| .. SPDX-License-Identifier: GPL-2.0+ |
| .. Copyright (c) 2018 Heinrich Schuchardt |
| |
| UEFI on U-Boot |
| ============== |
| |
| The Unified Extensible Firmware Interface Specification (UEFI) [1] has become |
| the default for booting on AArch64 and x86 systems. It provides a stable API for |
| the interaction of drivers and applications with the firmware. The API comprises |
| access to block storage, network, and console to name a few. The Linux kernel |
| and boot loaders like GRUB or the FreeBSD loader can be executed. |
| |
| Development target |
| ------------------ |
| |
| The implementation of UEFI in U-Boot strives to reach the requirements described |
| in the "Embedded Base Boot Requirements (EBBR) Specification - Release v1.0" |
| [2]. The "Server Base Boot Requirements System Software on ARM Platforms" [3] |
| describes a superset of the EBBR specification and may be used as further |
| reference. |
| |
| A full blown UEFI implementation would contradict the U-Boot design principle |
| "keep it small". |
| |
| Building U-Boot for UEFI |
| ------------------------ |
| |
| The UEFI standard supports only little-endian systems. The UEFI support can be |
| activated for ARM and x86 by specifying:: |
| |
| CONFIG_CMD_BOOTEFI=y |
| CONFIG_EFI_LOADER=y |
| |
| in the .config file. |
| |
| Support for attaching virtual block devices, e.g. iSCSI drives connected by the |
| loaded UEFI application [4], requires:: |
| |
| CONFIG_BLK=y |
| CONFIG_PARTITIONS=y |
| |
| Executing a UEFI binary |
| ~~~~~~~~~~~~~~~~~~~~~~~ |
| |
| The bootefi command is used to start UEFI applications or to install UEFI |
| drivers. It takes two parameters:: |
| |
| bootefi <image address> [fdt address] |
| |
| * image address - the memory address of the UEFI binary |
| * fdt address - the memory address of the flattened device tree |
| |
| Below you find the output of an example session starting GRUB:: |
| |
| => load mmc 0:2 ${fdt_addr_r} boot/dtb |
| 29830 bytes read in 14 ms (2 MiB/s) |
| => load mmc 0:1 ${kernel_addr_r} efi/debian/grubaa64.efi |
| reading efi/debian/grubaa64.efi |
| 120832 bytes read in 7 ms (16.5 MiB/s) |
| => bootefi ${kernel_addr_r} ${fdt_addr_r} |
| |
| The environment variable 'bootargs' is passed as load options in the UEFI system |
| table. The Linux kernel EFI stub uses the load options as command line |
| arguments. |
| |
| Launching a UEFI binary from a FIT image |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| |
| A signed FIT image can be used to securely boot a UEFI image via the |
| bootm command. This feature is available if U-Boot is configured with:: |
| |
| CONFIG_BOOTM_EFI=y |
| |
| A sample configuration is provided as file doc/uImage.FIT/uefi.its. |
| |
| Below you find the output of an example session starting GRUB:: |
| |
| => load mmc 0:1 ${kernel_addr_r} image.fit |
| 4620426 bytes read in 83 ms (53.1 MiB/s) |
| => bootm ${kernel_addr_r}#config-grub-nofdt |
| ## Loading kernel from FIT Image at 40400000 ... |
| Using 'config-grub-nofdt' configuration |
| Verifying Hash Integrity ... sha256,rsa2048:dev+ OK |
| Trying 'efi-grub' kernel subimage |
| Description: GRUB EFI Firmware |
| Created: 2019-11-20 8:18:16 UTC |
| Type: Kernel Image (no loading done) |
| Compression: uncompressed |
| Data Start: 0x404000d0 |
| Data Size: 450560 Bytes = 440 KiB |
| Hash algo: sha256 |
| Hash value: 4dbee00021112df618f58b3f7cf5e1595533d543094064b9ce991e8b054a9eec |
| Verifying Hash Integrity ... sha256+ OK |
| XIP Kernel Image (no loading done) |
| ## Transferring control to EFI (at address 404000d0) ... |
| Welcome to GRUB! |
| |
| See doc/uImage.FIT/howto.txt for an introduction to FIT images. |
| |
| Configuring UEFI secure boot |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| |
| The UEFI specification[1] defines a secure way of executing UEFI images |
| by verifying a signature (or message digest) of image with certificates. |
| This feature on U-Boot is enabled with:: |
| |
| CONFIG_UEFI_SECURE_BOOT=y |
| |
| To make the boot sequence safe, you need to establish a chain of trust; |
| In UEFI secure boot the chain trust is defined by the following UEFI variables |
| |
| * PK - Platform Key |
| * KEK - Key Exchange Keys |
| * db - white list database |
| * dbx - black list database |
| |
| An in depth description of UEFI secure boot is beyond the scope of this |
| document. Please, refer to the UEFI specification and available online |
| documentation. Here is a simple example that you can follow for your initial |
| attempt (Please note that the actual steps will depend on your system and |
| environment.): |
| |
| Install the required tools on your host |
| |
| * openssl |
| * efitools |
| * sbsigntool |
| |
| Create signing keys and the key database on your host: |
| |
| The platform key |
| |
| .. code-block:: bash |
| |
| openssl req -x509 -sha256 -newkey rsa:2048 -subj /CN=TEST_PK/ \ |
| -keyout PK.key -out PK.crt -nodes -days 365 |
| cert-to-efi-sig-list -g 11111111-2222-3333-4444-123456789abc \ |
| PK.crt PK.esl; |
| sign-efi-sig-list -c PK.crt -k PK.key PK PK.esl PK.auth |
| |
| The key exchange keys |
| |
| .. code-block:: bash |
| |
| openssl req -x509 -sha256 -newkey rsa:2048 -subj /CN=TEST_KEK/ \ |
| -keyout KEK.key -out KEK.crt -nodes -days 365 |
| cert-to-efi-sig-list -g 11111111-2222-3333-4444-123456789abc \ |
| KEK.crt KEK.esl |
| sign-efi-sig-list -c PK.crt -k PK.key KEK KEK.esl KEK.auth |
| |
| The whitelist database |
| |
| .. code-block:: bash |
| |
| $ openssl req -x509 -sha256 -newkey rsa:2048 -subj /CN=TEST_db/ \ |
| -keyout db.key -out db.crt -nodes -days 365 |
| $ cert-to-efi-sig-list -g 11111111-2222-3333-4444-123456789abc \ |
| db.crt db.esl |
| $ sign-efi-sig-list -c KEK.crt -k KEK.key db db.esl db.auth |
| |
| Copy the \*.auth files to media, say mmc, that is accessible from U-Boot. |
| |
| Sign an image with one of the keys in "db" on your host |
| |
| .. code-block:: bash |
| |
| sbsign --key db.key --cert db.crt helloworld.efi |
| |
| Now in U-Boot install the keys on your board:: |
| |
| fatload mmc 0:1 <tmpaddr> PK.auth |
| setenv -e -nv -bs -rt -at -i <tmpaddr>,$filesize PK |
| fatload mmc 0:1 <tmpaddr> KEK.auth |
| setenv -e -nv -bs -rt -at -i <tmpaddr>,$filesize KEK |
| fatload mmc 0:1 <tmpaddr> db.auth |
| setenv -e -nv -bs -rt -at -i <tmpaddr>,$filesize db |
| |
| Set up boot parameters on your board:: |
| |
| efidebug boot add 1 HELLO mmc 0:1 /helloworld.efi.signed "" |
| |
| Now your board can run the signed image via the boot manager (see below). |
| You can also try this sequence by running Pytest, test_efi_secboot, |
| on the sandbox |
| |
| .. code-block:: bash |
| |
| cd <U-Boot source directory> |
| pytest.py test/py/tests/test_efi_secboot/test_signed.py --bd sandbox |
| |
| Executing the boot manager |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| |
| The UEFI specification foresees to define boot entries and boot sequence via UEFI |
| variables. Booting according to these variables is possible via:: |
| |
| bootefi bootmgr [fdt address] |
| |
| As of U-Boot v2018.03 UEFI variables are not persisted and cannot be set at |
| runtime. |
| |
| Executing the built in hello world application |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| |
| A hello world UEFI application can be built with:: |
| |
| CONFIG_CMD_BOOTEFI_HELLO_COMPILE=y |
| |
| It can be embedded into the U-Boot binary with:: |
| |
| CONFIG_CMD_BOOTEFI_HELLO=y |
| |
| The bootefi command is used to start the embedded hello world application:: |
| |
| bootefi hello [fdt address] |
| |
| Below you find the output of an example session:: |
| |
| => bootefi hello ${fdtcontroladdr} |
| ## Starting EFI application at 01000000 ... |
| WARNING: using memory device/image path, this may confuse some payloads! |
| Hello, world! |
| Running on UEFI 2.7 |
| Have SMBIOS table |
| Have device tree |
| Load options: root=/dev/sdb3 init=/sbin/init rootwait ro |
| ## Application terminated, r = 0 |
| |
| The environment variable fdtcontroladdr points to U-Boot's internal device tree |
| (if available). |
| |
| Executing the built-in self-test |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| |
| An UEFI self-test suite can be embedded in U-Boot by building with:: |
| |
| CONFIG_CMD_BOOTEFI_SELFTEST=y |
| |
| For testing the UEFI implementation the bootefi command can be used to start the |
| self-test:: |
| |
| bootefi selftest [fdt address] |
| |
| The environment variable 'efi_selftest' can be used to select a single test. If |
| it is not provided all tests are executed except those marked as 'on request'. |
| If the environment variable is set to 'list' a list of all tests is shown. |
| |
| Below you can find the output of an example session:: |
| |
| => setenv efi_selftest simple network protocol |
| => bootefi selftest |
| Testing EFI API implementation |
| Selected test: 'simple network protocol' |
| Setting up 'simple network protocol' |
| Setting up 'simple network protocol' succeeded |
| Executing 'simple network protocol' |
| DHCP Discover |
| DHCP reply received from 192.168.76.2 (52:55:c0:a8:4c:02) |
| as broadcast message. |
| Executing 'simple network protocol' succeeded |
| Tearing down 'simple network protocol' |
| Tearing down 'simple network protocol' succeeded |
| Boot services terminated |
| Summary: 0 failures |
| Preparing for reset. Press any key. |
| |
| The UEFI life cycle |
| ------------------- |
| |
| After the U-Boot platform has been initialized the UEFI API provides two kinds |
| of services: |
| |
| * boot services |
| * runtime services |
| |
| The API can be extended by loading UEFI drivers which come in two variants: |
| |
| * boot drivers |
| * runtime drivers |
| |
| UEFI drivers are installed with U-Boot's bootefi command. With the same command |
| UEFI applications can be executed. |
| |
| Loaded images of UEFI drivers stay in memory after returning to U-Boot while |
| loaded images of applications are removed from memory. |
| |
| An UEFI application (e.g. an operating system) that wants to take full control |
| of the system calls ExitBootServices. After a UEFI application calls |
| ExitBootServices |
| |
| * boot services are not available anymore |
| * timer events are stopped |
| * the memory used by U-Boot except for runtime services is released |
| * the memory used by boot time drivers is released |
| |
| So this is a point of no return. Afterwards the UEFI application can only return |
| to U-Boot by rebooting. |
| |
| The UEFI object model |
| --------------------- |
| |
| UEFI offers a flexible and expandable object model. The objects in the UEFI API |
| are devices, drivers, and loaded images. These objects are referenced by |
| handles. |
| |
| The interfaces implemented by the objects are referred to as protocols. These |
| are identified by GUIDs. They can be installed and uninstalled by calling the |
| appropriate boot services. |
| |
| Handles are created by the InstallProtocolInterface or the |
| InstallMultipleProtocolinterfaces service if NULL is passed as handle. |
| |
| Handles are deleted when the last protocol has been removed with the |
| UninstallProtocolInterface or the UninstallMultipleProtocolInterfaces service. |
| |
| Devices offer the EFI_DEVICE_PATH_PROTOCOL. A device path is the concatenation |
| of device nodes. By their device paths all devices of a system are arranged in a |
| tree. |
| |
| Drivers offer the EFI_DRIVER_BINDING_PROTOCOL. This protocol is used to connect |
| a driver to devices (which are referenced as controllers in this context). |
| |
| Loaded images offer the EFI_LOADED_IMAGE_PROTOCOL. This protocol provides meta |
| information about the image and a pointer to the unload callback function. |
| |
| The UEFI events |
| --------------- |
| |
| In the UEFI terminology an event is a data object referencing a notification |
| function which is queued for calling when the event is signaled. The following |
| types of events exist: |
| |
| * periodic and single shot timer events |
| * exit boot services events, triggered by calling the ExitBootServices() service |
| * virtual address change events |
| * memory map change events |
| * read to boot events |
| * reset system events |
| * system table events |
| * events that are only triggered programmatically |
| |
| Events can be created with the CreateEvent service and deleted with CloseEvent |
| service. |
| |
| Events can be assigned to an event group. If any of the events in a group is |
| signaled, all other events in the group are also set to the signaled state. |
| |
| The UEFI driver model |
| --------------------- |
| |
| A driver is specific for a single protocol installed on a device. To install a |
| driver on a device the ConnectController service is called. In this context |
| controller refers to the device for which the driver is installed. |
| |
| The relevant drivers are identified using the EFI_DRIVER_BINDING_PROTOCOL. This |
| protocol has has three functions: |
| |
| * supported - determines if the driver is compatible with the device |
| * start - installs the driver by opening the relevant protocol with |
| attribute EFI_OPEN_PROTOCOL_BY_DRIVER |
| * stop - uninstalls the driver |
| |
| The driver may create child controllers (child devices). E.g. a driver for block |
| IO devices will create the device handles for the partitions. The child |
| controllers will open the supported protocol with the attribute |
| EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER. |
| |
| A driver can be detached from a device using the DisconnectController service. |
| |
| U-Boot devices mapped as UEFI devices |
| ------------------------------------- |
| |
| Some of the U-Boot devices are mapped as UEFI devices |
| |
| * block IO devices |
| * console |
| * graphical output |
| * network adapter |
| |
| As of U-Boot 2018.03 the logic for doing this is hard coded. |
| |
| The development target is to integrate the setup of these UEFI devices with the |
| U-Boot driver model [5]. So when a U-Boot device is discovered a handle should |
| be created and the device path protocol and the relevant IO protocol should be |
| installed. The UEFI driver then would be attached by calling ConnectController. |
| When a U-Boot device is removed DisconnectController should be called. |
| |
| UEFI devices mapped as U-Boot devices |
| ------------------------------------- |
| |
| UEFI drivers binaries and applications may create new (virtual) devices, install |
| a protocol and call the ConnectController service. Now the matching UEFI driver |
| is determined by iterating over the implementations of the |
| EFI_DRIVER_BINDING_PROTOCOL. |
| |
| It is the task of the UEFI driver to create a corresponding U-Boot device and to |
| proxy calls for this U-Boot device to the controller. |
| |
| In U-Boot 2018.03 this has only been implemented for block IO devices. |
| |
| UEFI uclass |
| ~~~~~~~~~~~ |
| |
| An UEFI uclass driver (lib/efi_driver/efi_uclass.c) has been created that |
| takes care of initializing the UEFI drivers and providing the |
| EFI_DRIVER_BINDING_PROTOCOL implementation for the UEFI drivers. |
| |
| A linker created list is used to keep track of the UEFI drivers. To create an |
| entry in the list the UEFI driver uses the U_BOOT_DRIVER macro specifying |
| UCLASS_EFI as the ID of its uclass, e.g:: |
| |
| /* Identify as UEFI driver */ |
| U_BOOT_DRIVER(efi_block) = { |
| .name = "EFI block driver", |
| .id = UCLASS_EFI, |
| .ops = &driver_ops, |
| }; |
| |
| The available operations are defined via the structure struct efi_driver_ops:: |
| |
| struct efi_driver_ops { |
| const efi_guid_t *protocol; |
| const efi_guid_t *child_protocol; |
| int (*bind)(efi_handle_t handle, void *interface); |
| }; |
| |
| When the supported() function of the EFI_DRIVER_BINDING_PROTOCOL is called the |
| uclass checks if the protocol GUID matches the protocol GUID of the UEFI driver. |
| In the start() function the bind() function of the UEFI driver is called after |
| checking the GUID. |
| The stop() function of the EFI_DRIVER_BINDING_PROTOCOL disconnects the child |
| controllers created by the UEFI driver and the UEFI driver. (In U-Boot v2013.03 |
| this is not yet completely implemented.) |
| |
| UEFI block IO driver |
| ~~~~~~~~~~~~~~~~~~~~ |
| |
| The UEFI block IO driver supports devices exposing the EFI_BLOCK_IO_PROTOCOL. |
| |
| When connected it creates a new U-Boot block IO device with interface type |
| IF_TYPE_EFI, adds child controllers mapping the partitions, and installs the |
| EFI_SIMPLE_FILE_SYSTEM_PROTOCOL on these. This can be used together with the |
| software iPXE to boot from iSCSI network drives [4]. |
| |
| This driver is only available if U-Boot is configured with:: |
| |
| CONFIG_BLK=y |
| CONFIG_PARTITIONS=y |
| |
| Miscellaneous |
| ------------- |
| |
| Load file 2 protocol |
| ~~~~~~~~~~~~~~~~~~~~ |
| |
| The load file 2 protocol can be used by the Linux kernel to load the initial |
| RAM disk. U-Boot can be configured to provide an implementation with:: |
| |
| EFI_LOAD_FILE2_INITRD=y |
| EFI_INITRD_FILESPEC=interface dev:part path_to_initrd |
| |
| Links |
| ----- |
| |
| * [1] http://uefi.org/specifications - UEFI specifications |
| * [2] https://github.com/ARM-software/ebbr/releases/download/v1.0/ebbr-v1.0.pdf - |
| Embedded Base Boot Requirements (EBBR) Specification - Release v1.0 |
| * [3] https://developer.arm.com/docs/den0044/latest/server-base-boot-requirements-system-software-on-arm-platforms-version-11 - |
| Server Base Boot Requirements System Software on ARM Platforms - Version 1.1 |
| * [4] :doc:`iscsi` |
| * [5] :doc:`../driver-model/index` |