blob: bb3dcc6b9540c5b1de7c3542e562e16c1dd9653c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2015 National Instruments
*
* (C) Copyright 2015
* Joe Hershberger <joe.hershberger@ni.com>
*/
#include <common.h>
#include <dm.h>
#include <env.h>
#include <fdtdec.h>
#include <log.h>
#include <malloc.h>
#include <net.h>
#include <net6.h>
#include <asm/eth.h>
#include <dm/test.h>
#include <dm/device-internal.h>
#include <dm/uclass-internal.h>
#include <test/test.h>
#include <test/ut.h>
#include <ndisc.h>
#define DM_TEST_ETH_NUM 4
#if IS_ENABLED(CONFIG_IPV6)
static int dm_test_string_to_ip6(struct unit_test_state *uts)
{
char *str;
struct test_ip6_pair {
char *string_addr;
struct in6_addr ip6_addr;
};
struct in6_addr ip6 = {0};
/* Correct statements */
struct test_ip6_pair test_suite[] = {
{"2001:db8::0:1234:1", {.s6_addr32[0] = 0xb80d0120,
.s6_addr32[1] = 0x00000000,
.s6_addr32[2] = 0x00000000,
.s6_addr32[3] = 0x01003412}},
{"2001:0db8:0000:0000:0000:0000:1234:0001",
{.s6_addr32[0] = 0xb80d0120,
.s6_addr32[1] = 0x00000000,
.s6_addr32[2] = 0x00000000,
.s6_addr32[3] = 0x01003412}},
{"::1", {.s6_addr32[0] = 0x00000000,
.s6_addr32[1] = 0x00000000,
.s6_addr32[2] = 0x00000000,
.s6_addr32[3] = 0x01000000}},
{"::ffff:192.168.1.1", {.s6_addr32[0] = 0x00000000,
.s6_addr32[1] = 0x00000000,
.s6_addr32[2] = 0xffff0000,
.s6_addr32[3] = 0x0101a8c0}},
};
for (int i = 0; i < ARRAY_SIZE(test_suite); ++i) {
ut_assertok(string_to_ip6(test_suite[i].string_addr,
strlen(test_suite[i].string_addr), &ip6));
ut_asserteq_mem(&ip6, &test_suite[i].ip6_addr,
sizeof(struct in6_addr));
}
/* Incorrect statements */
str = "hello:world";
ut_assertok(!string_to_ip6(str, strlen(str), &ip6));
str = "2001:db8::0::0";
ut_assertok(!string_to_ip6(str, strlen(str), &ip6));
str = "2001:db8:192.168.1.1::1";
ut_assertok(!string_to_ip6(str, strlen(str), &ip6));
str = "192.168.1.1";
ut_assertok(!string_to_ip6(str, strlen(str), &ip6));
return 0;
}
DM_TEST(dm_test_string_to_ip6, 0);
static int dm_test_csum_ipv6_magic(struct unit_test_state *uts)
{
unsigned short csum = 0xbeef;
/* Predefined correct parameters */
unsigned short correct_csum = 0xd8ac;
struct in6_addr saddr = {.s6_addr32[0] = 0x000080fe,
.s6_addr32[1] = 0x00000000,
.s6_addr32[2] = 0xffe9f242,
.s6_addr32[3] = 0xe8f66dfe};
struct in6_addr daddr = {.s6_addr32[0] = 0x000080fe,
.s6_addr32[1] = 0x00000000,
.s6_addr32[2] = 0xffd5b372,
.s6_addr32[3] = 0x3ef692fe};
u16 len = 1460;
unsigned short proto = 17;
unsigned int head_csum = 0x91f0;
csum = csum_ipv6_magic(&saddr, &daddr, len, proto, head_csum);
ut_asserteq(csum, correct_csum);
/* Broke a parameter */
proto--;
csum = csum_ipv6_magic(&saddr, &daddr, len, proto, head_csum);
ut_assert(csum != correct_csum);
return 0;
}
DM_TEST(dm_test_csum_ipv6_magic, 0);
static int dm_test_ip6_addr_in_subnet(struct unit_test_state *uts)
{
struct in6_addr our = {.s6_addr32[0] = 0x000080fe,
.s6_addr32[1] = 0x00000000,
.s6_addr32[2] = 0xffe9f242,
.s6_addr32[3] = 0xe8f66dfe};
struct in6_addr neigh1 = {.s6_addr32[0] = 0x000080fe,
.s6_addr32[1] = 0x00000000,
.s6_addr32[2] = 0xffd5b372,
.s6_addr32[3] = 0x3ef692fe};
struct in6_addr neigh2 = {.s6_addr32[0] = 0x60480120,
.s6_addr32[1] = 0x00006048,
.s6_addr32[2] = 0x00000000,
.s6_addr32[3] = 0x00008888};
/* in */
ut_assert(ip6_addr_in_subnet(&our, &neigh1, 64));
/* outside */
ut_assert(!ip6_addr_in_subnet(&our, &neigh2, 64));
ut_assert(!ip6_addr_in_subnet(&our, &neigh1, 128));
return 0;
}
DM_TEST(dm_test_ip6_addr_in_subnet, 0);
static int dm_test_ip6_make_snma(struct unit_test_state *uts)
{
struct in6_addr mult = {0};
struct in6_addr correct_addr = {
.s6_addr32[0] = 0x000002ff,
.s6_addr32[1] = 0x00000000,
.s6_addr32[2] = 0x01000000,
.s6_addr32[3] = 0xe8f66dff};
struct in6_addr addr = { .s6_addr32[0] = 0x000080fe,
.s6_addr32[1] = 0x00000000,
.s6_addr32[2] = 0xffe9f242,
.s6_addr32[3] = 0xe8f66dfe};
ip6_make_snma(&mult, &addr);
ut_asserteq_mem(&mult, &correct_addr, sizeof(struct in6_addr));
return 0;
}
DM_TEST(dm_test_ip6_make_snma, 0);
static int dm_test_ip6_make_lladdr(struct unit_test_state *uts)
{
struct in6_addr generated_lladdr = {0};
struct in6_addr correct_lladdr = {
.s6_addr32[0] = 0x000080fe,
.s6_addr32[1] = 0x00000000,
.s6_addr32[2] = 0xffabf33a,
.s6_addr32[3] = 0xfbb352fe};
const unsigned char mac[6] = {0x38, 0xf3, 0xab, 0x52, 0xb3, 0xfb};
ip6_make_lladdr(&generated_lladdr, mac);
ut_asserteq_mem(&generated_lladdr, &correct_lladdr,
sizeof(struct in6_addr));
return 0;
}
DM_TEST(dm_test_ip6_make_lladdr, UT_TESTF_SCAN_FDT);
#endif
static int dm_test_eth(struct unit_test_state *uts)
{
net_ping_ip = string_to_ip("1.1.2.2");
env_set("ethact", "eth@10002000");
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10002000", env_get("ethact"));
env_set("ethact", "eth@10003000");
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10003000", env_get("ethact"));
env_set("ethact", "eth@10004000");
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10004000", env_get("ethact"));
return 0;
}
DM_TEST(dm_test_eth, UT_TESTF_SCAN_FDT);
static int dm_test_eth_alias(struct unit_test_state *uts)
{
net_ping_ip = string_to_ip("1.1.2.2");
env_set("ethact", "eth0");
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10002000", env_get("ethact"));
env_set("ethact", "eth6");
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10004000", env_get("ethact"));
/* Expected to fail since eth1 is not defined in the device tree */
env_set("ethact", "eth1");
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10002000", env_get("ethact"));
env_set("ethact", "eth5");
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10003000", env_get("ethact"));
return 0;
}
DM_TEST(dm_test_eth_alias, UT_TESTF_SCAN_FDT);
static int dm_test_eth_prime(struct unit_test_state *uts)
{
net_ping_ip = string_to_ip("1.1.2.2");
/* Expected to be "eth@10003000" because of ethprime variable */
env_set("ethact", NULL);
env_set("ethprime", "eth5");
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10003000", env_get("ethact"));
/* Expected to be "eth@10002000" because it is first */
env_set("ethact", NULL);
env_set("ethprime", NULL);
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10002000", env_get("ethact"));
return 0;
}
DM_TEST(dm_test_eth_prime, UT_TESTF_SCAN_FDT);
/**
* This test case is trying to test the following scenario:
* - All ethernet devices are not probed
* - "ethaddr" for all ethernet devices are not set
* - "ethact" is set to a valid ethernet device name
*
* With Sandbox default test configuration, all ethernet devices are
* probed after power-up, so we have to manually create such scenario:
* - Remove all ethernet devices
* - Remove all "ethaddr" environment variables
* - Set "ethact" to the first ethernet device
*
* Do a ping test to see if anything goes wrong.
*/
static int dm_test_eth_act(struct unit_test_state *uts)
{
struct udevice *dev[DM_TEST_ETH_NUM];
const char *ethname[DM_TEST_ETH_NUM] = {"eth@10002000", "eth@10003000",
"sbe5", "eth@10004000"};
const char *addrname[DM_TEST_ETH_NUM] = {"ethaddr", "eth5addr",
"eth3addr", "eth6addr"};
char ethaddr[DM_TEST_ETH_NUM][18];
int i;
memset(ethaddr, '\0', sizeof(ethaddr));
net_ping_ip = string_to_ip("1.1.2.2");
/* Prepare the test scenario */
for (i = 0; i < DM_TEST_ETH_NUM; i++) {
char *addr;
ut_assertok(uclass_find_device_by_name(UCLASS_ETH,
ethname[i], &dev[i]));
ut_assertok(device_remove(dev[i], DM_REMOVE_NORMAL));
/* Invalidate MAC address */
addr = env_get(addrname[i]);
ut_assertnonnull(addr);
strncpy(ethaddr[i], addr, 17);
/* Must disable access protection for ethaddr before clearing */
env_set(".flags", addrname[i]);
env_set(addrname[i], NULL);
}
/* Set ethact to "eth@10002000" */
env_set("ethact", ethname[0]);
/* Segment fault might happen if something is wrong */
ut_asserteq(-ENODEV, net_loop(PING));
for (i = 0; i < DM_TEST_ETH_NUM; i++) {
/* Restore the env */
env_set(".flags", addrname[i]);
env_set(addrname[i], ethaddr[i]);
/* Probe the device again */
ut_assertok(device_probe(dev[i]));
}
env_set(".flags", NULL);
env_set("ethact", NULL);
return 0;
}
DM_TEST(dm_test_eth_act, UT_TESTF_SCAN_FDT);
/* Ensure that all addresses are loaded properly */
static int dm_test_ethaddr(struct unit_test_state *uts)
{
static const char *const addr[] = {
"02:00:11:22:33:44",
"02:00:11:22:33:48", /* dsa slave */
"02:00:11:22:33:45",
"02:00:11:22:33:48", /* dsa master */
"02:00:11:22:33:46",
"02:00:11:22:33:47",
"02:00:11:22:33:48", /* dsa slave */
"02:00:11:22:33:49",
};
int i;
for (i = 0; i < ARRAY_SIZE(addr); i++) {
char addrname[10];
char *env_addr;
if (i)
snprintf(addrname, sizeof(addrname), "eth%daddr", i + 1);
else
strcpy(addrname, "ethaddr");
env_addr = env_get(addrname);
ut_assertnonnull(env_addr);
ut_asserteq_str(addr[i], env_addr);
}
return 0;
}
DM_TEST(dm_test_ethaddr, UT_TESTF_SCAN_FDT);
/* The asserts include a return on fail; cleanup in the caller */
static int _dm_test_eth_rotate1(struct unit_test_state *uts)
{
/* Make sure that the default is to rotate to the next interface */
env_set("ethact", "eth@10004000");
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10002000", env_get("ethact"));
/* If ethrotate is no, then we should fail on a bad MAC */
env_set("ethact", "eth@10004000");
env_set("ethrotate", "no");
ut_asserteq(-EINVAL, net_loop(PING));
ut_asserteq_str("eth@10004000", env_get("ethact"));
return 0;
}
static int _dm_test_eth_rotate2(struct unit_test_state *uts)
{
/* Make sure we can skip invalid devices */
env_set("ethact", "eth@10004000");
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10004000", env_get("ethact"));
/* Make sure we can handle device name which is not eth# */
env_set("ethact", "sbe5");
ut_assertok(net_loop(PING));
ut_asserteq_str("sbe5", env_get("ethact"));
return 0;
}
static int dm_test_eth_rotate(struct unit_test_state *uts)
{
char ethaddr[18];
int retval;
/* Set target IP to mock ping */
net_ping_ip = string_to_ip("1.1.2.2");
/* Invalidate eth1's MAC address */
memset(ethaddr, '\0', sizeof(ethaddr));
strncpy(ethaddr, env_get("eth6addr"), 17);
/* Must disable access protection for eth6addr before clearing */
env_set(".flags", "eth6addr");
env_set("eth6addr", NULL);
retval = _dm_test_eth_rotate1(uts);
/* Restore the env */
env_set("eth6addr", ethaddr);
env_set("ethrotate", NULL);
if (!retval) {
/* Invalidate eth0's MAC address */
strncpy(ethaddr, env_get("ethaddr"), 17);
/* Must disable access protection for ethaddr before clearing */
env_set(".flags", "ethaddr");
env_set("ethaddr", NULL);
retval = _dm_test_eth_rotate2(uts);
/* Restore the env */
env_set("ethaddr", ethaddr);
}
/* Restore the env */
env_set(".flags", NULL);
return retval;
}
DM_TEST(dm_test_eth_rotate, UT_TESTF_SCAN_FDT);
/* The asserts include a return on fail; cleanup in the caller */
static int _dm_test_net_retry(struct unit_test_state *uts)
{
/*
* eth1 is disabled and netretry is yes, so the ping should succeed and
* the active device should be eth0
*/
sandbox_eth_disable_response(1, true);
env_set("ethact", "lan1");
env_set("netretry", "yes");
sandbox_eth_skip_timeout();
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10002000", env_get("ethact"));
/*
* eth1 is disabled and netretry is no, so the ping should fail and the
* active device should be eth1
*/
env_set("ethact", "lan1");
env_set("netretry", "no");
sandbox_eth_skip_timeout();
ut_asserteq(-ENONET, net_loop(PING));
ut_asserteq_str("lan1", env_get("ethact"));
return 0;
}
static int dm_test_net_retry(struct unit_test_state *uts)
{
int retval;
net_ping_ip = string_to_ip("1.1.2.2");
retval = _dm_test_net_retry(uts);
/* Restore the env */
env_set("netretry", NULL);
sandbox_eth_disable_response(1, false);
return retval;
}
DM_TEST(dm_test_net_retry, UT_TESTF_SCAN_FDT);
static int sb_check_arp_reply(struct udevice *dev, void *packet,
unsigned int len)
{
struct eth_sandbox_priv *priv = dev_get_priv(dev);
struct ethernet_hdr *eth = packet;
struct arp_hdr *arp;
/* Used by all of the ut_assert macros */
struct unit_test_state *uts = priv->priv;
if (ntohs(eth->et_protlen) != PROT_ARP)
return 0;
arp = packet + ETHER_HDR_SIZE;
if (ntohs(arp->ar_op) != ARPOP_REPLY)
return 0;
/* This test would be worthless if we are not waiting */
ut_assert(arp_is_waiting());
/* Validate response */
ut_asserteq_mem(eth->et_src, net_ethaddr, ARP_HLEN);
ut_asserteq_mem(eth->et_dest, priv->fake_host_hwaddr, ARP_HLEN);
ut_assert(eth->et_protlen == htons(PROT_ARP));
ut_assert(arp->ar_hrd == htons(ARP_ETHER));
ut_assert(arp->ar_pro == htons(PROT_IP));
ut_assert(arp->ar_hln == ARP_HLEN);
ut_assert(arp->ar_pln == ARP_PLEN);
ut_asserteq_mem(&arp->ar_sha, net_ethaddr, ARP_HLEN);
ut_assert(net_read_ip(&arp->ar_spa).s_addr == net_ip.s_addr);
ut_asserteq_mem(&arp->ar_tha, priv->fake_host_hwaddr, ARP_HLEN);
ut_assert(net_read_ip(&arp->ar_tpa).s_addr ==
string_to_ip("1.1.2.4").s_addr);
return 0;
}
static int sb_with_async_arp_handler(struct udevice *dev, void *packet,
unsigned int len)
{
struct eth_sandbox_priv *priv = dev_get_priv(dev);
struct ethernet_hdr *eth = packet;
struct arp_hdr *arp = packet + ETHER_HDR_SIZE;
int ret;
/*
* If we are about to generate a reply to ARP, first inject a request
* from another host
*/
if (ntohs(eth->et_protlen) == PROT_ARP &&
ntohs(arp->ar_op) == ARPOP_REQUEST) {
/* Make sure sandbox_eth_recv_arp_req() knows who is asking */
priv->fake_host_ipaddr = string_to_ip("1.1.2.4");
ret = sandbox_eth_recv_arp_req(dev);
if (ret)
return ret;
}
sandbox_eth_arp_req_to_reply(dev, packet, len);
sandbox_eth_ping_req_to_reply(dev, packet, len);
return sb_check_arp_reply(dev, packet, len);
}
static int dm_test_eth_async_arp_reply(struct unit_test_state *uts)
{
net_ping_ip = string_to_ip("1.1.2.2");
sandbox_eth_set_tx_handler(0, sb_with_async_arp_handler);
/* Used by all of the ut_assert macros in the tx_handler */
sandbox_eth_set_priv(0, uts);
env_set("ethact", "eth@10002000");
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10002000", env_get("ethact"));
sandbox_eth_set_tx_handler(0, NULL);
return 0;
}
DM_TEST(dm_test_eth_async_arp_reply, UT_TESTF_SCAN_FDT);
static int sb_check_ping_reply(struct udevice *dev, void *packet,
unsigned int len)
{
struct eth_sandbox_priv *priv = dev_get_priv(dev);
struct ethernet_hdr *eth = packet;
struct ip_udp_hdr *ip;
struct icmp_hdr *icmp;
/* Used by all of the ut_assert macros */
struct unit_test_state *uts = priv->priv;
if (ntohs(eth->et_protlen) != PROT_IP)
return 0;
ip = packet + ETHER_HDR_SIZE;
if (ip->ip_p != IPPROTO_ICMP)
return 0;
icmp = (struct icmp_hdr *)&ip->udp_src;
if (icmp->type != ICMP_ECHO_REPLY)
return 0;
/* This test would be worthless if we are not waiting */
ut_assert(arp_is_waiting());
/* Validate response */
ut_asserteq_mem(eth->et_src, net_ethaddr, ARP_HLEN);
ut_asserteq_mem(eth->et_dest, priv->fake_host_hwaddr, ARP_HLEN);
ut_assert(eth->et_protlen == htons(PROT_IP));
ut_assert(net_read_ip(&ip->ip_src).s_addr == net_ip.s_addr);
ut_assert(net_read_ip(&ip->ip_dst).s_addr ==
string_to_ip("1.1.2.4").s_addr);
return 0;
}
static int sb_with_async_ping_handler(struct udevice *dev, void *packet,
unsigned int len)
{
struct eth_sandbox_priv *priv = dev_get_priv(dev);
struct ethernet_hdr *eth = packet;
struct arp_hdr *arp = packet + ETHER_HDR_SIZE;
int ret;
/*
* If we are about to generate a reply to ARP, first inject a request
* from another host
*/
if (ntohs(eth->et_protlen) == PROT_ARP &&
ntohs(arp->ar_op) == ARPOP_REQUEST) {
/* Make sure sandbox_eth_recv_arp_req() knows who is asking */
priv->fake_host_ipaddr = string_to_ip("1.1.2.4");
ret = sandbox_eth_recv_ping_req(dev);
if (ret)
return ret;
}
sandbox_eth_arp_req_to_reply(dev, packet, len);
sandbox_eth_ping_req_to_reply(dev, packet, len);
return sb_check_ping_reply(dev, packet, len);
}
static int dm_test_eth_async_ping_reply(struct unit_test_state *uts)
{
net_ping_ip = string_to_ip("1.1.2.2");
sandbox_eth_set_tx_handler(0, sb_with_async_ping_handler);
/* Used by all of the ut_assert macros in the tx_handler */
sandbox_eth_set_priv(0, uts);
env_set("ethact", "eth@10002000");
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10002000", env_get("ethact"));
sandbox_eth_set_tx_handler(0, NULL);
return 0;
}
DM_TEST(dm_test_eth_async_ping_reply, UT_TESTF_SCAN_FDT);
#if IS_ENABLED(CONFIG_IPV6_ROUTER_DISCOVERY)
static u8 ip6_ra_buf[] = {0x60, 0xf, 0xc5, 0x4a, 0x0, 0x38, 0x3a, 0xff, 0xfe,
0x80, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x6, 0x85, 0xe6,
0x29, 0x77, 0xcb, 0xc8, 0x53, 0xff, 0x2, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x1, 0x86, 0x0, 0xdc, 0x90, 0x40, 0x80, 0x15, 0x18,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x4,
0x40, 0xc0, 0x0, 0x0, 0x37, 0xdc, 0x0, 0x0, 0x37,
0x78, 0x0, 0x0, 0x0, 0x0, 0x20, 0x1, 0xca, 0xfe, 0xca,
0xfe, 0xca, 0xfe, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x1, 0x1, 0x0, 0x15, 0x5d, 0xe2, 0x8a, 0x2};
static int dm_test_validate_ra(struct unit_test_state *uts)
{
struct ip6_hdr *ip6 = (struct ip6_hdr *)ip6_ra_buf;
struct icmp6hdr *icmp = (struct icmp6hdr *)(ip6 + 1);
__be16 temp = 0;
ut_assert(validate_ra(ip6) == true);
temp = ip6->payload_len;
ip6->payload_len = 15;
ut_assert(validate_ra(ip6) == false);
ip6->payload_len = temp;
temp = ip6->saddr.s6_addr16[0];
ip6->saddr.s6_addr16[0] = 0x2001;
ut_assert(validate_ra(ip6) == false);
ip6->saddr.s6_addr16[0] = temp;
temp = ip6->hop_limit;
ip6->hop_limit = 15;
ut_assert(validate_ra(ip6) == false);
ip6->hop_limit = temp;
temp = icmp->icmp6_code;
icmp->icmp6_code = 15;
ut_assert(validate_ra(ip6) == false);
icmp->icmp6_code = temp;
return 0;
}
DM_TEST(dm_test_validate_ra, 0);
static int dm_test_process_ra(struct unit_test_state *uts)
{
int len = sizeof(ip6_ra_buf);
struct ip6_hdr *ip6 = (struct ip6_hdr *)ip6_ra_buf;
struct icmp6hdr *icmp = (struct icmp6hdr *)(ip6 + 1);
struct ra_msg *msg = (struct ra_msg *)icmp;
unsigned char *option = msg->opt;
struct icmp6_ra_prefix_info *prefix =
(struct icmp6_ra_prefix_info *)option;
__be16 temp = 0;
unsigned char option_len = option[1];
ut_assert(process_ra(ip6, len) == 0);
temp = icmp->icmp6_rt_lifetime;
icmp->icmp6_rt_lifetime = 0;
ut_assert(process_ra(ip6, len) != 0);
icmp->icmp6_rt_lifetime = temp;
ut_assert(process_ra(ip6, 0) != 0);
option[1] = 0;
ut_assert(process_ra(ip6, len) != 0);
option[1] = option_len;
prefix->on_link = false;
ut_assert(process_ra(ip6, len) != 0);
prefix->on_link = true;
temp = prefix->prefix.s6_addr16[0];
prefix->prefix.s6_addr16[0] = 0x80fe;
ut_assert(process_ra(ip6, len) != 0);
prefix->prefix.s6_addr16[0] = temp;
return 0;
}
DM_TEST(dm_test_process_ra, 0);
#endif