_ofdata_to_platadata, |
| .platdata_auto_alloc_size = sizeof(struct davinci_spi_platdata), |
| #endif |
| .probe = davinci_spi_probe, |
| .ops = &davinci_spi_ops, |
| .priv_auto_alloc_size = sizeof(struct davinci_spi_slave), |
| }; |