| /* |
| * Copyright 2007,2009-2014 Freescale Semiconductor, Inc. |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <common.h> |
| #include <command.h> |
| #include <pci.h> |
| #include <asm/processor.h> |
| #include <asm/mmu.h> |
| #include <asm/fsl_pci.h> |
| #include <asm/io.h> |
| #include <libfdt.h> |
| #include <fdt_support.h> |
| #include <netdev.h> |
| #include <fdtdec.h> |
| #include <errno.h> |
| #include <malloc.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| static void *get_fdt_virt(void) |
| { |
| return (void *)CONFIG_SYS_TMPVIRT; |
| } |
| |
| static uint64_t get_fdt_phys(void) |
| { |
| return (uint64_t)(uintptr_t)gd->fdt_blob; |
| } |
| |
| static void map_fdt_as(int esel) |
| { |
| u32 mas0, mas1, mas2, mas3, mas7; |
| uint64_t fdt_phys = get_fdt_phys(); |
| unsigned long fdt_phys_tlb = fdt_phys & ~0xffffful; |
| unsigned long fdt_virt_tlb = (ulong)get_fdt_virt() & ~0xffffful; |
| |
| mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(esel); |
| mas1 = MAS1_VALID | MAS1_TID(0) | MAS1_TS | MAS1_TSIZE(BOOKE_PAGESZ_1M); |
| mas2 = FSL_BOOKE_MAS2(fdt_virt_tlb, 0); |
| mas3 = FSL_BOOKE_MAS3(fdt_phys_tlb, 0, MAS3_SW|MAS3_SR); |
| mas7 = FSL_BOOKE_MAS7(fdt_phys_tlb); |
| |
| write_tlb(mas0, mas1, mas2, mas3, mas7); |
| } |
| |
| uint64_t get_phys_ccsrbar_addr_early(void) |
| { |
| void *fdt = get_fdt_virt(); |
| uint64_t r; |
| int size, node; |
| u32 naddr; |
| const fdt32_t *prop; |
| |
| /* |
| * To be able to read the FDT we need to create a temporary TLB |
| * map for it. |
| */ |
| map_fdt_as(10); |
| node = fdt_path_offset(fdt, "/soc"); |
| naddr = fdt_address_cells(fdt, node); |
| prop = fdt_getprop(fdt, node, "ranges", &size); |
| r = fdt_translate_address(fdt, node, prop + naddr); |
| disable_tlb(10); |
| |
| return r; |
| } |
| |
| int board_early_init_f(void) |
| { |
| return 0; |
| } |
| |
| int checkboard(void) |
| { |
| return 0; |
| } |
| |
| static int pci_map_region(void *fdt, int pci_node, int range_id, |
| phys_size_t *ppaddr, pci_addr_t *pvaddr, |
| pci_size_t *psize, ulong *pmap_addr) |
| { |
| uint64_t addr; |
| uint64_t size; |
| ulong map_addr; |
| int r; |
| |
| r = fdt_read_range(fdt, pci_node, range_id, NULL, &addr, &size); |
| if (r) |
| return r; |
| |
| if (ppaddr) |
| *ppaddr = addr; |
| if (psize) |
| *psize = size; |
| |
| if (!pmap_addr) |
| return 0; |
| |
| map_addr = *pmap_addr; |
| |
| /* Align map_addr */ |
| map_addr += size - 1; |
| map_addr &= ~(size - 1); |
| |
| if (map_addr + size >= CONFIG_SYS_PCI_MAP_END) |
| return -1; |
| |
| /* Map virtual memory for range */ |
| assert(!tlb_map_range(map_addr, addr, size, TLB_MAP_IO)); |
| *pmap_addr = map_addr + size; |
| |
| if (pvaddr) |
| *pvaddr = map_addr; |
| |
| return 0; |
| } |
| |
| void pci_init_board(void) |
| { |
| struct pci_controller *pci_hoses; |
| void *fdt = get_fdt_virt(); |
| int pci_node = -1; |
| int pci_num = 0; |
| int pci_count = 0; |
| ulong map_addr; |
| |
| puts("\n"); |
| |
| /* Start MMIO and PIO range maps above RAM */ |
| map_addr = CONFIG_SYS_PCI_MAP_START; |
| |
| /* Count and allocate PCI buses */ |
| pci_node = fdt_node_offset_by_prop_value(fdt, pci_node, |
| "device_type", "pci", 4); |
| while (pci_node != -FDT_ERR_NOTFOUND) { |
| pci_node = fdt_node_offset_by_prop_value(fdt, pci_node, |
| "device_type", "pci", 4); |
| pci_count++; |
| } |
| |
| if (pci_count) { |
| pci_hoses = malloc(sizeof(struct pci_controller) * pci_count); |
| } else { |
| printf("PCI: disabled\n\n"); |
| return; |
| } |
| |
| /* Spawn PCI buses based on device tree */ |
| pci_node = fdt_node_offset_by_prop_value(fdt, pci_node, |
| "device_type", "pci", 4); |
| while (pci_node != -FDT_ERR_NOTFOUND) { |
| struct fsl_pci_info pci_info = { }; |
| const fdt32_t *reg; |
| int r; |
| |
| reg = fdt_getprop(fdt, pci_node, "reg", NULL); |
| pci_info.regs = fdt_translate_address(fdt, pci_node, reg); |
| |
| /* Map MMIO range */ |
| r = pci_map_region(fdt, pci_node, 0, &pci_info.mem_phys, NULL, |
| &pci_info.mem_size, &map_addr); |
| if (r) |
| break; |
| |
| /* Map PIO range */ |
| r = pci_map_region(fdt, pci_node, 1, &pci_info.io_phys, NULL, |
| &pci_info.io_size, &map_addr); |
| if (r) |
| break; |
| |
| /* |
| * The PCI framework finds virtual addresses for the buses |
| * through our address map, so tell it the physical addresses. |
| */ |
| pci_info.mem_bus = pci_info.mem_phys; |
| pci_info.io_bus = pci_info.io_phys; |
| |
| /* Instantiate */ |
| pci_info.pci_num = pci_num + 1; |
| |
| fsl_setup_hose(&pci_hoses[pci_num], pci_info.regs); |
| printf("PCI: base address %lx\n", pci_info.regs); |
| |
| fsl_pci_init_port(&pci_info, &pci_hoses[pci_num], pci_num); |
| |
| /* Jump to next PCI node */ |
| pci_node = fdt_node_offset_by_prop_value(fdt, pci_node, |
| "device_type", "pci", 4); |
| pci_num++; |
| } |
| |
| puts("\n"); |
| } |
| |
| int last_stage_init(void) |
| { |
| void *fdt = get_fdt_virt(); |
| int len = 0; |
| const uint64_t *prop; |
| int chosen; |
| |
| chosen = fdt_path_offset(fdt, "/chosen"); |
| if (chosen < 0) { |
| printf("Couldn't find /chosen node in fdt\n"); |
| return -EIO; |
| } |
| |
| /* -kernel boot */ |
| prop = fdt_getprop(fdt, chosen, "qemu,boot-kernel", &len); |
| if (prop && (len >= 8)) |
| setenv_hex("qemu_kernel_addr", *prop); |
| |
| /* Give the user a variable for the host fdt */ |
| setenv_hex("fdt_addr_r", (ulong)fdt); |
| |
| return 0; |
| } |
| |
| static uint64_t get_linear_ram_size(void) |
| { |
| void *fdt = get_fdt_virt(); |
| const void *prop; |
| int memory; |
| int len; |
| |
| memory = fdt_path_offset(fdt, "/memory"); |
| prop = fdt_getprop(fdt, memory, "reg", &len); |
| |
| if (prop && len >= 16) |
| return *(uint64_t *)(prop+8); |
| |
| panic("Couldn't determine RAM size"); |
| } |
| |
| int board_eth_init(bd_t *bis) |
| { |
| return pci_eth_init(bis); |
| } |
| |
| #if defined(CONFIG_OF_BOARD_SETUP) |
| int ft_board_setup(void *blob, bd_t *bd) |
| { |
| FT_FSL_PCI_SETUP; |
| |
| return 0; |
| } |
| #endif |
| |
| void print_laws(void) |
| { |
| /* We don't emulate LAWs yet */ |
| } |
| |
| phys_size_t fixed_sdram(void) |
| { |
| return get_linear_ram_size(); |
| } |
| |
| phys_size_t fsl_ddr_sdram_size(void) |
| { |
| return get_linear_ram_size(); |
| } |
| |
| void init_tlbs(void) |
| { |
| phys_size_t ram_size; |
| |
| /* |
| * Create a temporary AS=1 map for the fdt |
| * |
| * We use ESEL=0 here to overwrite the previous AS=0 map for ourselves |
| * which was only 4k big. This way we don't have to clear any other maps. |
| */ |
| map_fdt_as(0); |
| |
| /* Fetch RAM size from the fdt */ |
| ram_size = get_linear_ram_size(); |
| |
| /* And remove our fdt map again */ |
| disable_tlb(0); |
| |
| /* Create an internal map of manually created TLB maps */ |
| init_used_tlb_cams(); |
| |
| /* Create a dynamic AS=0 CCSRBAR mapping */ |
| assert(!tlb_map_range(CONFIG_SYS_CCSRBAR, CONFIG_SYS_CCSRBAR_PHYS, |
| 1024 * 1024, TLB_MAP_IO)); |
| |
| /* Create a RAM map that spans all accessible RAM */ |
| setup_ddr_tlbs(ram_size >> 20); |
| |
| /* Create a map for the TLB */ |
| assert(!tlb_map_range((ulong)get_fdt_virt(), get_fdt_phys(), |
| 1024 * 1024, TLB_MAP_RAM)); |
| } |
| |
| void init_laws(void) |
| { |
| /* We don't emulate LAWs yet */ |
| } |
| |
| static uint32_t get_cpu_freq(void) |
| { |
| void *fdt = get_fdt_virt(); |
| int cpus_node = fdt_path_offset(fdt, "/cpus"); |
| int cpu_node = fdt_first_subnode(fdt, cpus_node); |
| const char *prop = "clock-frequency"; |
| return fdt_getprop_u32_default_node(fdt, cpu_node, 0, prop, 0); |
| } |
| |
| void get_sys_info(sys_info_t *sys_info) |
| { |
| int freq = get_cpu_freq(); |
| |
| memset(sys_info, 0, sizeof(sys_info_t)); |
| sys_info->freq_systembus = freq; |
| sys_info->freq_ddrbus = freq; |
| sys_info->freq_processor[0] = freq; |
| } |
| |
| int get_clocks (void) |
| { |
| sys_info_t sys_info; |
| |
| get_sys_info(&sys_info); |
| |
| gd->cpu_clk = sys_info.freq_processor[0]; |
| gd->bus_clk = sys_info.freq_systembus; |
| gd->mem_clk = sys_info.freq_ddrbus; |
| gd->arch.lbc_clk = sys_info.freq_ddrbus; |
| |
| return 0; |
| } |
| |
| unsigned long get_tbclk (void) |
| { |
| void *fdt = get_fdt_virt(); |
| int cpus_node = fdt_path_offset(fdt, "/cpus"); |
| int cpu_node = fdt_first_subnode(fdt, cpus_node); |
| const char *prop = "timebase-frequency"; |
| return fdt_getprop_u32_default_node(fdt, cpu_node, 0, prop, 0); |
| } |
| |
| /******************************************** |
| * get_bus_freq |
| * return system bus freq in Hz |
| *********************************************/ |
| ulong get_bus_freq (ulong dummy) |
| { |
| sys_info_t sys_info; |
| get_sys_info(&sys_info); |
| return sys_info.freq_systembus; |
| } |
| |
| /* |
| * Return the number of cores on this SOC. |
| */ |
| int cpu_numcores(void) |
| { |
| /* |
| * The QEMU u-boot target only needs to drive the first core, |
| * spinning and device tree nodes get driven by QEMU itself |
| */ |
| return 1; |
| } |
| |
| /* |
| * Return a 32-bit mask indicating which cores are present on this SOC. |
| */ |
| u32 cpu_mask(void) |
| { |
| return (1 << cpu_numcores()) - 1; |
| } |