| /* |
| * Copyright (C) 2015-2017 Socionext Inc. |
| * Author: Masahiro Yamada <yamada.masahiro@socionext.com> |
| * |
| * based on commit 21b6e480f92ccc38fe0502e3116411d6509d3bf2 of Diag by: |
| * Copyright (C) 2015 Socionext Inc. |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <common.h> |
| #include <linux/errno.h> |
| #include <linux/io.h> |
| #include <linux/sizes.h> |
| #include <asm/processor.h> |
| |
| #include "../init.h" |
| #include "../soc-info.h" |
| #include "ddrmphy-regs.h" |
| #include "umc-regs.h" |
| |
| #define DRAM_CH_NR 3 |
| |
| enum dram_freq { |
| DRAM_FREQ_1866M, |
| DRAM_FREQ_2133M, |
| DRAM_FREQ_NR, |
| }; |
| |
| enum dram_size { |
| DRAM_SZ_256M, |
| DRAM_SZ_512M, |
| DRAM_SZ_NR, |
| }; |
| |
| /* PHY */ |
| static u32 ddrphy_pgcr2[DRAM_FREQ_NR] = {0x00FC7E5D, 0x00FC90AB}; |
| static u32 ddrphy_ptr0[DRAM_FREQ_NR] = {0x0EA09205, 0x10C0A6C6}; |
| static u32 ddrphy_ptr1[DRAM_FREQ_NR] = {0x0DAC041B, 0x0FA104B1}; |
| static u32 ddrphy_ptr3[DRAM_FREQ_NR] = {0x15171e45, 0x18182357}; |
| static u32 ddrphy_ptr4[DRAM_FREQ_NR] = {0x0e9ad8e9, 0x10b34157}; |
| static u32 ddrphy_dtpr0[DRAM_FREQ_NR] = {0x35a00d88, 0x39e40e88}; |
| static u32 ddrphy_dtpr1[DRAM_FREQ_NR] = {0x2288cc2c, 0x228a04d0}; |
| static u32 ddrphy_dtpr2[DRAM_FREQ_NR] = {0x50005e00, 0x50006a00}; |
| static u32 ddrphy_dtpr3[DRAM_FREQ_NR] = {0x0010cb49, 0x0010ec89}; |
| static u32 ddrphy_mr0[DRAM_FREQ_NR] = {0x00000115, 0x00000125}; |
| static u32 ddrphy_mr2[DRAM_FREQ_NR] = {0x000002a0, 0x000002a8}; |
| |
| /* dependent on package and board design */ |
| static u32 ddrphy_acbdlr0[DRAM_CH_NR] = {0x0000000c, 0x0000000c, 0x00000009}; |
| |
| /* DDR multiPHY */ |
| static inline int ddrphy_get_rank(int dx) |
| { |
| return dx / 2; |
| } |
| |
| static void ddrphy_fifo_reset(void __iomem *phy_base) |
| { |
| u32 tmp; |
| |
| tmp = readl(phy_base + MPHY_PGCR0); |
| tmp &= ~MPHY_PGCR0_PHYFRST; |
| writel(tmp, phy_base + MPHY_PGCR0); |
| |
| udelay(1); |
| |
| tmp |= MPHY_PGCR0_PHYFRST; |
| writel(tmp, phy_base + MPHY_PGCR0); |
| |
| udelay(1); |
| } |
| |
| static void ddrphy_vt_ctrl(void __iomem *phy_base, int enable) |
| { |
| u32 tmp; |
| |
| tmp = readl(phy_base + MPHY_PGCR1); |
| |
| if (enable) |
| tmp &= ~MPHY_PGCR1_INHVT; |
| else |
| tmp |= MPHY_PGCR1_INHVT; |
| |
| writel(tmp, phy_base + MPHY_PGCR1); |
| |
| if (!enable) { |
| while (!(readl(phy_base + MPHY_PGSR1) & MPHY_PGSR1_VTSTOP)) |
| cpu_relax(); |
| } |
| } |
| |
| static void ddrphy_dqs_delay_fixup(void __iomem *phy_base, int nr_dx, int step) |
| { |
| int dx; |
| u32 lcdlr1, rdqsd; |
| void __iomem *dx_base = phy_base + MPHY_DX_BASE; |
| |
| ddrphy_vt_ctrl(phy_base, 0); |
| |
| for (dx = 0; dx < nr_dx; dx++) { |
| lcdlr1 = readl(dx_base + MPHY_DX_LCDLR1); |
| rdqsd = (lcdlr1 >> 8) & 0xff; |
| rdqsd = clamp(rdqsd + step, 0U, 0xffU); |
| lcdlr1 = (lcdlr1 & ~(0xff << 8)) | (rdqsd << 8); |
| writel(lcdlr1, dx_base + MPHY_DX_LCDLR1); |
| readl(dx_base + MPHY_DX_LCDLR1); /* relax */ |
| dx_base += MPHY_DX_STRIDE; |
| } |
| |
| ddrphy_vt_ctrl(phy_base, 1); |
| } |
| |
| static int ddrphy_get_system_latency(void __iomem *phy_base, int width) |
| { |
| void __iomem *dx_base = phy_base + MPHY_DX_BASE; |
| const int nr_dx = width / 8; |
| int dx, rank; |
| u32 gtr; |
| int dgsl, dgsl_min = INT_MAX, dgsl_max = 0; |
| |
| for (dx = 0; dx < nr_dx; dx++) { |
| gtr = readl(dx_base + MPHY_DX_GTR); |
| for (rank = 0; rank < 4; rank++) { |
| dgsl = gtr & 0x7; |
| /* if dgsl is zero, this rank was not trained. skip. */ |
| if (dgsl) { |
| dgsl_min = min(dgsl_min, dgsl); |
| dgsl_max = max(dgsl_max, dgsl); |
| } |
| gtr >>= 3; |
| } |
| dx_base += MPHY_DX_STRIDE; |
| } |
| |
| if (dgsl_min != dgsl_max) |
| printf("DQS Gateing System Latencies are not all leveled.\n"); |
| |
| return dgsl_max; |
| } |
| |
| static void ddrphy_init(void __iomem *phy_base, enum dram_freq freq, int width, |
| int ch) |
| { |
| u32 tmp; |
| void __iomem *zq_base, *dx_base; |
| int zq, dx; |
| int nr_dx; |
| |
| nr_dx = width / 8; |
| |
| writel(MPHY_PIR_ZCALBYP, phy_base + MPHY_PIR); |
| /* |
| * Disable RGLVT bit (Read DQS Gating LCDL Delay VT Compensation) |
| * to avoid read error issue. |
| */ |
| writel(0x07d81e37, phy_base + MPHY_PGCR0); |
| writel(0x0200c4e0, phy_base + MPHY_PGCR1); |
| |
| tmp = ddrphy_pgcr2[freq]; |
| if (width >= 32) |
| tmp |= MPHY_PGCR2_DUALCHN | MPHY_PGCR2_ACPDDC; |
| writel(tmp, phy_base + MPHY_PGCR2); |
| |
| writel(ddrphy_ptr0[freq], phy_base + MPHY_PTR0); |
| writel(ddrphy_ptr1[freq], phy_base + MPHY_PTR1); |
| writel(0x00083def, phy_base + MPHY_PTR2); |
| writel(ddrphy_ptr3[freq], phy_base + MPHY_PTR3); |
| writel(ddrphy_ptr4[freq], phy_base + MPHY_PTR4); |
| |
| writel(ddrphy_acbdlr0[ch], phy_base + MPHY_ACBDLR0); |
| |
| writel(0x55555555, phy_base + MPHY_ACIOCR1); |
| writel(0x00000000, phy_base + MPHY_ACIOCR2); |
| writel(0x55555555, phy_base + MPHY_ACIOCR3); |
| writel(0x00000000, phy_base + MPHY_ACIOCR4); |
| writel(0x00000055, phy_base + MPHY_ACIOCR5); |
| writel(0x00181aa4, phy_base + MPHY_DXCCR); |
| |
| writel(0x0024641e, phy_base + MPHY_DSGCR); |
| writel(0x0000040b, phy_base + MPHY_DCR); |
| writel(ddrphy_dtpr0[freq], phy_base + MPHY_DTPR0); |
| writel(ddrphy_dtpr1[freq], phy_base + MPHY_DTPR1); |
| writel(ddrphy_dtpr2[freq], phy_base + MPHY_DTPR2); |
| writel(ddrphy_dtpr3[freq], phy_base + MPHY_DTPR3); |
| writel(ddrphy_mr0[freq], phy_base + MPHY_MR0); |
| writel(0x00000006, phy_base + MPHY_MR1); |
| writel(ddrphy_mr2[freq], phy_base + MPHY_MR2); |
| writel(0x00000000, phy_base + MPHY_MR3); |
| |
| tmp = 0; |
| for (dx = 0; dx < nr_dx; dx++) |
| tmp |= BIT(MPHY_DTCR_RANKEN_SHIFT + ddrphy_get_rank(dx)); |
| writel(0x90003087 | tmp, phy_base + MPHY_DTCR); |
| |
| writel(0x00000000, phy_base + MPHY_DTAR0); |
| writel(0x00000008, phy_base + MPHY_DTAR1); |
| writel(0x00000010, phy_base + MPHY_DTAR2); |
| writel(0x00000018, phy_base + MPHY_DTAR3); |
| writel(0xdd22ee11, phy_base + MPHY_DTDR0); |
| writel(0x7788bb44, phy_base + MPHY_DTDR1); |
| |
| /* impedance control settings */ |
| writel(0x04048900, phy_base + MPHY_ZQCR); |
| |
| zq_base = phy_base + MPHY_ZQ_BASE; |
| for (zq = 0; zq < 4; zq++) { |
| /* |
| * board-dependent |
| * PXS2: CH0ZQ0=0x5B, CH1ZQ0=0x5B, CH2ZQ0=0x59, others=0x5D |
| */ |
| writel(0x0007BB5D, zq_base + MPHY_ZQ_PR); |
| zq_base += MPHY_ZQ_STRIDE; |
| } |
| |
| /* DATX8 settings */ |
| dx_base = phy_base + MPHY_DX_BASE; |
| for (dx = 0; dx < 4; dx++) { |
| tmp = readl(dx_base + MPHY_DX_GCR0); |
| tmp &= ~MPHY_DX_GCR0_WLRKEN_MASK; |
| tmp |= BIT(MPHY_DX_GCR0_WLRKEN_SHIFT + ddrphy_get_rank(dx)) & |
| MPHY_DX_GCR0_WLRKEN_MASK; |
| writel(tmp, dx_base + MPHY_DX_GCR0); |
| |
| writel(0x00000000, dx_base + MPHY_DX_GCR1); |
| writel(0x00000000, dx_base + MPHY_DX_GCR2); |
| writel(0x00000000, dx_base + MPHY_DX_GCR3); |
| dx_base += MPHY_DX_STRIDE; |
| } |
| |
| while (!(readl(phy_base + MPHY_PGSR0) & MPHY_PGSR0_IDONE)) |
| cpu_relax(); |
| |
| ddrphy_dqs_delay_fixup(phy_base, nr_dx, -4); |
| } |
| |
| struct ddrphy_init_sequence { |
| char *description; |
| u32 init_flag; |
| u32 done_flag; |
| u32 err_flag; |
| }; |
| |
| static const struct ddrphy_init_sequence impedance_calibration_sequence[] = { |
| { |
| "Impedance Calibration", |
| MPHY_PIR_ZCAL, |
| MPHY_PGSR0_ZCDONE, |
| MPHY_PGSR0_ZCERR, |
| }, |
| { /* sentinel */ } |
| }; |
| |
| static const struct ddrphy_init_sequence dram_init_sequence[] = { |
| { |
| "DRAM Initialization", |
| MPHY_PIR_DRAMRST | MPHY_PIR_DRAMINIT, |
| MPHY_PGSR0_DIDONE, |
| 0, |
| }, |
| { /* sentinel */ } |
| }; |
| |
| static const struct ddrphy_init_sequence training_sequence[] = { |
| { |
| "Write Leveling", |
| MPHY_PIR_WL, |
| MPHY_PGSR0_WLDONE, |
| MPHY_PGSR0_WLERR, |
| }, |
| { |
| "Read DQS Gate Training", |
| MPHY_PIR_QSGATE, |
| MPHY_PGSR0_QSGDONE, |
| MPHY_PGSR0_QSGERR, |
| }, |
| { |
| "Write Leveling Adjustment", |
| MPHY_PIR_WLADJ, |
| MPHY_PGSR0_WLADONE, |
| MPHY_PGSR0_WLAERR, |
| }, |
| { |
| "Read Bit Deskew", |
| MPHY_PIR_RDDSKW, |
| MPHY_PGSR0_RDDONE, |
| MPHY_PGSR0_RDERR, |
| }, |
| { |
| "Write Bit Deskew", |
| MPHY_PIR_WRDSKW, |
| MPHY_PGSR0_WDDONE, |
| MPHY_PGSR0_WDERR, |
| }, |
| { |
| "Read Eye Training", |
| MPHY_PIR_RDEYE, |
| MPHY_PGSR0_REDONE, |
| MPHY_PGSR0_REERR, |
| }, |
| { |
| "Write Eye Training", |
| MPHY_PIR_WREYE, |
| MPHY_PGSR0_WEDONE, |
| MPHY_PGSR0_WEERR, |
| }, |
| { /* sentinel */ } |
| }; |
| |
| static int __ddrphy_training(void __iomem *phy_base, |
| const struct ddrphy_init_sequence *seq) |
| { |
| const struct ddrphy_init_sequence *s; |
| u32 pgsr0; |
| u32 init_flag = MPHY_PIR_INIT; |
| u32 done_flag = MPHY_PGSR0_IDONE; |
| int timeout = 50000; /* 50 msec is long enough */ |
| #ifdef DISPLAY_ELAPSED_TIME |
| ulong start = get_timer(0); |
| #endif |
| |
| for (s = seq; s->description; s++) { |
| init_flag |= s->init_flag; |
| done_flag |= s->done_flag; |
| } |
| |
| writel(init_flag, phy_base + MPHY_PIR); |
| |
| do { |
| if (--timeout < 0) { |
| pr_err("%s: error: timeout during DDR training\n", |
| __func__); |
| return -ETIMEDOUT; |
| } |
| udelay(1); |
| pgsr0 = readl(phy_base + MPHY_PGSR0); |
| } while ((pgsr0 & done_flag) != done_flag); |
| |
| for (s = seq; s->description; s++) { |
| if (pgsr0 & s->err_flag) { |
| pr_err("%s: error: %s failed\n", __func__, |
| s->description); |
| return -EIO; |
| } |
| } |
| |
| #ifdef DISPLAY_ELAPSED_TIME |
| printf("%s: info: elapsed time %ld msec\n", get_timer(start)); |
| #endif |
| |
| return 0; |
| } |
| |
| static int ddrphy_impedance_calibration(void __iomem *phy_base) |
| { |
| int ret; |
| u32 tmp; |
| |
| ret = __ddrphy_training(phy_base, impedance_calibration_sequence); |
| if (ret) |
| return ret; |
| |
| /* |
| * Because of a hardware bug, IDONE flag is set when the first ZQ block |
| * is calibrated. The flag does not guarantee the completion for all |
| * the ZQ blocks. Wait a little more just in case. |
| */ |
| udelay(1); |
| |
| /* reflect ZQ settings and enable average algorithm*/ |
| tmp = readl(phy_base + MPHY_ZQCR); |
| tmp |= MPHY_ZQCR_FORCE_ZCAL_VT_UPDATE; |
| writel(tmp, phy_base + MPHY_ZQCR); |
| tmp &= ~MPHY_ZQCR_FORCE_ZCAL_VT_UPDATE; |
| tmp |= MPHY_ZQCR_AVGEN; |
| writel(tmp, phy_base + MPHY_ZQCR); |
| |
| return 0; |
| } |
| |
| static int ddrphy_dram_init(void __iomem *phy_base) |
| { |
| return __ddrphy_training(phy_base, dram_init_sequence); |
| } |
| |
| static int ddrphy_training(void __iomem *phy_base) |
| { |
| return __ddrphy_training(phy_base, training_sequence); |
| } |
| |
| /* UMC */ |
| static u32 umc_cmdctla[DRAM_FREQ_NR] = {0x66DD131D, 0x77EE1722}; |
| /* |
| * The ch2 is a different generation UMC core. |
| * The register spec is different, unfortunately. |
| */ |
| static u32 umc_cmdctlb_ch01[DRAM_FREQ_NR] = {0x13E87C44, 0x18F88C44}; |
| static u32 umc_cmdctlb_ch2[DRAM_FREQ_NR] = {0x19E8DC44, 0x1EF8EC44}; |
| static u32 umc_spcctla[DRAM_FREQ_NR][DRAM_SZ_NR] = { |
| {0x004A071D, 0x0078071D}, |
| {0x0055081E, 0x0089081E}, |
| }; |
| |
| static u32 umc_spcctlb[] = {0x00FF000A, 0x00FF000B}; |
| /* The ch2 is different for some reason only hardware guys know... */ |
| static u32 umc_flowctla_ch01[] = {0x0800001E, 0x08000022}; |
| static u32 umc_flowctla_ch2[] = {0x0800001E, 0x0800001E}; |
| |
| static void umc_set_system_latency(void __iomem *dc_base, int phy_latency) |
| { |
| u32 val; |
| int latency; |
| |
| val = readl(dc_base + UMC_RDATACTL_D0); |
| latency = (val & UMC_RDATACTL_RADLTY_MASK) >> UMC_RDATACTL_RADLTY_SHIFT; |
| latency += (val & UMC_RDATACTL_RAD2LTY_MASK) >> |
| UMC_RDATACTL_RAD2LTY_SHIFT; |
| /* |
| * UMC works at the half clock rate of the PHY. |
| * The LSB of latency is ignored |
| */ |
| latency += phy_latency & ~1; |
| |
| val &= ~(UMC_RDATACTL_RADLTY_MASK | UMC_RDATACTL_RAD2LTY_MASK); |
| if (latency > 0xf) { |
| val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT; |
| val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT; |
| } else { |
| val |= latency << UMC_RDATACTL_RADLTY_SHIFT; |
| } |
| |
| writel(val, dc_base + UMC_RDATACTL_D0); |
| writel(val, dc_base + UMC_RDATACTL_D1); |
| |
| readl(dc_base + UMC_RDATACTL_D1); /* relax */ |
| } |
| |
| /* enable/disable auto refresh */ |
| void umc_refresh_ctrl(void __iomem *dc_base, int enable) |
| { |
| u32 tmp; |
| |
| tmp = readl(dc_base + UMC_SPCSETB); |
| tmp &= ~UMC_SPCSETB_AREFMD_MASK; |
| |
| if (enable) |
| tmp |= UMC_SPCSETB_AREFMD_ARB; |
| else |
| tmp |= UMC_SPCSETB_AREFMD_REG; |
| |
| writel(tmp, dc_base + UMC_SPCSETB); |
| udelay(1); |
| } |
| |
| static void umc_ud_init(void __iomem *umc_base, int ch) |
| { |
| writel(0x00000003, umc_base + UMC_BITPERPIXELMODE_D0); |
| |
| if (ch == 2) |
| writel(0x00000033, umc_base + UMC_PAIR1DOFF_D0); |
| } |
| |
| static int umc_dc_init(void __iomem *dc_base, enum dram_freq freq, |
| unsigned long size, int width, int ch) |
| { |
| enum dram_size size_e; |
| int latency; |
| u32 val; |
| |
| switch (size) { |
| case 0: |
| return 0; |
| case SZ_256M: |
| size_e = DRAM_SZ_256M; |
| break; |
| case SZ_512M: |
| size_e = DRAM_SZ_512M; |
| break; |
| default: |
| pr_err("unsupported DRAM size 0x%08lx (per 16bit) for ch%d\n", |
| size, ch); |
| return -EINVAL; |
| } |
| |
| writel(umc_cmdctla[freq], dc_base + UMC_CMDCTLA); |
| |
| writel(ch == 2 ? umc_cmdctlb_ch2[freq] : umc_cmdctlb_ch01[freq], |
| dc_base + UMC_CMDCTLB); |
| |
| writel(umc_spcctla[freq][size_e], dc_base + UMC_SPCCTLA); |
| writel(umc_spcctlb[freq], dc_base + UMC_SPCCTLB); |
| |
| val = 0x000e000e; |
| latency = 12; |
| /* ES2 inserted one more FF to the logic. */ |
| if (uniphier_get_soc_model() >= 2) |
| latency += 2; |
| |
| if (latency > 0xf) { |
| val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT; |
| val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT; |
| } else { |
| val |= latency << UMC_RDATACTL_RADLTY_SHIFT; |
| } |
| |
| writel(val, dc_base + UMC_RDATACTL_D0); |
| if (width >= 32) |
| writel(val, dc_base + UMC_RDATACTL_D1); |
| |
| writel(0x04060A02, dc_base + UMC_WDATACTL_D0); |
| if (width >= 32) |
| writel(0x04060A02, dc_base + UMC_WDATACTL_D1); |
| writel(0x04000000, dc_base + UMC_DATASET); |
| writel(0x00400020, dc_base + UMC_DCCGCTL); |
| writel(0x00000084, dc_base + UMC_FLOWCTLG); |
| writel(0x00000000, dc_base + UMC_ACSSETA); |
| |
| writel(ch == 2 ? umc_flowctla_ch2[freq] : umc_flowctla_ch01[freq], |
| dc_base + UMC_FLOWCTLA); |
| |
| writel(0x00004400, dc_base + UMC_FLOWCTLC); |
| writel(0x200A0A00, dc_base + UMC_SPCSETB); |
| writel(0x00000520, dc_base + UMC_DFICUPDCTLA); |
| writel(0x0000000D, dc_base + UMC_RESPCTL); |
| |
| if (ch != 2) { |
| writel(0x00202000, dc_base + UMC_FLOWCTLB); |
| writel(0xFDBFFFFF, dc_base + UMC_FLOWCTLOB0); |
| writel(0xFFFFFFFF, dc_base + UMC_FLOWCTLOB1); |
| writel(0x00080700, dc_base + UMC_BSICMAPSET); |
| } else { |
| writel(0x00200000, dc_base + UMC_FLOWCTLB); |
| writel(0x00000000, dc_base + UMC_BSICMAPSET); |
| } |
| |
| writel(0x00000000, dc_base + UMC_ERRMASKA); |
| writel(0x00000000, dc_base + UMC_ERRMASKB); |
| |
| return 0; |
| } |
| |
| static int umc_ch_init(void __iomem *umc_ch_base, enum dram_freq freq, |
| unsigned long size, unsigned int width, int ch) |
| { |
| void __iomem *dc_base = umc_ch_base + 0x00011000; |
| void __iomem *phy_base = umc_ch_base + 0x00030000; |
| int ret; |
| |
| writel(0x00000002, dc_base + UMC_INITSET); |
| while (readl(dc_base + UMC_INITSTAT) & BIT(2)) |
| cpu_relax(); |
| |
| /* deassert PHY reset signals */ |
| writel(UMC_DIOCTLA_CTL_NRST | UMC_DIOCTLA_CFG_NRST, |
| dc_base + UMC_DIOCTLA); |
| |
| ddrphy_init(phy_base, freq, width, ch); |
| |
| ret = ddrphy_impedance_calibration(phy_base); |
| if (ret) |
| return ret; |
| |
| ddrphy_dram_init(phy_base); |
| if (ret) |
| return ret; |
| |
| ret = umc_dc_init(dc_base, freq, size, width, ch); |
| if (ret) |
| return ret; |
| |
| umc_ud_init(umc_ch_base, ch); |
| |
| ret = ddrphy_training(phy_base); |
| if (ret) |
| return ret; |
| |
| udelay(1); |
| |
| /* match the system latency between UMC and PHY */ |
| umc_set_system_latency(dc_base, |
| ddrphy_get_system_latency(phy_base, width)); |
| |
| udelay(1); |
| |
| /* stop auto refresh before clearing FIFO in PHY */ |
| umc_refresh_ctrl(dc_base, 0); |
| ddrphy_fifo_reset(phy_base); |
| umc_refresh_ctrl(dc_base, 1); |
| |
| udelay(10); |
| |
| return 0; |
| } |
| |
| static void um_init(void __iomem *um_base) |
| { |
| writel(0x000000ff, um_base + UMC_MBUS0); |
| writel(0x000000ff, um_base + UMC_MBUS1); |
| writel(0x000000ff, um_base + UMC_MBUS2); |
| writel(0x000000ff, um_base + UMC_MBUS3); |
| } |
| |
| int uniphier_pxs2_umc_init(const struct uniphier_board_data *bd) |
| { |
| void __iomem *um_base = (void __iomem *)0x5b600000; |
| void __iomem *umc_ch_base = (void __iomem *)0x5b800000; |
| enum dram_freq freq; |
| int ch, ret; |
| |
| switch (bd->dram_freq) { |
| case 1866: |
| freq = DRAM_FREQ_1866M; |
| break; |
| case 2133: |
| freq = DRAM_FREQ_2133M; |
| break; |
| default: |
| pr_err("unsupported DRAM frequency %d MHz\n", bd->dram_freq); |
| return -EINVAL; |
| } |
| |
| for (ch = 0; ch < bd->dram_nr_ch; ch++) { |
| unsigned long size = bd->dram_ch[ch].size; |
| unsigned int width = bd->dram_ch[ch].width; |
| |
| ret = umc_ch_init(umc_ch_base, freq, size / (width / 16), |
| width, ch); |
| if (ret) { |
| pr_err("failed to initialize UMC ch%d\n", ch); |
| return ret; |
| } |
| |
| umc_ch_base += 0x00200000; |
| } |
| |
| um_init(um_base); |
| |
| return 0; |
| } |