| /* |
| * Copyright 2015 Freescale Semiconductor, Inc. |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <common.h> |
| #include <fsl_validate.h> |
| #include <fsl_secboot_err.h> |
| #include <fsl_sfp.h> |
| #include <fsl_sec.h> |
| #include <command.h> |
| #include <malloc.h> |
| #include <dm/uclass.h> |
| #include <u-boot/rsa-mod-exp.h> |
| #include <hash.h> |
| #include <fsl_secboot_err.h> |
| #ifndef CONFIG_MPC85xx |
| #include <asm/arch/immap_ls102xa.h> |
| #endif |
| |
| #define SHA256_BITS 256 |
| #define SHA256_BYTES (256/8) |
| #define SHA256_NIBBLES (256/4) |
| #define NUM_HEX_CHARS (sizeof(ulong) * 2) |
| |
| /* This array contains DER value for SHA-256 */ |
| static const u8 hash_identifier[] = { 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, |
| 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, |
| 0x04, 0x20 |
| }; |
| |
| static u8 hash_val[SHA256_BYTES]; |
| static const u8 barker_code[ESBC_BARKER_LEN] = { 0x68, 0x39, 0x27, 0x81 }; |
| |
| void branch_to_self(void) __attribute__ ((noreturn)); |
| |
| /* |
| * This function will put core in infinite loop. |
| * This will be called when the ESBC can not proceed further due |
| * to some unknown errors. |
| */ |
| void branch_to_self(void) |
| { |
| printf("Core is in infinite loop due to errors.\n"); |
| self: |
| goto self; |
| } |
| |
| #if defined(CONFIG_FSL_ISBC_KEY_EXT) |
| static u32 check_ie(struct fsl_secboot_img_priv *img) |
| { |
| if (img->hdr.ie_flag) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* This function returns the CSF Header Address of uboot |
| * For MPC85xx based platforms, the LAW mapping for NOR |
| * flash changes in uboot code. Hence the offset needs |
| * to be calculated and added to the new NOR flash base |
| * address |
| */ |
| #if defined(CONFIG_MPC85xx) |
| int get_csf_base_addr(ulong *csf_addr, ulong *flash_base_addr) |
| { |
| struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR); |
| u32 csf_hdr_addr = in_be32(&gur->scratchrw[0]); |
| u32 csf_flash_offset = csf_hdr_addr & ~(CONFIG_SYS_PBI_FLASH_BASE); |
| ulong flash_addr, addr; |
| int found = 0; |
| int i = 0; |
| |
| for (i = 0; i < CONFIG_SYS_MAX_FLASH_BANKS; i++) { |
| flash_addr = flash_info[i].start[0]; |
| addr = flash_info[i].start[0] + csf_flash_offset; |
| if (memcmp((u8 *)addr, barker_code, ESBC_BARKER_LEN) == 0) { |
| debug("Barker found on addr %lx\n", addr); |
| found = 1; |
| break; |
| } |
| } |
| |
| if (!found) |
| return -1; |
| |
| *csf_addr = addr; |
| *flash_base_addr = flash_addr; |
| |
| return 0; |
| } |
| #else |
| /* For platforms like LS1020, correct flash address is present in |
| * the header. So the function reqturns flash base address as 0 |
| */ |
| int get_csf_base_addr(ulong *csf_addr, ulong *flash_base_addr) |
| { |
| struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| u32 csf_hdr_addr = in_be32(&gur->scratchrw[0]); |
| |
| if (memcmp((u8 *)csf_hdr_addr, barker_code, ESBC_BARKER_LEN)) |
| return -1; |
| |
| *csf_addr = csf_hdr_addr; |
| *flash_base_addr = 0; |
| return 0; |
| } |
| #endif |
| |
| static int get_ie_info_addr(ulong *ie_addr) |
| { |
| struct fsl_secboot_img_hdr *hdr; |
| struct fsl_secboot_sg_table *sg_tbl; |
| ulong flash_base_addr, csf_addr; |
| |
| if (get_csf_base_addr(&csf_addr, &flash_base_addr)) |
| return -1; |
| |
| hdr = (struct fsl_secboot_img_hdr *)csf_addr; |
| |
| /* For SoC's with Trust Architecture v1 with corenet bus |
| * the sg table field in CSF header has absolute address |
| * for sg table in memory. In other Trust Architecture, |
| * this field specifies the offset of sg table from the |
| * base address of CSF Header |
| */ |
| #if defined(CONFIG_FSL_TRUST_ARCH_v1) && defined(CONFIG_FSL_CORENET) |
| sg_tbl = (struct fsl_secboot_sg_table *) |
| (((ulong)hdr->psgtable & ~(CONFIG_SYS_PBI_FLASH_BASE)) + |
| flash_base_addr); |
| #else |
| sg_tbl = (struct fsl_secboot_sg_table *)(csf_addr + |
| (ulong)hdr->psgtable); |
| #endif |
| |
| /* IE Key Table is the first entry in the SG Table */ |
| #if defined(CONFIG_MPC85xx) |
| *ie_addr = (sg_tbl->src_addr & ~(CONFIG_SYS_PBI_FLASH_BASE)) + |
| flash_base_addr; |
| #else |
| *ie_addr = sg_tbl->src_addr; |
| #endif |
| |
| debug("IE Table address is %lx\n", *ie_addr); |
| return 0; |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_KEY_REVOCATION |
| /* This function checks srk_table_flag in header and set/reset srk_flag.*/ |
| static u32 check_srk(struct fsl_secboot_img_priv *img) |
| { |
| if (img->hdr.len_kr.srk_table_flag & SRK_FLAG) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* This function returns ospr's key_revoc values.*/ |
| static u32 get_key_revoc(void) |
| { |
| struct ccsr_sfp_regs *sfp_regs = (void *)(CONFIG_SYS_SFP_ADDR); |
| return (sfp_in32(&sfp_regs->ospr) & OSPR_KEY_REVOC_MASK) >> |
| OSPR_KEY_REVOC_SHIFT; |
| } |
| |
| /* This function checks if selected key is revoked or not.*/ |
| static u32 is_key_revoked(u32 keynum, u32 rev_flag) |
| { |
| if (keynum == UNREVOCABLE_KEY) |
| return 0; |
| |
| if ((u32)(1 << (ALIGN_REVOC_KEY - keynum)) & rev_flag) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* It validates srk_table key lengths.*/ |
| static u32 validate_srk_tbl(struct srk_table *tbl, u32 num_entries) |
| { |
| int i = 0; |
| for (i = 0; i < num_entries; i++) { |
| if (!((tbl[i].key_len == 2 * KEY_SIZE_BYTES/4) || |
| (tbl[i].key_len == 2 * KEY_SIZE_BYTES/2) || |
| (tbl[i].key_len == 2 * KEY_SIZE_BYTES))) |
| return ERROR_ESBC_CLIENT_HEADER_INV_SRK_ENTRY_KEYLEN; |
| } |
| return 0; |
| } |
| #endif |
| |
| /* This function return length of public key.*/ |
| static inline u32 get_key_len(struct fsl_secboot_img_priv *img) |
| { |
| return img->key_len; |
| } |
| |
| /* |
| * Handles the ESBC uboot client header verification failure. |
| * This function handles all the errors which might occur in the |
| * parsing and checking of ESBC uboot client header. It will also |
| * set the error bits in the SEC_MON. |
| */ |
| static void fsl_secboot_header_verification_failure(void) |
| { |
| struct ccsr_sec_mon_regs *sec_mon_regs = (void *) |
| (CONFIG_SYS_SEC_MON_ADDR); |
| struct ccsr_sfp_regs *sfp_regs = (void *)(CONFIG_SYS_SFP_ADDR); |
| u32 sts = sec_mon_in32(&sec_mon_regs->hp_stat); |
| |
| /* 29th bit of OSPR is ITS */ |
| u32 its = sfp_in32(&sfp_regs->ospr) >> 2; |
| |
| /* |
| * Read the SEC_MON status register |
| * Read SSM_ST field |
| */ |
| sts = sec_mon_in32(&sec_mon_regs->hp_stat); |
| if ((sts & HPSR_SSM_ST_MASK) == HPSR_SSM_ST_TRUST) { |
| if (its == 1) |
| change_sec_mon_state(HPSR_SSM_ST_TRUST, |
| HPSR_SSM_ST_SOFT_FAIL); |
| else |
| change_sec_mon_state(HPSR_SSM_ST_TRUST, |
| HPSR_SSM_ST_NON_SECURE); |
| } |
| |
| printf("Generating reset request\n"); |
| do_reset(NULL, 0, 0, NULL); |
| } |
| |
| /* |
| * Handles the ESBC uboot client image verification failure. |
| * This function handles all the errors which might occur in the |
| * public key hash comparison and signature verification of |
| * ESBC uboot client image. It will also |
| * set the error bits in the SEC_MON. |
| */ |
| static void fsl_secboot_image_verification_failure(void) |
| { |
| struct ccsr_sec_mon_regs *sec_mon_regs = (void *) |
| (CONFIG_SYS_SEC_MON_ADDR); |
| struct ccsr_sfp_regs *sfp_regs = (void *)(CONFIG_SYS_SFP_ADDR); |
| u32 sts = sec_mon_in32(&sec_mon_regs->hp_stat); |
| |
| u32 its = sfp_in32(&sfp_regs->ospr) & ITS_MASK >> ITS_BIT; |
| |
| /* |
| * Read the SEC_MON status register |
| * Read SSM_ST field |
| */ |
| sts = sec_mon_in32(&sec_mon_regs->hp_stat); |
| if ((sts & HPSR_SSM_ST_MASK) == HPSR_SSM_ST_TRUST) { |
| if (its == 1) { |
| change_sec_mon_state(HPSR_SSM_ST_TRUST, |
| HPSR_SSM_ST_SOFT_FAIL); |
| |
| printf("Generating reset request\n"); |
| do_reset(NULL, 0, 0, NULL); |
| } else { |
| change_sec_mon_state(HPSR_SSM_ST_TRUST, |
| HPSR_SSM_ST_NON_SECURE); |
| } |
| } |
| } |
| |
| static void fsl_secboot_bootscript_parse_failure(void) |
| { |
| fsl_secboot_header_verification_failure(); |
| } |
| |
| /* |
| * Handles the errors in esbc boot. |
| * This function handles all the errors which might occur in the |
| * esbc boot phase. It will call the appropriate api to log the |
| * errors and set the error bits in the SEC_MON. |
| */ |
| void fsl_secboot_handle_error(int error) |
| { |
| const struct fsl_secboot_errcode *e; |
| |
| for (e = fsl_secboot_errcodes; e->errcode != ERROR_ESBC_CLIENT_MAX; |
| e++) { |
| if (e->errcode == error) |
| printf("ERROR :: %x :: %s\n", error, e->name); |
| } |
| |
| switch (error) { |
| case ERROR_ESBC_CLIENT_HEADER_BARKER: |
| case ERROR_ESBC_CLIENT_HEADER_IMG_SIZE: |
| case ERROR_ESBC_CLIENT_HEADER_KEY_LEN: |
| case ERROR_ESBC_CLIENT_HEADER_SIG_LEN: |
| case ERROR_ESBC_CLIENT_HEADER_KEY_LEN_NOT_TWICE_SIG_LEN: |
| case ERROR_ESBC_CLIENT_HEADER_KEY_MOD_1: |
| case ERROR_ESBC_CLIENT_HEADER_KEY_MOD_2: |
| case ERROR_ESBC_CLIENT_HEADER_SIG_KEY_MOD: |
| case ERROR_ESBC_CLIENT_HEADER_SG_ESBC_EP: |
| case ERROR_ESBC_CLIENT_HEADER_SG_ENTIRES_BAD: |
| #ifdef CONFIG_KEY_REVOCATION |
| case ERROR_ESBC_CLIENT_HEADER_KEY_REVOKED: |
| case ERROR_ESBC_CLIENT_HEADER_INVALID_SRK_NUM_ENTRY: |
| case ERROR_ESBC_CLIENT_HEADER_INVALID_KEY_NUM: |
| case ERROR_ESBC_CLIENT_HEADER_INV_SRK_ENTRY_KEYLEN: |
| #endif |
| #if defined(CONFIG_FSL_ISBC_KEY_EXT) |
| /*@fallthrough@*/ |
| case ERROR_ESBC_CLIENT_HEADER_IE_KEY_REVOKED: |
| case ERROR_ESBC_CLIENT_HEADER_INVALID_IE_NUM_ENTRY: |
| case ERROR_ESBC_CLIENT_HEADER_INVALID_IE_KEY_NUM: |
| case ERROR_ESBC_CLIENT_HEADER_INV_IE_ENTRY_KEYLEN: |
| case ERROR_IE_TABLE_NOT_FOUND: |
| #endif |
| fsl_secboot_header_verification_failure(); |
| break; |
| case ERROR_ESBC_SEC_RESET: |
| case ERROR_ESBC_SEC_DEQ: |
| case ERROR_ESBC_SEC_ENQ: |
| case ERROR_ESBC_SEC_DEQ_TO: |
| case ERROR_ESBC_SEC_JOBQ_STATUS: |
| case ERROR_ESBC_CLIENT_HASH_COMPARE_KEY: |
| case ERROR_ESBC_CLIENT_HASH_COMPARE_EM: |
| fsl_secboot_image_verification_failure(); |
| break; |
| case ERROR_ESBC_MISSING_BOOTM: |
| fsl_secboot_bootscript_parse_failure(); |
| break; |
| case ERROR_ESBC_WRONG_CMD: |
| default: |
| branch_to_self(); |
| break; |
| } |
| } |
| |
| static void fsl_secblk_handle_error(int error) |
| { |
| switch (error) { |
| case ERROR_ESBC_SEC_ENQ: |
| fsl_secboot_handle_error(ERROR_ESBC_SEC_ENQ); |
| break; |
| case ERROR_ESBC_SEC_DEQ: |
| fsl_secboot_handle_error(ERROR_ESBC_SEC_DEQ); |
| break; |
| case ERROR_ESBC_SEC_DEQ_TO: |
| fsl_secboot_handle_error(ERROR_ESBC_SEC_DEQ_TO); |
| break; |
| default: |
| printf("Job Queue Output status %x\n", error); |
| fsl_secboot_handle_error(ERROR_ESBC_SEC_JOBQ_STATUS); |
| break; |
| } |
| } |
| |
| /* |
| * Calculate hash of key obtained via offset present in ESBC uboot |
| * client hdr. This function calculates the hash of key which is obtained |
| * through offset present in ESBC uboot client header. |
| */ |
| static int calc_img_key_hash(struct fsl_secboot_img_priv *img) |
| { |
| struct hash_algo *algo; |
| void *ctx; |
| int i, srk = 0; |
| int ret = 0; |
| const char *algo_name = "sha256"; |
| |
| /* Calculate hash of the esbc key */ |
| ret = hash_progressive_lookup_algo(algo_name, &algo); |
| if (ret) |
| return ret; |
| |
| ret = algo->hash_init(algo, &ctx); |
| if (ret) |
| return ret; |
| |
| /* Update hash for ESBC key */ |
| #ifdef CONFIG_KEY_REVOCATION |
| if (check_srk(img)) { |
| ret = algo->hash_update(algo, ctx, |
| (u8 *)(img->ehdrloc + img->hdr.srk_tbl_off), |
| img->hdr.len_kr.num_srk * sizeof(struct srk_table), 1); |
| srk = 1; |
| } |
| #endif |
| if (!srk) |
| ret = algo->hash_update(algo, ctx, |
| img->img_key, img->key_len, 1); |
| if (ret) |
| return ret; |
| |
| /* Copy hash at destination buffer */ |
| ret = algo->hash_finish(algo, ctx, hash_val, algo->digest_size); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < SHA256_BYTES; i++) |
| img->img_key_hash[i] = hash_val[i]; |
| |
| return 0; |
| } |
| |
| /* |
| * Calculate hash of ESBC hdr and ESBC. This function calculates the |
| * single hash of ESBC header and ESBC image. If SG flag is on, all |
| * SG entries are also hashed alongwith the complete SG table. |
| */ |
| static int calc_esbchdr_esbc_hash(struct fsl_secboot_img_priv *img) |
| { |
| struct hash_algo *algo; |
| void *ctx; |
| int ret = 0; |
| int key_hash = 0; |
| const char *algo_name = "sha256"; |
| |
| /* Calculate the hash of the ESBC */ |
| ret = hash_progressive_lookup_algo(algo_name, &algo); |
| if (ret) |
| return ret; |
| |
| ret = algo->hash_init(algo, &ctx); |
| /* Copy hash at destination buffer */ |
| if (ret) |
| return ret; |
| |
| /* Update hash for CSF Header */ |
| ret = algo->hash_update(algo, ctx, |
| (u8 *)&img->hdr, sizeof(struct fsl_secboot_img_hdr), 0); |
| if (ret) |
| return ret; |
| |
| /* Update the hash with that of srk table if srk flag is 1 |
| * If IE Table is selected, key is not added in the hash |
| * If neither srk table nor IE key table available, add key |
| * from header in the hash calculation |
| */ |
| #ifdef CONFIG_KEY_REVOCATION |
| if (check_srk(img)) { |
| ret = algo->hash_update(algo, ctx, |
| (u8 *)(img->ehdrloc + img->hdr.srk_tbl_off), |
| img->hdr.len_kr.num_srk * sizeof(struct srk_table), 0); |
| key_hash = 1; |
| } |
| #endif |
| #if defined(CONFIG_FSL_ISBC_KEY_EXT) |
| if (!key_hash && check_ie(img)) |
| key_hash = 1; |
| #endif |
| if (!key_hash) |
| ret = algo->hash_update(algo, ctx, |
| img->img_key, img->hdr.key_len, 0); |
| if (ret) |
| return ret; |
| |
| /* Update hash for actual Image */ |
| ret = algo->hash_update(algo, ctx, |
| (u8 *)img->hdr.pimg, img->hdr.img_size, 1); |
| if (ret) |
| return ret; |
| |
| /* Copy hash at destination buffer */ |
| ret = algo->hash_finish(algo, ctx, hash_val, algo->digest_size); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| /* |
| * Construct encoded hash EM' wrt PKCSv1.5. This function calculates the |
| * pointers for padding, DER value and hash. And finally, constructs EM' |
| * which includes hash of complete CSF header and ESBC image. If SG flag |
| * is on, hash of SG table and entries is also included. |
| */ |
| static void construct_img_encoded_hash_second(struct fsl_secboot_img_priv *img) |
| { |
| /* |
| * RSA PKCSv1.5 encoding format for encoded message is below |
| * EM = 0x0 || 0x1 || PS || 0x0 || DER || Hash |
| * PS is Padding String |
| * DER is DER value for SHA-256 |
| * Hash is SHA-256 hash |
| * ********************************************************* |
| * representative points to first byte of EM initially and is |
| * filled with 0x0 |
| * representative is incremented by 1 and second byte is filled |
| * with 0x1 |
| * padding points to third byte of EM |
| * digest points to full length of EM - 32 bytes |
| * hash_id (DER value) points to 19 bytes before pDigest |
| * separator is one byte which separates padding and DER |
| */ |
| |
| size_t len; |
| u8 *representative; |
| u8 *padding, *digest; |
| u8 *hash_id, *separator; |
| int i; |
| |
| len = (get_key_len(img) / 2) - 1; |
| representative = img->img_encoded_hash_second; |
| representative[0] = 0; |
| representative[1] = 1; /* block type 1 */ |
| |
| padding = &representative[2]; |
| digest = &representative[1] + len - 32; |
| hash_id = digest - sizeof(hash_identifier); |
| separator = hash_id - 1; |
| |
| /* fill padding area pointed by padding with 0xff */ |
| memset(padding, 0xff, separator - padding); |
| |
| /* fill byte pointed by separator */ |
| *separator = 0; |
| |
| /* fill SHA-256 DER value pointed by HashId */ |
| memcpy(hash_id, hash_identifier, sizeof(hash_identifier)); |
| |
| /* fill hash pointed by Digest */ |
| for (i = 0; i < SHA256_BYTES; i++) |
| digest[i] = hash_val[i]; |
| } |
| |
| /* |
| * Reads and validates the ESBC client header. |
| * This function reads key and signature from the ESBC client header. |
| * If Scatter/Gather flag is on, lengths and offsets of images |
| * present as SG entries are also read. This function also checks |
| * whether the header is valid or not. |
| */ |
| static int read_validate_esbc_client_header(struct fsl_secboot_img_priv *img) |
| { |
| char buf[20]; |
| struct fsl_secboot_img_hdr *hdr = &img->hdr; |
| void *esbc = (u8 *)img->ehdrloc; |
| u8 *k, *s; |
| #ifdef CONFIG_KEY_REVOCATION |
| u32 ret; |
| u32 key_num, key_revoc_flag, size; |
| #endif |
| #if defined(CONFIG_FSL_ISBC_KEY_EXT) |
| struct ie_key_info *ie_info; |
| u32 ie_num, ie_revoc_flag, ie_key_len; |
| #endif |
| int key_found = 0; |
| |
| /* check barker code */ |
| if (memcmp(hdr->barker, barker_code, ESBC_BARKER_LEN)) |
| return ERROR_ESBC_CLIENT_HEADER_BARKER; |
| |
| sprintf(buf, "%p", hdr->pimg); |
| setenv("img_addr", buf); |
| |
| if (!hdr->img_size) |
| return ERROR_ESBC_CLIENT_HEADER_IMG_SIZE; |
| |
| /* Key checking*/ |
| #ifdef CONFIG_KEY_REVOCATION |
| if (check_srk(img)) { |
| if ((hdr->len_kr.num_srk == 0) || |
| (hdr->len_kr.num_srk > MAX_KEY_ENTRIES)) |
| return ERROR_ESBC_CLIENT_HEADER_INVALID_SRK_NUM_ENTRY; |
| |
| key_num = hdr->len_kr.srk_sel; |
| if (key_num == 0 || key_num > hdr->len_kr.num_srk) |
| return ERROR_ESBC_CLIENT_HEADER_INVALID_KEY_NUM; |
| |
| /* Get revoc key from sfp */ |
| key_revoc_flag = get_key_revoc(); |
| ret = is_key_revoked(key_num, key_revoc_flag); |
| if (ret) |
| return ERROR_ESBC_CLIENT_HEADER_KEY_REVOKED; |
| |
| size = hdr->len_kr.num_srk * sizeof(struct srk_table); |
| |
| memcpy(&img->srk_tbl, esbc + hdr->srk_tbl_off, size); |
| |
| ret = validate_srk_tbl(img->srk_tbl, hdr->len_kr.num_srk); |
| |
| if (ret != 0) |
| return ret; |
| |
| img->key_len = img->srk_tbl[key_num - 1].key_len; |
| |
| memcpy(&img->img_key, &(img->srk_tbl[key_num - 1].pkey), |
| img->key_len); |
| |
| key_found = 1; |
| } |
| #endif |
| |
| #if defined(CONFIG_FSL_ISBC_KEY_EXT) |
| if (!key_found && check_ie(img)) { |
| if (get_ie_info_addr(&img->ie_addr)) |
| return ERROR_IE_TABLE_NOT_FOUND; |
| ie_info = (struct ie_key_info *)img->ie_addr; |
| if (ie_info->num_keys == 0 || ie_info->num_keys > 32) |
| return ERROR_ESBC_CLIENT_HEADER_INVALID_IE_NUM_ENTRY; |
| |
| ie_num = hdr->ie_key_sel; |
| if (ie_num == 0 || ie_num > ie_info->num_keys) |
| return ERROR_ESBC_CLIENT_HEADER_INVALID_IE_KEY_NUM; |
| |
| ie_revoc_flag = ie_info->key_revok; |
| if ((u32)(1 << (ie_num - 1)) & ie_revoc_flag) |
| return ERROR_ESBC_CLIENT_HEADER_IE_KEY_REVOKED; |
| |
| ie_key_len = ie_info->ie_key_tbl[ie_num - 1].key_len; |
| |
| if (!((ie_key_len == 2 * KEY_SIZE_BYTES / 4) || |
| (ie_key_len == 2 * KEY_SIZE_BYTES / 2) || |
| (ie_key_len == 2 * KEY_SIZE_BYTES))) |
| return ERROR_ESBC_CLIENT_HEADER_INV_IE_ENTRY_KEYLEN; |
| |
| memcpy(&img->img_key, &(ie_info->ie_key_tbl[ie_num - 1].pkey), |
| ie_key_len); |
| |
| img->key_len = ie_key_len; |
| key_found = 1; |
| } |
| #endif |
| |
| if (key_found == 0) { |
| /* check key length */ |
| if (!((hdr->key_len == 2 * KEY_SIZE_BYTES / 4) || |
| (hdr->key_len == 2 * KEY_SIZE_BYTES / 2) || |
| (hdr->key_len == 2 * KEY_SIZE_BYTES))) |
| return ERROR_ESBC_CLIENT_HEADER_KEY_LEN; |
| |
| memcpy(&img->img_key, esbc + hdr->pkey, hdr->key_len); |
| |
| img->key_len = hdr->key_len; |
| |
| key_found = 1; |
| } |
| |
| /* check signaure */ |
| if (get_key_len(img) == 2 * hdr->sign_len) { |
| /* check signature length */ |
| if (!((hdr->sign_len == KEY_SIZE_BYTES / 4) || |
| (hdr->sign_len == KEY_SIZE_BYTES / 2) || |
| (hdr->sign_len == KEY_SIZE_BYTES))) |
| return ERROR_ESBC_CLIENT_HEADER_SIG_LEN; |
| } else { |
| return ERROR_ESBC_CLIENT_HEADER_KEY_LEN_NOT_TWICE_SIG_LEN; |
| } |
| |
| memcpy(&img->img_sign, esbc + hdr->psign, hdr->sign_len); |
| |
| /* No SG support */ |
| if (hdr->sg_flag) |
| return ERROR_ESBC_CLIENT_HEADER_SG; |
| |
| /* modulus most significant bit should be set */ |
| k = (u8 *)&img->img_key; |
| |
| if ((k[0] & 0x80) == 0) |
| return ERROR_ESBC_CLIENT_HEADER_KEY_MOD_1; |
| |
| /* modulus value should be odd */ |
| if ((k[get_key_len(img) / 2 - 1] & 0x1) == 0) |
| return ERROR_ESBC_CLIENT_HEADER_KEY_MOD_2; |
| |
| /* Check signature value < modulus value */ |
| s = (u8 *)&img->img_sign; |
| |
| if (!(memcmp(s, k, hdr->sign_len) < 0)) |
| return ERROR_ESBC_CLIENT_HEADER_SIG_KEY_MOD; |
| |
| return ESBC_VALID_HDR; |
| } |
| |
| static inline int str2longbe(const char *p, ulong *num) |
| { |
| char *endptr; |
| ulong tmp; |
| |
| if (!p) { |
| return 0; |
| } else { |
| tmp = simple_strtoul(p, &endptr, 16); |
| if (sizeof(ulong) == 4) |
| *num = cpu_to_be32(tmp); |
| else |
| *num = cpu_to_be64(tmp); |
| } |
| |
| return *p != '\0' && *endptr == '\0'; |
| } |
| |
| int fsl_secboot_validate(cmd_tbl_t *cmdtp, int flag, int argc, |
| char * const argv[]) |
| { |
| struct ccsr_sfp_regs *sfp_regs = (void *)(CONFIG_SYS_SFP_ADDR); |
| ulong hash[SHA256_BYTES/sizeof(ulong)]; |
| char hash_str[NUM_HEX_CHARS + 1]; |
| ulong addr = simple_strtoul(argv[1], NULL, 16); |
| struct fsl_secboot_img_priv *img; |
| struct fsl_secboot_img_hdr *hdr; |
| void *esbc; |
| int ret, i, hash_cmd = 0; |
| u32 srk_hash[8]; |
| uint32_t key_len; |
| struct key_prop prop; |
| #if !defined(USE_HOSTCC) |
| struct udevice *mod_exp_dev; |
| #endif |
| |
| if (argc == 3) { |
| char *cp = argv[2]; |
| int i = 0; |
| |
| if (*cp == '0' && *(cp + 1) == 'x') |
| cp += 2; |
| |
| /* The input string expected is in hex, where |
| * each 4 bits would be represented by a hex |
| * sha256 hash is 256 bits long, which would mean |
| * num of characters = 256 / 4 |
| */ |
| if (strlen(cp) != SHA256_NIBBLES) { |
| printf("%s is not a 256 bits hex string as expected\n", |
| argv[2]); |
| return -1; |
| } |
| |
| for (i = 0; i < sizeof(hash)/sizeof(ulong); i++) { |
| strncpy(hash_str, cp + (i * NUM_HEX_CHARS), |
| NUM_HEX_CHARS); |
| hash_str[NUM_HEX_CHARS] = '\0'; |
| if (!str2longbe(hash_str, &hash[i])) { |
| printf("%s is not a 256 bits hex string ", |
| argv[2]); |
| return -1; |
| } |
| } |
| |
| hash_cmd = 1; |
| } |
| |
| img = malloc(sizeof(struct fsl_secboot_img_priv)); |
| |
| if (!img) |
| return -1; |
| |
| memset(img, 0, sizeof(struct fsl_secboot_img_priv)); |
| |
| hdr = &img->hdr; |
| img->ehdrloc = addr; |
| esbc = (u8 *)img->ehdrloc; |
| |
| memcpy(hdr, esbc, sizeof(struct fsl_secboot_img_hdr)); |
| |
| /* read and validate esbc header */ |
| ret = read_validate_esbc_client_header(img); |
| |
| if (ret != ESBC_VALID_HDR) { |
| fsl_secboot_handle_error(ret); |
| goto exit; |
| } |
| |
| /* SRKH present in SFP */ |
| for (i = 0; i < NUM_SRKH_REGS; i++) |
| srk_hash[i] = srk_in32(&sfp_regs->srk_hash[i]); |
| |
| /* |
| * Calculate hash of key obtained via offset present in |
| * ESBC uboot client hdr |
| */ |
| ret = calc_img_key_hash(img); |
| if (ret) { |
| fsl_secblk_handle_error(ret); |
| goto exit; |
| } |
| |
| /* Compare hash obtained above with SRK hash present in SFP */ |
| if (hash_cmd) |
| ret = memcmp(&hash, &img->img_key_hash, SHA256_BYTES); |
| else |
| ret = memcmp(srk_hash, img->img_key_hash, SHA256_BYTES); |
| |
| #if defined(CONFIG_FSL_ISBC_KEY_EXT) |
| if (!hash_cmd && check_ie(img)) |
| ret = 0; |
| #endif |
| |
| if (ret != 0) { |
| fsl_secboot_handle_error(ERROR_ESBC_CLIENT_HASH_COMPARE_KEY); |
| goto exit; |
| } |
| |
| ret = calc_esbchdr_esbc_hash(img); |
| if (ret) { |
| fsl_secblk_handle_error(ret); |
| goto exit; |
| } |
| |
| /* Construct encoded hash EM' wrt PKCSv1.5 */ |
| construct_img_encoded_hash_second(img); |
| |
| /* Fill prop structure for public key */ |
| memset(&prop, 0, sizeof(struct key_prop)); |
| key_len = get_key_len(img) / 2; |
| prop.modulus = img->img_key; |
| prop.public_exponent = img->img_key + key_len; |
| prop.num_bits = key_len * 8; |
| prop.exp_len = key_len; |
| |
| ret = uclass_get_device(UCLASS_MOD_EXP, 0, &mod_exp_dev); |
| if (ret) { |
| printf("RSA: Can't find Modular Exp implementation\n"); |
| return -EINVAL; |
| } |
| |
| ret = rsa_mod_exp(mod_exp_dev, img->img_sign, img->hdr.sign_len, |
| &prop, img->img_encoded_hash); |
| if (ret) { |
| fsl_secblk_handle_error(ret); |
| goto exit; |
| } |
| |
| /* |
| * compare the encoded messages EM' and EM wrt RSA PKCSv1.5 |
| * memcmp returns zero on success |
| * memcmp returns non-zero on failure |
| */ |
| ret = memcmp(&img->img_encoded_hash_second, &img->img_encoded_hash, |
| img->hdr.sign_len); |
| |
| if (ret) { |
| fsl_secboot_handle_error(ERROR_ESBC_CLIENT_HASH_COMPARE_EM); |
| goto exit; |
| } |
| |
| printf("esbc_validate command successful\n"); |
| |
| exit: |
| return 0; |
| } |