blob: 23d476fba28356b11febe2e2a840efc9235f6e41 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2016, STMicroelectronics - All Rights Reserved
* Author(s): Vikas Manocha, <vikas.manocha@st.com> for STMicroelectronics.
*/
#define LOG_CATEGORY UCLASS_SERIAL
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <log.h>
#include <reset.h>
#include <serial.h>
#include <watchdog.h>
#include <asm/io.h>
#include <asm/arch/stm32.h>
#include <dm/device_compat.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
#include "serial_stm32.h"
#include <dm/device_compat.h>
/*
* At 115200 bits/s
* 1 bit = 1 / 115200 = 8,68 us
* 8 bits = 69,444 us
* 10 bits are needed for worst case (8 bits + 1 start + 1 stop) = 86.806 us
*/
#define ONE_BYTE_B115200_US 87
static void _stm32_serial_setbrg(fdt_addr_t base,
struct stm32_uart_info *uart_info,
u32 clock_rate,
int baudrate)
{
bool stm32f4 = uart_info->stm32f4;
u32 int_div, mantissa, fraction, oversampling;
u8 uart_enable_bit = uart_info->uart_enable_bit;
/* BRR register must be set when uart is disabled */
clrbits_le32(base + CR1_OFFSET(stm32f4), BIT(uart_enable_bit));
int_div = DIV_ROUND_CLOSEST(clock_rate, baudrate);
if (int_div < 16) {
oversampling = 8;
setbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_OVER8);
} else {
oversampling = 16;
clrbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_OVER8);
}
mantissa = (int_div / oversampling) << USART_BRR_M_SHIFT;
fraction = int_div % oversampling;
writel(mantissa | fraction, base + BRR_OFFSET(stm32f4));
setbits_le32(base + CR1_OFFSET(stm32f4), BIT(uart_enable_bit));
}
static int stm32_serial_setbrg(struct udevice *dev, int baudrate)
{
struct stm32x7_serial_plat *plat = dev_get_plat(dev);
_stm32_serial_setbrg(plat->base, plat->uart_info,
plat->clock_rate, baudrate);
return 0;
}
static int stm32_serial_setconfig(struct udevice *dev, uint serial_config)
{
struct stm32x7_serial_plat *plat = dev_get_plat(dev);
bool stm32f4 = plat->uart_info->stm32f4;
u8 uart_enable_bit = plat->uart_info->uart_enable_bit;
u32 cr1 = plat->base + CR1_OFFSET(stm32f4);
u32 config = 0;
uint parity = SERIAL_GET_PARITY(serial_config);
uint bits = SERIAL_GET_BITS(serial_config);
uint stop = SERIAL_GET_STOP(serial_config);
/*
* only parity config is implemented, check if other serial settings
* are the default one.
* (STM32F4 serial IP didn't support parity setting)
*/
if (bits != SERIAL_8_BITS || stop != SERIAL_ONE_STOP || stm32f4)
return -ENOTSUPP; /* not supported in driver*/
clrbits_le32(cr1, USART_CR1_RE | USART_CR1_TE | BIT(uart_enable_bit));
/* update usart configuration (uart need to be disable)
* PCE: parity check enable
* PS : '0' : Even / '1' : Odd
* M[1:0] = '00' : 8 Data bits
* M[1:0] = '01' : 9 Data bits with parity
*/
switch (parity) {
default:
case SERIAL_PAR_NONE:
config = 0;
break;
case SERIAL_PAR_ODD:
config = USART_CR1_PCE | USART_CR1_PS | USART_CR1_M0;
break;
case SERIAL_PAR_EVEN:
config = USART_CR1_PCE | USART_CR1_M0;
break;
}
clrsetbits_le32(cr1,
USART_CR1_PCE | USART_CR1_PS | USART_CR1_M1 |
USART_CR1_M0,
config);
setbits_le32(cr1, USART_CR1_RE | USART_CR1_TE | BIT(uart_enable_bit));
return 0;
}
static int stm32_serial_getc(struct udevice *dev)
{
struct stm32x7_serial_plat *plat = dev_get_plat(dev);
bool stm32f4 = plat->uart_info->stm32f4;
fdt_addr_t base = plat->base;
u32 isr = readl(base + ISR_OFFSET(stm32f4));
if ((isr & USART_ISR_RXNE) == 0)
return -EAGAIN;
if (isr & (USART_ISR_PE | USART_ISR_ORE | USART_ISR_FE)) {
if (!stm32f4)
setbits_le32(base + ICR_OFFSET,
USART_ICR_PCECF | USART_ICR_ORECF |
USART_ICR_FECF);
else
readl(base + RDR_OFFSET(stm32f4));
return -EIO;
}
return readl(base + RDR_OFFSET(stm32f4));
}
static int _stm32_serial_putc(fdt_addr_t base,
struct stm32_uart_info *uart_info,
const char c)
{
bool stm32f4 = uart_info->stm32f4;
if ((readl(base + ISR_OFFSET(stm32f4)) & USART_ISR_TXE) == 0)
return -EAGAIN;
writel(c, base + TDR_OFFSET(stm32f4));
return 0;
}
static int stm32_serial_putc(struct udevice *dev, const char c)
{
struct stm32x7_serial_plat *plat = dev_get_plat(dev);
return _stm32_serial_putc(plat->base, plat->uart_info, c);
}
static int stm32_serial_pending(struct udevice *dev, bool input)
{
struct stm32x7_serial_plat *plat = dev_get_plat(dev);
bool stm32f4 = plat->uart_info->stm32f4;
fdt_addr_t base = plat->base;
if (input)
return readl(base + ISR_OFFSET(stm32f4)) &
USART_ISR_RXNE ? 1 : 0;
else
return readl(base + ISR_OFFSET(stm32f4)) &
USART_ISR_TXE ? 0 : 1;
}
static void _stm32_serial_init(fdt_addr_t base,
struct stm32_uart_info *uart_info)
{
bool stm32f4 = uart_info->stm32f4;
u8 uart_enable_bit = uart_info->uart_enable_bit;
/* Disable uart-> enable fifo -> enable uart */
clrbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_RE | USART_CR1_TE |
BIT(uart_enable_bit));
if (uart_info->has_fifo)
setbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_FIFOEN);
setbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_RE | USART_CR1_TE |
BIT(uart_enable_bit));
}
static int stm32_serial_probe(struct udevice *dev)
{
struct stm32x7_serial_plat *plat = dev_get_plat(dev);
struct clk clk;
struct reset_ctl reset;
u32 isr;
int ret;
bool stm32f4;
plat->uart_info = (struct stm32_uart_info *)dev_get_driver_data(dev);
stm32f4 = plat->uart_info->stm32f4;
ret = clk_get_by_index(dev, 0, &clk);
if (ret < 0)
return ret;
ret = clk_enable(&clk);
if (ret) {
dev_err(dev, "failed to enable clock\n");
return ret;
}
/*
* before uart initialization, wait for TC bit (Transmission Complete)
* in case there is still chars from previous bootstage to transmit
*/
ret = read_poll_timeout(readl, isr, isr & USART_ISR_TC, 50,
16 * ONE_BYTE_B115200_US, plat->base + ISR_OFFSET(stm32f4));
if (ret)
dev_dbg(dev, "FIFO not empty, some character can be lost (%d)\n", ret);
ret = reset_get_by_index(dev, 0, &reset);
if (!ret) {
reset_assert(&reset);
udelay(2);
reset_deassert(&reset);
}
plat->clock_rate = clk_get_rate(&clk);
if (!plat->clock_rate) {
clk_disable(&clk);
return -EINVAL;
};
_stm32_serial_init(plat->base, plat->uart_info);
return 0;
}
static const struct udevice_id stm32_serial_id[] = {
{ .compatible = "st,stm32-uart", .data = (ulong)&stm32f4_info},
{ .compatible = "st,stm32f7-uart", .data = (ulong)&stm32f7_info},
{ .compatible = "st,stm32h7-uart", .data = (ulong)&stm32h7_info},
{}
};
static int stm32_serial_of_to_plat(struct udevice *dev)
{
struct stm32x7_serial_plat *plat = dev_get_plat(dev);
plat->base = dev_read_addr(dev);
if (plat->base == FDT_ADDR_T_NONE)
return -EINVAL;
return 0;
}
static const struct dm_serial_ops stm32_serial_ops = {
.putc = stm32_serial_putc,
.pending = stm32_serial_pending,
.getc = stm32_serial_getc,
.setbrg = stm32_serial_setbrg,
.setconfig = stm32_serial_setconfig
};
U_BOOT_DRIVER(serial_stm32) = {
.name = "serial_stm32",
.id = UCLASS_SERIAL,
.of_match = of_match_ptr(stm32_serial_id),
.of_to_plat = of_match_ptr(stm32_serial_of_to_plat),
.plat_auto = sizeof(struct stm32x7_serial_plat),
.ops = &stm32_serial_ops,
.probe = stm32_serial_probe,
#if !CONFIG_IS_ENABLED(OF_CONTROL)
.flags = DM_FLAG_PRE_RELOC,
#endif
};
#ifdef CONFIG_DEBUG_UART_STM32
#include <debug_uart.h>
static inline struct stm32_uart_info *_debug_uart_info(void)
{
struct stm32_uart_info *uart_info;
#if defined(CONFIG_STM32F4)
uart_info = &stm32f4_info;
#elif defined(CONFIG_STM32F7)
uart_info = &stm32f7_info;
#else
uart_info = &stm32h7_info;
#endif
return uart_info;
}
static inline void _debug_uart_init(void)
{
fdt_addr_t base = CONFIG_VAL(DEBUG_UART_BASE);
struct stm32_uart_info *uart_info = _debug_uart_info();
_stm32_serial_init(base, uart_info);
_stm32_serial_setbrg(base, uart_info,
CONFIG_DEBUG_UART_CLOCK,
CONFIG_BAUDRATE);
}
static inline void _debug_uart_putc(int c)
{
fdt_addr_t base = CONFIG_VAL(DEBUG_UART_BASE);
struct stm32_uart_info *uart_info = _debug_uart_info();
while (_stm32_serial_putc(base, uart_info, c) == -EAGAIN)
;
}
DEBUG_UART_FUNCS
#endif