blob: 11a2803e6f2a1d08dc53981ea45dd8456e1141b6 [file] [log] [blame]
/*
* SPI flash driver
*
* Enter bugs at http://blackfin.uclinux.org/
*
* Copyright (c) 2005-2007 Analog Devices Inc.
*
* Licensed under the GPL-2 or later.
*/
/* Configuration options:
* CONFIG_SPI_BAUD - value to load into SPI_BAUD (divisor of SCLK to get SPI CLK)
* CONFIG_SPI_FLASH_SLOW_READ - force usage of the slower read
* WARNING: make sure your SCLK + SPI_BAUD is slow enough
*/
#include <common.h>
#include <malloc.h>
#include <asm/io.h>
#include <asm/mach-common/bits/spi.h>
/* Forcibly phase out these */
#ifdef CONFIG_SPI_FLASH_NUM_SECTORS
# error do not set CONFIG_SPI_FLASH_NUM_SECTORS
#endif
#ifdef CONFIG_SPI_FLASH_SECTOR_SIZE
# error do not set CONFIG_SPI_FLASH_SECTOR_SIZE
#endif
#if defined(CONFIG_SPI)
struct flash_info {
char *name;
uint16_t id;
unsigned sector_size;
unsigned num_sectors;
};
/* SPI Speeds: 50 MHz / 33 MHz */
static struct flash_info flash_spansion_serial_flash[] = {
{ "S25FL016", 0x0215, 64 * 1024, 32 },
{ "S25FL032", 0x0216, 64 * 1024, 64 },
{ "S25FL064", 0x0217, 64 * 1024, 128 },
{ "S25FL0128", 0x0218, 256 * 1024, 64 },
{ NULL, 0, 0, 0 }
};
/* SPI Speeds: 50 MHz / 20 MHz */
static struct flash_info flash_st_serial_flash[] = {
{ "m25p05", 0x2010, 32 * 1024, 2 },
{ "m25p10", 0x2011, 32 * 1024, 4 },
{ "m25p20", 0x2012, 64 * 1024, 4 },
{ "m25p40", 0x2013, 64 * 1024, 8 },
{ "m25p16", 0x2015, 64 * 1024, 32 },
{ "m25p32", 0x2016, 64 * 1024, 64 },
{ "m25p64", 0x2017, 64 * 1024, 128 },
{ "m25p128", 0x2018, 256 * 1024, 64 },
{ NULL, 0, 0, 0 }
};
/* SPI Speeds: 66 MHz / 33 MHz */
static struct flash_info flash_atmel_dataflash[] = {
{ "AT45DB011x", 0x0c, 264, 512 },
{ "AT45DB021x", 0x14, 264, 1025 },
{ "AT45DB041x", 0x1c, 264, 2048 },
{ "AT45DB081x", 0x24, 264, 4096 },
{ "AT45DB161x", 0x2c, 528, 4096 },
{ "AT45DB321x", 0x34, 528, 8192 },
{ "AT45DB642x", 0x3c, 1056, 8192 },
{ NULL, 0, 0, 0 }
};
/* SPI Speed: 50 MHz / 25 MHz or 40 MHz / 20 MHz */
static struct flash_info flash_winbond_serial_flash[] = {
{ "W25X10", 0x3011, 16 * 256, 32 },
{ "W25X20", 0x3012, 16 * 256, 64 },
{ "W25X40", 0x3013, 16 * 256, 128 },
{ "W25X80", 0x3014, 16 * 256, 256 },
{ "W25P80", 0x2014, 256 * 256, 16 },
{ "W25P16", 0x2015, 256 * 256, 32 },
{ NULL, 0, 0, 0 }
};
struct flash_ops {
uint8_t read, write, erase, status;
};
#ifdef CONFIG_SPI_FLASH_SLOW_READ
# define OP_READ 0x03
#else
# define OP_READ 0x0B
#endif
static struct flash_ops flash_st_ops = {
.read = OP_READ,
.write = 0x02,
.erase = 0xD8,
.status = 0x05,
};
static struct flash_ops flash_atmel_ops = {
.read = OP_READ,
.write = 0x82,
.erase = 0x81,
.status = 0xD7,
};
static struct flash_ops flash_winbond_ops = {
.read = OP_READ,
.write = 0x02,
.erase = 0x20,
.status = 0x05,
};
struct manufacturer_info {
const char *name;
uint8_t id;
struct flash_info *flashes;
struct flash_ops *ops;
};
static struct {
struct manufacturer_info *manufacturer;
struct flash_info *flash;
struct flash_ops *ops;
uint8_t manufacturer_id, device_id1, device_id2;
unsigned int write_length;
unsigned long sector_size, num_sectors;
} flash;
enum {
JED_MANU_SPANSION = 0x01,
JED_MANU_ST = 0x20,
JED_MANU_ATMEL = 0x1F,
JED_MANU_WINBOND = 0xEF,
};
static struct manufacturer_info flash_manufacturers[] = {
{
.name = "Spansion",
.id = JED_MANU_SPANSION,
.flashes = flash_spansion_serial_flash,
.ops = &flash_st_ops,
},
{
.name = "ST",
.id = JED_MANU_ST,
.flashes = flash_st_serial_flash,
.ops = &flash_st_ops,
},
{
.name = "Atmel",
.id = JED_MANU_ATMEL,
.flashes = flash_atmel_dataflash,
.ops = &flash_atmel_ops,
},
{
.name = "Winbond",
.id = JED_MANU_WINBOND,
.flashes = flash_winbond_serial_flash,
.ops = &flash_winbond_ops,
},
};
#define TIMEOUT 5000 /* timeout of 5 seconds */
/* BF54x support */
#ifndef pSPI_CTL
# define pSPI_CTL pSPI0_CTL
# define pSPI_BAUD pSPI0_BAUD
# define pSPI_FLG pSPI0_FLG
# define pSPI_RDBR pSPI0_RDBR
# define pSPI_STAT pSPI0_STAT
# define pSPI_TDBR pSPI0_TDBR
# define SPI0_SCK 0x0001
# define SPI0_MOSI 0x0004
# define SPI0_MISO 0x0002
# define SPI0_SEL1 0x0010
#endif
/* Default to the SPI SSEL that we boot off of:
* BF54x, BF537, (everything new?): SSEL1
* BF533, BF561: SSEL2
*/
#ifndef CONFIG_SPI_FLASH_SSEL
# if defined(__ADSPBF531__) || defined(__ADSPBF532__) || \
defined(__ADSPBF533__) || defined(__ADSPBF561__)
# define CONFIG_SPI_FLASH_SSEL 2
# else
# define CONFIG_SPI_FLASH_SSEL 1
# endif
#endif
#define SSEL_MASK (1 << CONFIG_SPI_FLASH_SSEL)
static void SPI_INIT(void)
{
/* [#3541] This delay appears to be necessary, but not sure
* exactly why as the history behind it is non-existant.
*/
udelay(CONFIG_CCLK_HZ / 25000000);
/* enable SPI pins: SSEL, MOSI, MISO, SCK */
#ifdef __ADSPBF54x__
*pPORTE_FER |= (SPI0_SCK | SPI0_MOSI | SPI0_MISO | SPI0_SEL1);
#elif defined(__ADSPBF534__) || defined(__ADSPBF536__) || defined(__ADSPBF537__)
*pPORTF_FER |= (PF10 | PF11 | PF12 | PF13);
#elif defined(__ADSPBF52x__)
bfin_write_PORTG_MUX((bfin_read_PORTG_MUX() & ~PORT_x_MUX_0_MASK) | PORT_x_MUX_0_FUNC_3);
bfin_write_PORTG_FER(bfin_read_PORTG_FER() | PG1 | PG2 | PG3 | PG4);
#endif
/* initate communication upon write of TDBR */
*pSPI_CTL = (SPE|MSTR|CPHA|CPOL|0x01);
*pSPI_BAUD = CONFIG_SPI_BAUD;
}
static void SPI_DEINIT(void)
{
/* put SPI settings back to reset state */
*pSPI_CTL = 0x0400;
*pSPI_BAUD = 0;
SSYNC();
}
static void SPI_ON(void)
{
/* toggle SSEL to reset the device so it'll take a new command */
*pSPI_FLG = 0xFF00 | SSEL_MASK;
SSYNC();
*pSPI_FLG = ((0xFF & ~SSEL_MASK) << 8) | SSEL_MASK;
SSYNC();
}
static void SPI_OFF(void)
{
/* put SPI settings back to reset state */
*pSPI_FLG = 0xFF00;
SSYNC();
}
static uint8_t spi_write_read_byte(uint8_t transmit)
{
*pSPI_TDBR = transmit;
SSYNC();
while ((*pSPI_STAT & TXS))
if (ctrlc())
break;
while (!(*pSPI_STAT & SPIF))
if (ctrlc())
break;
while (!(*pSPI_STAT & RXS))
if (ctrlc())
break;
/* Read dummy to empty the receive register */
return *pSPI_RDBR;
}
static uint8_t read_status_register(void)
{
uint8_t status_register;
/* send instruction to read status register */
SPI_ON();
spi_write_read_byte(flash.ops->status);
/* send dummy to receive the status register */
status_register = spi_write_read_byte(0);
SPI_OFF();
return status_register;
}
static int wait_for_ready_status(void)
{
ulong start = get_timer(0);
while (get_timer(0) - start < TIMEOUT) {
switch (flash.manufacturer_id) {
case JED_MANU_SPANSION:
case JED_MANU_ST:
case JED_MANU_WINBOND:
if (!(read_status_register() & 0x01))
return 0;
break;
case JED_MANU_ATMEL:
if (read_status_register() & 0x80)
return 0;
break;
}
if (ctrlc()) {
puts("\nAbort\n");
return -1;
}
}
puts("Timeout\n");
return -1;
}
/* Request and read the manufacturer and device id of parts which
* are compatible with the JEDEC standard (JEP106) and use that to
* setup other operating conditions.
*/
static int spi_detect_part(void)
{
uint16_t dev_id;
size_t i;
static char called_init;
if (called_init)
return 0;
SPI_ON();
/* Send the request for the part identification */
spi_write_read_byte(0x9F);
/* Now read in the manufacturer id bytes */
do {
flash.manufacturer_id = spi_write_read_byte(0);
if (flash.manufacturer_id == 0x7F)
puts("Warning: unhandled manufacturer continuation byte!\n");
} while (flash.manufacturer_id == 0x7F);
/* Now read in the first device id byte */
flash.device_id1 = spi_write_read_byte(0);
/* Now read in the second device id byte */
flash.device_id2 = spi_write_read_byte(0);
SPI_OFF();
dev_id = (flash.device_id1 << 8) | flash.device_id2;
for (i = 0; i < ARRAY_SIZE(flash_manufacturers); ++i) {
if (flash.manufacturer_id == flash_manufacturers[i].id)
break;
}
if (i == ARRAY_SIZE(flash_manufacturers))
goto unknown;
flash.manufacturer = &flash_manufacturers[i];
flash.ops = flash_manufacturers[i].ops;
switch (flash.manufacturer_id) {
case JED_MANU_SPANSION:
case JED_MANU_ST:
case JED_MANU_WINBOND:
for (i = 0; flash.manufacturer->flashes[i].name; ++i) {
if (dev_id == flash.manufacturer->flashes[i].id)
break;
}
if (!flash.manufacturer->flashes[i].name)
goto unknown;
flash.flash = &flash.manufacturer->flashes[i];
flash.sector_size = flash.flash->sector_size;
flash.num_sectors = flash.flash->num_sectors;
flash.write_length = 256;
break;
case JED_MANU_ATMEL: {
uint8_t status = read_status_register();
for (i = 0; flash.manufacturer->flashes[i].name; ++i) {
if ((status & 0x3c) == flash.manufacturer->flashes[i].id)
break;
}
if (!flash.manufacturer->flashes[i].name)
goto unknown;
flash.flash = &flash.manufacturer->flashes[i];
flash.sector_size = flash.flash->sector_size;
flash.num_sectors = flash.flash->num_sectors;
/* see if flash is in "power of 2" mode */
if (status & 0x1)
flash.sector_size &= ~(1 << (ffs(flash.sector_size) - 1));
flash.write_length = flash.sector_size;
break;
}
}
called_init = 1;
return 0;
unknown:
printf("Unknown SPI device: 0x%02X 0x%02X 0x%02X\n",
flash.manufacturer_id, flash.device_id1, flash.device_id2);
return 1;
}
/*
* Function: spi_init_f
* Description: Init SPI-Controller (ROM part)
* return: ---
*/
void spi_init_f(void)
{
}
/*
* Function: spi_init_r
* Description: Init SPI-Controller (RAM part) -
* The malloc engine is ready and we can move our buffers to
* normal RAM
* return: ---
*/
void spi_init_r(void)
{
#if defined(CONFIG_POST) && (CONFIG_POST & CONFIG_SYS_POST_SPI)
/* Our testing strategy here is pretty basic:
* - fill src memory with an 8-bit pattern
* - write the src memory to the SPI flash
* - read the SPI flash into the dst memory
* - compare src and dst memory regions
* - repeat a few times
* The variations we test for:
* - change the 8-bit pattern a bit
* - change the read/write block size so we know:
* - writes smaller/equal/larger than the buffer work
* - writes smaller/equal/larger than the sector work
* - change the SPI offsets so we know:
* - writing partial sectors works
*/
uint8_t *mem_src, *mem_dst;
size_t i, c, l, o;
size_t test_count, errors;
uint8_t pattern;
SPI_INIT();
if (spi_detect_part())
goto out;
eeprom_info();
ulong lengths[] = {
flash.write_length,
flash.write_length * 2,
flash.write_length / 2,
flash.sector_size,
flash.sector_size * 2,
flash.sector_size / 2
};
ulong offsets[] = {
0,
flash.write_length,
flash.write_length * 2,
flash.write_length / 2,
flash.write_length / 4,
flash.sector_size,
flash.sector_size * 2,
flash.sector_size / 2,
flash.sector_size / 4,
};
/* the exact addresses are arbitrary ... they just need to not overlap */
mem_src = (void *)(0);
mem_dst = (void *)(max(flash.write_length, flash.sector_size) * 2);
test_count = 0;
errors = 0;
pattern = 0x00;
for (i = 0; i < 16; ++i) { /* 16 = 8 bits * 2 iterations */
for (l = 0; l < ARRAY_SIZE(lengths); ++l) {
for (o = 0; o < ARRAY_SIZE(offsets); ++o) {
ulong len = lengths[l];
ulong off = offsets[o];
printf("Testing pattern 0x%02X of length %5lu and offset %5lu: ", pattern, len, off);
/* setup the source memory region */
memset(mem_src, pattern, len);
test_count += 4;
for (c = 0; c < 4; ++c) { /* 4 is just a random repeat count */
if (ctrlc()) {
puts("\nAbort\n");
goto out;
}
/* make sure background fill pattern != pattern */
memset(mem_dst, pattern ^ 0xFF, len);
/* write out the source memory and then read it back and compare */
eeprom_write(0, off, mem_src, len);
eeprom_read(0, off, mem_dst, len);
if (memcmp(mem_src, mem_dst, len)) {
for (c = 0; c < len; ++c)
if (mem_src[c] != mem_dst[c])
break;
printf(" FAIL @ offset %u, skipping repeats ", c);
++errors;
break;
}
/* XXX: should shrink write region here to test with
* leading/trailing canaries so we know surrounding
* bytes don't get screwed.
*/
}
puts("\n");
}
}
/* invert the pattern every other run and shift out bits slowly */
pattern ^= 0xFF;
if (i % 2)
pattern = (pattern | 0x01) << 1;
}
if (errors)
printf("SPI FAIL: Out of %i tests, there were %i errors ;(\n", test_count, errors);
else
printf("SPI PASS: %i tests worked!\n", test_count);
out:
SPI_DEINIT();
#endif
}
static void transmit_address(uint32_t addr)
{
/* Send the highest byte of the 24 bit address at first */
spi_write_read_byte(addr >> 16);
/* Send the middle byte of the 24 bit address at second */
spi_write_read_byte(addr >> 8);
/* Send the lowest byte of the 24 bit address finally */
spi_write_read_byte(addr);
}
/*
* Read a value from flash for verify purpose
* Inputs: unsigned long ulStart - holds the SPI start address
* int pnData - pointer to store value read from flash
* long lCount - number of elements to read
*/
static int read_flash(unsigned long address, long count, uchar *buffer)
{
size_t i;
/* Send the read command to SPI device */
SPI_ON();
spi_write_read_byte(flash.ops->read);
transmit_address(address);
#ifndef CONFIG_SPI_FLASH_SLOW_READ
/* Send dummy byte when doing SPI fast reads */
spi_write_read_byte(0);
#endif
/* After the SPI device address has been placed on the MOSI pin the data can be */
/* received on the MISO pin. */
for (i = 1; i <= count; ++i) {
*buffer++ = spi_write_read_byte(0);
if (i % flash.sector_size == 0)
puts(".");
}
SPI_OFF();
return 0;
}
static int enable_writing(void)
{
ulong start;
if (flash.manufacturer_id == JED_MANU_ATMEL)
return 0;
/* A write enable instruction must previously have been executed */
SPI_ON();
spi_write_read_byte(0x06);
SPI_OFF();
/* The status register will be polled to check the write enable latch "WREN" */
start = get_timer(0);
while (get_timer(0) - start < TIMEOUT) {
if (read_status_register() & 0x02)
return 0;
if (ctrlc()) {
puts("\nAbort\n");
return -1;
}
}
puts("Timeout\n");
return -1;
}
static long address_to_sector(unsigned long address)
{
if (address > (flash.num_sectors * flash.sector_size) - 1)
return -1;
return address / flash.sector_size;
}
static int erase_sector(int address)
{
/* sector gets checked in higher function, so assume it's valid
* here and figure out the offset of the sector in flash
*/
if (enable_writing())
return -1;
/*
* Send the erase block command to the flash followed by the 24 address
* to point to the start of a sector
*/
SPI_ON();
spi_write_read_byte(flash.ops->erase);
transmit_address(address);
SPI_OFF();
return wait_for_ready_status();
}
/* Write [count] bytes out of [buffer] into the given SPI [address] */
static long write_flash(unsigned long address, long count, uchar *buffer)
{
long i, write_buffer_size;
if (enable_writing())
return -1;
/* Send write command followed by the 24 bit address */
SPI_ON();
spi_write_read_byte(flash.ops->write);
transmit_address(address);
/* Shoot out a single write buffer */
write_buffer_size = min(count, flash.write_length);
for (i = 0; i < write_buffer_size; ++i)
spi_write_read_byte(buffer[i]);
SPI_OFF();
/* Wait for the flash to do its thing */
if (wait_for_ready_status()) {
puts("SPI Program Time out! ");
return -1;
}
return i;
}
/* Write [count] bytes out of [buffer] into the given SPI [address] */
static int write_sector(unsigned long address, long count, uchar *buffer)
{
long write_cnt;
while (count != 0) {
write_cnt = write_flash(address, count, buffer);
if (write_cnt == -1)
return -1;
/* Now that we've sent some bytes out to the flash, update
* our counters a bit
*/
count -= write_cnt;
address += write_cnt;
buffer += write_cnt;
}
/* return the appropriate error code */
return 0;
}
/*
* Function: spi_write
*/
ssize_t spi_write(uchar *addr, int alen, uchar *buffer, int len)
{
unsigned long offset;
int start_sector, end_sector;
int start_byte, end_byte;
uchar *temp = NULL;
int num, ret = 0;
SPI_INIT();
if (spi_detect_part())
goto out;
offset = addr[0] << 16 | addr[1] << 8 | addr[2];
/* Get the start block number */
start_sector = address_to_sector(offset);
if (start_sector == -1) {
puts("Invalid sector! ");
goto out;
}
end_sector = address_to_sector(offset + len - 1);
if (end_sector == -1) {
puts("Invalid sector! ");
goto out;
}
/* Since flashes operate in sector units but the eeprom command
* operates as a continuous stream of bytes, we need to emulate
* the eeprom behavior. So here we read in the sector, overlay
* any bytes we're actually modifying, erase the sector, and
* then write back out the new sector.
*/
temp = malloc(flash.sector_size);
if (!temp) {
puts("Malloc for sector failed! ");
goto out;
}
for (num = start_sector; num <= end_sector; num++) {
unsigned long address = num * flash.sector_size;
/* XXX: should add an optimization when spanning sectors:
* No point in reading in a sector if we're going to be
* clobbering the whole thing. Need to also add a test
* case to make sure the optimization is correct.
*/
if (read_flash(address, flash.sector_size, temp)) {
puts("Read sector failed! ");
len = 0;
break;
}
start_byte = max(address, offset);
end_byte = address + flash.sector_size - 1;
if (end_byte > (offset + len))
end_byte = (offset + len - 1);
memcpy(temp + start_byte - address,
buffer + start_byte - offset,
end_byte - start_byte + 1);
if (erase_sector(address)) {
puts("Erase sector failed! ");
goto out;
}
if (write_sector(address, flash.sector_size, temp)) {
puts("Write sector failed! ");
goto out;
}
puts(".");
}
ret = len;
out:
free(temp);
SPI_DEINIT();
return ret;
}
/*
* Function: spi_read
*/
ssize_t spi_read(uchar *addr, int alen, uchar *buffer, int len)
{
unsigned long offset;
SPI_INIT();
if (spi_detect_part())
len = 0;
else {
offset = addr[0] << 16 | addr[1] << 8 | addr[2];
read_flash(offset, len, buffer);
}
SPI_DEINIT();
return len;
}
/*
* Spit out some useful information about the SPI eeprom
*/
int eeprom_info(void)
{
int ret = 0;
SPI_INIT();
if (spi_detect_part())
ret = 1;
else
printf("SPI Device: %s 0x%02X (%s) 0x%02X 0x%02X\n"
"Parameters: num sectors = %i, sector size = %i, write size = %i\n"
"Flash Size: %i mbit (%i mbyte)\n"
"Status: 0x%02X\n",
flash.flash->name, flash.manufacturer_id, flash.manufacturer->name,
flash.device_id1, flash.device_id2, flash.num_sectors,
flash.sector_size, flash.write_length,
(flash.num_sectors * flash.sector_size) >> 17,
(flash.num_sectors * flash.sector_size) >> 20,
read_status_register());
SPI_DEINIT();
return ret;
}
#endif