| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright 2019 Broadcom. |
| * |
| */ |
| |
| #include <common.h> |
| #include <dm.h> |
| #include <errno.h> |
| #include <malloc.h> |
| #include <sdhci.h> |
| #include <linux/delay.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| struct sdhci_iproc_host { |
| struct sdhci_host host; |
| u32 shadow_cmd; |
| u32 shadow_blk; |
| }; |
| |
| #define REG_OFFSET_IN_BITS(reg) ((reg) << 3 & 0x18) |
| |
| static inline struct sdhci_iproc_host *to_iproc(struct sdhci_host *host) |
| { |
| return (struct sdhci_iproc_host *)host; |
| } |
| |
| #ifdef CONFIG_MMC_SDHCI_IO_ACCESSORS |
| static u32 sdhci_iproc_readl(struct sdhci_host *host, int reg) |
| { |
| u32 val = readl(host->ioaddr + reg); |
| #ifdef CONFIG_MMC_SDHCI_IO_ACCESSORS_TRACE |
| printf("%s %d: readl [0x%02x] 0x%08x\n", |
| host->name, host->index, reg, val); |
| #endif |
| return val; |
| } |
| |
| static u16 sdhci_iproc_readw(struct sdhci_host *host, int reg) |
| { |
| u32 val = sdhci_iproc_readl(host, (reg & ~3)); |
| u16 word = val >> REG_OFFSET_IN_BITS(reg) & 0xffff; |
| return word; |
| } |
| |
| static u8 sdhci_iproc_readb(struct sdhci_host *host, int reg) |
| { |
| u32 val = sdhci_iproc_readl(host, (reg & ~3)); |
| u8 byte = val >> REG_OFFSET_IN_BITS(reg) & 0xff; |
| return byte; |
| } |
| |
| static void sdhci_iproc_writel(struct sdhci_host *host, u32 val, int reg) |
| { |
| u32 clock = 0; |
| #ifdef CONFIG_MMC_SDHCI_IO_ACCESSORS_TRACE |
| printf("%s %d: writel [0x%02x] 0x%08x\n", |
| host->name, host->index, reg, val); |
| #endif |
| writel(val, host->ioaddr + reg); |
| |
| if (host->mmc) |
| clock = host->mmc->clock; |
| if (clock <= 400000) { |
| /* Round up to micro-second four SD clock delay */ |
| if (clock) |
| udelay((4 * 1000000 + clock - 1) / clock); |
| else |
| udelay(10); |
| } |
| } |
| |
| /* |
| * The Arasan has a bugette whereby it may lose the content of successive |
| * writes to the same register that are within two SD-card clock cycles of |
| * each other (a clock domain crossing problem). The data |
| * register does not have this problem, which is just as well - otherwise we'd |
| * have to nobble the DMA engine too. |
| * |
| * This wouldn't be a problem with the code except that we can only write the |
| * controller with 32-bit writes. So two different 16-bit registers are |
| * written back to back creates the problem. |
| * |
| * In reality, this only happens when SDHCI_BLOCK_SIZE and SDHCI_BLOCK_COUNT |
| * are written followed by SDHCI_TRANSFER_MODE and SDHCI_COMMAND. |
| * The BLOCK_SIZE and BLOCK_COUNT are meaningless until a command issued so |
| * the work around can be further optimized. We can keep shadow values of |
| * BLOCK_SIZE, BLOCK_COUNT, and TRANSFER_MODE until a COMMAND is issued. |
| * Then, write the BLOCK_SIZE+BLOCK_COUNT in a single 32-bit write followed |
| * by the TRANSFER+COMMAND in another 32-bit write. |
| */ |
| static void sdhci_iproc_writew(struct sdhci_host *host, u16 val, int reg) |
| { |
| struct sdhci_iproc_host *iproc_host = to_iproc(host); |
| u32 word_shift = REG_OFFSET_IN_BITS(reg); |
| u32 mask = 0xffff << word_shift; |
| u32 oldval, newval; |
| |
| if (reg == SDHCI_COMMAND) { |
| /* Write the block now as we are issuing a command */ |
| if (iproc_host->shadow_blk != 0) { |
| sdhci_iproc_writel(host, iproc_host->shadow_blk, |
| SDHCI_BLOCK_SIZE); |
| iproc_host->shadow_blk = 0; |
| } |
| oldval = iproc_host->shadow_cmd; |
| } else if (reg == SDHCI_BLOCK_SIZE || reg == SDHCI_BLOCK_COUNT) { |
| /* Block size and count are stored in shadow reg */ |
| oldval = iproc_host->shadow_blk; |
| } else { |
| /* Read reg, all other registers are not shadowed */ |
| oldval = sdhci_iproc_readl(host, (reg & ~3)); |
| } |
| newval = (oldval & ~mask) | (val << word_shift); |
| |
| if (reg == SDHCI_TRANSFER_MODE) { |
| /* Save the transfer mode until the command is issued */ |
| iproc_host->shadow_cmd = newval; |
| } else if (reg == SDHCI_BLOCK_SIZE || reg == SDHCI_BLOCK_COUNT) { |
| /* Save the block info until the command is issued */ |
| iproc_host->shadow_blk = newval; |
| } else { |
| /* Command or other regular 32-bit write */ |
| sdhci_iproc_writel(host, newval, reg & ~3); |
| } |
| } |
| |
| static void sdhci_iproc_writeb(struct sdhci_host *host, u8 val, int reg) |
| { |
| u32 oldval = sdhci_iproc_readl(host, (reg & ~3)); |
| u32 byte_shift = REG_OFFSET_IN_BITS(reg); |
| u32 mask = 0xff << byte_shift; |
| u32 newval = (oldval & ~mask) | (val << byte_shift); |
| |
| sdhci_iproc_writel(host, newval, reg & ~3); |
| } |
| #endif |
| |
| static int sdhci_iproc_set_ios_post(struct sdhci_host *host) |
| { |
| u32 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); |
| |
| /* Reset UHS mode bits */ |
| ctrl &= ~SDHCI_CTRL_UHS_MASK; |
| |
| if (host->mmc->ddr_mode) |
| ctrl |= UHS_DDR50_BUS_SPEED; |
| |
| sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); |
| |
| return 0; |
| } |
| |
| static struct sdhci_ops sdhci_platform_ops = { |
| #ifdef CONFIG_MMC_SDHCI_IO_ACCESSORS |
| .read_l = sdhci_iproc_readl, |
| .read_w = sdhci_iproc_readw, |
| .read_b = sdhci_iproc_readb, |
| .write_l = sdhci_iproc_writel, |
| .write_w = sdhci_iproc_writew, |
| .write_b = sdhci_iproc_writeb, |
| #endif |
| .set_ios_post = sdhci_iproc_set_ios_post, |
| }; |
| |
| struct iproc_sdhci_plat { |
| struct mmc_config cfg; |
| struct mmc mmc; |
| }; |
| |
| static int iproc_sdhci_probe(struct udevice *dev) |
| { |
| struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev); |
| struct iproc_sdhci_plat *plat = dev_get_plat(dev); |
| struct sdhci_host *host = dev_get_priv(dev); |
| struct sdhci_iproc_host *iproc_host; |
| int node = dev_of_offset(dev); |
| u32 f_min_max[2]; |
| int ret; |
| |
| iproc_host = malloc(sizeof(struct sdhci_iproc_host)); |
| if (!iproc_host) { |
| printf("%s: sdhci host malloc fail!\n", __func__); |
| return -ENOMEM; |
| } |
| iproc_host->shadow_cmd = 0; |
| iproc_host->shadow_blk = 0; |
| |
| host->name = dev->name; |
| host->ioaddr = dev_read_addr_ptr(dev); |
| host->voltages = MMC_VDD_165_195 | |
| MMC_VDD_32_33 | MMC_VDD_33_34; |
| host->quirks = SDHCI_QUIRK_BROKEN_VOLTAGE | SDHCI_QUIRK_BROKEN_R1B; |
| host->host_caps = MMC_MODE_DDR_52MHz; |
| host->index = fdtdec_get_uint(gd->fdt_blob, node, "index", 0); |
| host->ops = &sdhci_platform_ops; |
| host->version = sdhci_readw(host, SDHCI_HOST_VERSION); |
| ret = fdtdec_get_int_array(gd->fdt_blob, dev_of_offset(dev), |
| "clock-freq-min-max", f_min_max, 2); |
| if (ret) { |
| printf("sdhci: clock-freq-min-max not found\n"); |
| free(iproc_host); |
| return ret; |
| } |
| host->max_clk = f_min_max[1]; |
| host->bus_width = fdtdec_get_int(gd->fdt_blob, |
| dev_of_offset(dev), "bus-width", 4); |
| |
| /* Update host_caps for 8 bit bus width */ |
| if (host->bus_width == 8) |
| host->host_caps |= MMC_MODE_8BIT; |
| |
| memcpy(&iproc_host->host, host, sizeof(struct sdhci_host)); |
| |
| iproc_host->host.mmc = &plat->mmc; |
| iproc_host->host.mmc->dev = dev; |
| iproc_host->host.mmc->priv = &iproc_host->host; |
| upriv->mmc = iproc_host->host.mmc; |
| |
| ret = sdhci_setup_cfg(&plat->cfg, &iproc_host->host, |
| f_min_max[1], f_min_max[0]); |
| if (ret) { |
| free(iproc_host); |
| return ret; |
| } |
| |
| return sdhci_probe(dev); |
| } |
| |
| static int iproc_sdhci_bind(struct udevice *dev) |
| { |
| struct iproc_sdhci_plat *plat = dev_get_plat(dev); |
| |
| return sdhci_bind(dev, &plat->mmc, &plat->cfg); |
| } |
| |
| static const struct udevice_id iproc_sdhci_ids[] = { |
| { .compatible = "brcm,iproc-sdhci" }, |
| { } |
| }; |
| |
| U_BOOT_DRIVER(iproc_sdhci_drv) = { |
| .name = "iproc_sdhci", |
| .id = UCLASS_MMC, |
| .of_match = iproc_sdhci_ids, |
| .ops = &sdhci_ops, |
| .bind = iproc_sdhci_bind, |
| .probe = iproc_sdhci_probe, |
| .priv_auto = sizeof(struct sdhci_host), |
| .plat_auto = sizeof(struct iproc_sdhci_plat), |
| }; |