| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (c) 2013 Google, Inc |
| */ |
| |
| #include <common.h> |
| #include <dm.h> |
| #include <dm/device_compat.h> |
| #include <errno.h> |
| #include <fdtdec.h> |
| #include <log.h> |
| #include <malloc.h> |
| #include <asm/global_data.h> |
| #include <asm/io.h> |
| #include <dm/test.h> |
| #include <dm/root.h> |
| #include <dm/device-internal.h> |
| #include <dm/devres.h> |
| #include <dm/uclass-internal.h> |
| #include <dm/util.h> |
| #include <dm/lists.h> |
| #include <dm/of_access.h> |
| #include <test/test.h> |
| #include <test/ut.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| struct dm_testprobe_pdata { |
| int probe_err; |
| }; |
| |
| static int testprobe_drv_probe(struct udevice *dev) |
| { |
| struct dm_testprobe_pdata *pdata = dev_get_plat(dev); |
| |
| return pdata->probe_err; |
| } |
| |
| static const struct udevice_id testprobe_ids[] = { |
| { .compatible = "denx,u-boot-probe-test" }, |
| { } |
| }; |
| |
| U_BOOT_DRIVER(testprobe_drv) = { |
| .name = "testprobe_drv", |
| .of_match = testprobe_ids, |
| .id = UCLASS_TEST_PROBE, |
| .probe = testprobe_drv_probe, |
| .plat_auto = sizeof(struct dm_testprobe_pdata), |
| }; |
| |
| UCLASS_DRIVER(testprobe) = { |
| .name = "testprobe", |
| .id = UCLASS_TEST_PROBE, |
| .flags = DM_UC_FLAG_SEQ_ALIAS, |
| }; |
| |
| struct dm_testdevres_pdata { |
| void *ptr; |
| }; |
| |
| struct dm_testdevres_priv { |
| void *ptr; |
| void *ptr_ofdata; |
| }; |
| |
| static int testdevres_drv_bind(struct udevice *dev) |
| { |
| struct dm_testdevres_pdata *pdata = dev_get_plat(dev); |
| |
| pdata->ptr = devm_kmalloc(dev, TEST_DEVRES_SIZE, 0); |
| |
| return 0; |
| } |
| |
| static int testdevres_drv_of_to_plat(struct udevice *dev) |
| { |
| struct dm_testdevres_priv *priv = dev_get_priv(dev); |
| |
| priv->ptr_ofdata = devm_kmalloc(dev, TEST_DEVRES_SIZE3, 0); |
| |
| return 0; |
| } |
| |
| static int testdevres_drv_probe(struct udevice *dev) |
| { |
| struct dm_testdevres_priv *priv = dev_get_priv(dev); |
| |
| priv->ptr = devm_kmalloc(dev, TEST_DEVRES_SIZE2, 0); |
| |
| return 0; |
| } |
| |
| static const struct udevice_id testdevres_ids[] = { |
| { .compatible = "denx,u-boot-devres-test" }, |
| { } |
| }; |
| |
| U_BOOT_DRIVER(testdevres_drv) = { |
| .name = "testdevres_drv", |
| .of_match = testdevres_ids, |
| .id = UCLASS_TEST_DEVRES, |
| .bind = testdevres_drv_bind, |
| .of_to_plat = testdevres_drv_of_to_plat, |
| .probe = testdevres_drv_probe, |
| .plat_auto = sizeof(struct dm_testdevres_pdata), |
| .priv_auto = sizeof(struct dm_testdevres_priv), |
| }; |
| |
| UCLASS_DRIVER(testdevres) = { |
| .name = "testdevres", |
| .id = UCLASS_TEST_DEVRES, |
| .flags = DM_UC_FLAG_SEQ_ALIAS, |
| }; |
| |
| int dm_check_devices(struct unit_test_state *uts, int num_devices) |
| { |
| struct udevice *dev; |
| int ret; |
| int i; |
| |
| /* |
| * Now check that the ping adds are what we expect. This is using the |
| * ping-add property in each node. |
| */ |
| for (i = 0; i < num_devices; i++) { |
| uint32_t base; |
| |
| ret = uclass_get_device(UCLASS_TEST_FDT, i, &dev); |
| ut_assert(!ret); |
| |
| /* |
| * Get the 'ping-expect' property, which tells us what the |
| * ping add should be. We don't use the plat because we |
| * want to test the code that sets that up |
| * (testfdt_drv_probe()). |
| */ |
| base = fdtdec_get_addr(gd->fdt_blob, dev_of_offset(dev), |
| "ping-expect"); |
| debug("dev=%d, base=%d: %s\n", i, base, |
| fdt_get_name(gd->fdt_blob, dev_of_offset(dev), NULL)); |
| |
| ut_assert(!dm_check_operations(uts, dev, base, |
| dev_get_priv(dev))); |
| } |
| |
| return 0; |
| } |
| |
| /* Test that FDT-based binding works correctly */ |
| static int dm_test_fdt(struct unit_test_state *uts) |
| { |
| const int num_devices = 9; |
| struct udevice *dev; |
| struct uclass *uc; |
| int ret; |
| int i; |
| |
| ret = dm_extended_scan(false); |
| ut_assert(!ret); |
| |
| ret = uclass_get(UCLASS_TEST_FDT, &uc); |
| ut_assert(!ret); |
| |
| /* These are num_devices compatible root-level device tree nodes */ |
| ut_asserteq(num_devices, list_count_items(&uc->dev_head)); |
| |
| /* Each should have platform data but no private data */ |
| for (i = 0; i < num_devices; i++) { |
| ret = uclass_find_device(UCLASS_TEST_FDT, i, &dev); |
| ut_assert(!ret); |
| ut_assert(!dev_get_priv(dev)); |
| ut_assert(dev_get_plat(dev)); |
| } |
| |
| ut_assertok(dm_check_devices(uts, num_devices)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_fdt, 0); |
| |
| static int dm_test_alias_highest_id(struct unit_test_state *uts) |
| { |
| int ret; |
| |
| ret = dev_read_alias_highest_id("eth"); |
| ut_asserteq(5, ret); |
| |
| ret = dev_read_alias_highest_id("gpio"); |
| ut_asserteq(3, ret); |
| |
| ret = dev_read_alias_highest_id("pci"); |
| ut_asserteq(2, ret); |
| |
| ret = dev_read_alias_highest_id("i2c"); |
| ut_asserteq(0, ret); |
| |
| ret = dev_read_alias_highest_id("deadbeef"); |
| ut_asserteq(-1, ret); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_alias_highest_id, 0); |
| |
| static int dm_test_fdt_pre_reloc(struct unit_test_state *uts) |
| { |
| struct uclass *uc; |
| int ret; |
| |
| ret = dm_scan_fdt(true); |
| ut_assert(!ret); |
| |
| ret = uclass_get(UCLASS_TEST_FDT, &uc); |
| ut_assert(!ret); |
| |
| /* |
| * These are 2 pre-reloc devices: |
| * one with "u-boot,dm-pre-reloc" property (a-test node), and the other |
| * one whose driver marked with DM_FLAG_PRE_RELOC flag (h-test node). |
| */ |
| ut_asserteq(2, list_count_items(&uc->dev_head)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_fdt_pre_reloc, 0); |
| |
| /* Test that sequence numbers are allocated properly */ |
| static int dm_test_fdt_uclass_seq(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| |
| /* A few basic santiy tests */ |
| ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 3, &dev)); |
| ut_asserteq_str("b-test", dev->name); |
| ut_asserteq(3, dev_seq(dev)); |
| |
| ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 8, &dev)); |
| ut_asserteq_str("a-test", dev->name); |
| ut_asserteq(8, dev_seq(dev)); |
| |
| /* |
| * This device has no alias so gets the next value after all available |
| * aliases. The last alias is testfdt12 |
| */ |
| ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 13, &dev)); |
| ut_asserteq_str("d-test", dev->name); |
| ut_asserteq(13, dev_seq(dev)); |
| |
| ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 9, |
| &dev)); |
| ut_asserteq_ptr(NULL, dev); |
| |
| /* Test aliases */ |
| ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 6, &dev)); |
| ut_asserteq_str("e-test", dev->name); |
| ut_asserteq(6, dev_seq(dev)); |
| |
| /* |
| * Note that c-test nodes are not probed since it is not a top-level |
| * node |
| */ |
| ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 3, &dev)); |
| ut_asserteq_str("b-test", dev->name); |
| ut_asserteq(3, dev_seq(dev)); |
| |
| /* |
| * d-test wants sequence number 3 also, but it can't have it because |
| * b-test gets it first. |
| */ |
| ut_assertok(uclass_get_device(UCLASS_TEST_FDT, 2, &dev)); |
| ut_asserteq_str("d-test", dev->name); |
| ut_asserteq(13, dev_seq(dev)); |
| |
| /* g-test gets the next value after f-test */ |
| ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 15, &dev)); |
| ut_asserteq_str("g-test", dev->name); |
| ut_asserteq(15, dev_seq(dev)); |
| |
| /* And we should still have holes in our sequence numbers */ |
| ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 0, |
| &dev)); |
| ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 1, |
| &dev)); |
| ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 2, |
| &dev)); |
| ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 4, |
| &dev)); |
| ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 7, |
| &dev)); |
| ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 9, |
| &dev)); |
| ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 10, |
| &dev)); |
| ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 11, |
| &dev)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_fdt_uclass_seq, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| /* More tests for sequence numbers */ |
| static int dm_test_fdt_uclass_seq_manual(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| |
| /* |
| * Since DM_UC_FLAG_NO_AUTO_SEQ is set for this uclass, only testfdtm1 |
| * should get a sequence number assigned |
| */ |
| ut_assertok(uclass_get_device(UCLASS_TEST_FDT_MANUAL, 0, &dev)); |
| ut_asserteq_str("testfdtm0", dev->name); |
| ut_asserteq(-1, dev_seq(dev)); |
| |
| ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT_MANUAL, 1, &dev)); |
| ut_asserteq_str("testfdtm1", dev->name); |
| ut_asserteq(1, dev_seq(dev)); |
| |
| ut_assertok(uclass_get_device(UCLASS_TEST_FDT_MANUAL, 2, &dev)); |
| ut_asserteq_str("testfdtm2", dev->name); |
| ut_asserteq(-1, dev_seq(dev)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_fdt_uclass_seq_manual, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| static int dm_test_fdt_uclass_seq_more(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| ofnode node; |
| |
| /* Check creating a device with an alias */ |
| node = ofnode_path("/some-bus/c-test@1"); |
| ut_assertok(device_bind(dm_root(), DM_DRIVER_GET(denx_u_boot_fdt_test), |
| "c-test@1", NULL, node, &dev)); |
| ut_asserteq(12, dev_seq(dev)); |
| ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 12, &dev)); |
| ut_asserteq_str("c-test@1", dev->name); |
| |
| /* |
| * Now bind a device without an alias. It should not get the next |
| * sequence number after all aliases, and existing bound devices. The |
| * last alias is 12, so we have: |
| * |
| * 13 d-test |
| * 14 f-test |
| * 15 g-test |
| * 16 h-test |
| * 17 another-test |
| * 18 chosen-test |
| * |
| * So next available is 19 |
| */ |
| ut_assertok(device_bind(dm_root(), DM_DRIVER_GET(denx_u_boot_fdt_test), |
| "fred", NULL, ofnode_null(), &dev)); |
| ut_asserteq(19, dev_seq(dev)); |
| |
| ut_assertok(device_bind(dm_root(), DM_DRIVER_GET(denx_u_boot_fdt_test), |
| "fred2", NULL, ofnode_null(), &dev)); |
| ut_asserteq(20, dev_seq(dev)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_fdt_uclass_seq_more, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| /* Test that we can find a device by device tree offset */ |
| static int dm_test_fdt_offset(struct unit_test_state *uts) |
| { |
| const void *blob = gd->fdt_blob; |
| struct udevice *dev; |
| int node; |
| |
| node = fdt_path_offset(blob, "/e-test"); |
| ut_assert(node > 0); |
| ut_assertok(uclass_get_device_by_of_offset(UCLASS_TEST_FDT, node, |
| &dev)); |
| ut_asserteq_str("e-test", dev->name); |
| |
| /* This node should not be bound */ |
| node = fdt_path_offset(blob, "/junk"); |
| ut_assert(node > 0); |
| ut_asserteq(-ENODEV, uclass_get_device_by_of_offset(UCLASS_TEST_FDT, |
| node, &dev)); |
| |
| /* This is not a top level node so should not be probed */ |
| node = fdt_path_offset(blob, "/some-bus/c-test@5"); |
| ut_assert(node > 0); |
| ut_asserteq(-ENODEV, uclass_get_device_by_of_offset(UCLASS_TEST_FDT, |
| node, &dev)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_fdt_offset, |
| UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE); |
| |
| /** |
| * Test various error conditions with uclass_first_device() and |
| * uclass_next_device() |
| */ |
| static int dm_test_first_next_device(struct unit_test_state *uts) |
| { |
| struct dm_testprobe_pdata *pdata; |
| struct udevice *dev, *parent = NULL; |
| int count; |
| int ret; |
| |
| /* There should be 4 devices */ |
| for (ret = uclass_first_device(UCLASS_TEST_PROBE, &dev), count = 0; |
| dev; |
| ret = uclass_next_device(&dev)) { |
| count++; |
| parent = dev_get_parent(dev); |
| } |
| ut_assertok(ret); |
| ut_asserteq(4, count); |
| |
| /* Remove them and try again, with an error on the second one */ |
| ut_assertok(uclass_get_device(UCLASS_TEST_PROBE, 1, &dev)); |
| pdata = dev_get_plat(dev); |
| pdata->probe_err = -ENOMEM; |
| device_remove(parent, DM_REMOVE_NORMAL); |
| ut_assertok(uclass_first_device(UCLASS_TEST_PROBE, &dev)); |
| ut_asserteq(-ENOMEM, uclass_next_device(&dev)); |
| ut_asserteq_ptr(dev, NULL); |
| |
| /* Now an error on the first one */ |
| ut_assertok(uclass_get_device(UCLASS_TEST_PROBE, 0, &dev)); |
| pdata = dev_get_plat(dev); |
| pdata->probe_err = -ENOENT; |
| device_remove(parent, DM_REMOVE_NORMAL); |
| ut_asserteq(-ENOENT, uclass_first_device(UCLASS_TEST_PROBE, &dev)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_first_next_device, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| /* Test iteration through devices in a uclass */ |
| static int dm_test_uclass_foreach(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| struct uclass *uc; |
| int count; |
| |
| count = 0; |
| uclass_id_foreach_dev(UCLASS_TEST_FDT, dev, uc) |
| count++; |
| ut_asserteq(9, count); |
| |
| count = 0; |
| uclass_foreach_dev(dev, uc) |
| count++; |
| ut_asserteq(9, count); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_uclass_foreach, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| /** |
| * check_devices() - Check return values and pointers |
| * |
| * This runs through a full sequence of uclass_first_device_check()... |
| * uclass_next_device_check() checking that the return values and devices |
| * are correct. |
| * |
| * @uts: Test state |
| * @devlist: List of expected devices |
| * @mask: Indicates which devices should return an error. Device n should |
| * return error (-NOENT - n) if bit n is set, or no error (i.e. 0) if |
| * bit n is clear. |
| */ |
| static int check_devices(struct unit_test_state *uts, |
| struct udevice *devlist[], int mask) |
| { |
| int expected_ret; |
| struct udevice *dev; |
| int i; |
| |
| expected_ret = (mask & 1) ? -ENOENT : 0; |
| mask >>= 1; |
| ut_asserteq(expected_ret, |
| uclass_first_device_check(UCLASS_TEST_PROBE, &dev)); |
| for (i = 0; i < 4; i++) { |
| ut_asserteq_ptr(devlist[i], dev); |
| expected_ret = (mask & 1) ? -ENOENT - (i + 1) : 0; |
| mask >>= 1; |
| ut_asserteq(expected_ret, uclass_next_device_check(&dev)); |
| } |
| ut_asserteq_ptr(NULL, dev); |
| |
| return 0; |
| } |
| |
| /* Test uclass_first_device_check() and uclass_next_device_check() */ |
| static int dm_test_first_next_ok_device(struct unit_test_state *uts) |
| { |
| struct dm_testprobe_pdata *pdata; |
| struct udevice *dev, *parent = NULL, *devlist[4]; |
| int count; |
| int ret; |
| |
| /* There should be 4 devices */ |
| count = 0; |
| for (ret = uclass_first_device_check(UCLASS_TEST_PROBE, &dev); |
| dev; |
| ret = uclass_next_device_check(&dev)) { |
| ut_assertok(ret); |
| devlist[count++] = dev; |
| parent = dev_get_parent(dev); |
| } |
| ut_asserteq(4, count); |
| ut_assertok(uclass_first_device_check(UCLASS_TEST_PROBE, &dev)); |
| ut_assertok(check_devices(uts, devlist, 0)); |
| |
| /* Remove them and try again, with an error on the second one */ |
| pdata = dev_get_plat(devlist[1]); |
| pdata->probe_err = -ENOENT - 1; |
| device_remove(parent, DM_REMOVE_NORMAL); |
| ut_assertok(check_devices(uts, devlist, 1 << 1)); |
| |
| /* Now an error on the first one */ |
| pdata = dev_get_plat(devlist[0]); |
| pdata->probe_err = -ENOENT - 0; |
| device_remove(parent, DM_REMOVE_NORMAL); |
| ut_assertok(check_devices(uts, devlist, 3 << 0)); |
| |
| /* Now errors on all */ |
| pdata = dev_get_plat(devlist[2]); |
| pdata->probe_err = -ENOENT - 2; |
| pdata = dev_get_plat(devlist[3]); |
| pdata->probe_err = -ENOENT - 3; |
| device_remove(parent, DM_REMOVE_NORMAL); |
| ut_assertok(check_devices(uts, devlist, 0xf << 0)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_first_next_ok_device, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| static const struct udevice_id fdt_dummy_ids[] = { |
| { .compatible = "denx,u-boot-fdt-dummy", }, |
| { } |
| }; |
| |
| UCLASS_DRIVER(fdt_dummy) = { |
| .name = "fdt-dummy", |
| .id = UCLASS_TEST_DUMMY, |
| .flags = DM_UC_FLAG_SEQ_ALIAS, |
| }; |
| |
| U_BOOT_DRIVER(fdt_dummy_drv) = { |
| .name = "fdt_dummy_drv", |
| .of_match = fdt_dummy_ids, |
| .id = UCLASS_TEST_DUMMY, |
| }; |
| |
| static int zero_size_cells_bus_bind(struct udevice *dev) |
| { |
| ofnode child; |
| int err; |
| |
| ofnode_for_each_subnode(child, dev_ofnode(dev)) { |
| if (ofnode_get_property(child, "compatible", NULL)) |
| continue; |
| |
| err = device_bind_driver_to_node(dev, |
| "zero_size_cells_bus_child_drv", |
| "zero_size_cells_bus_child", |
| child, NULL); |
| if (err) { |
| dev_err(dev, "%s: failed to bind %s\n", __func__, |
| ofnode_get_name(child)); |
| return err; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static const struct udevice_id zero_size_cells_bus_ids[] = { |
| { .compatible = "sandbox,zero-size-cells-bus" }, |
| { } |
| }; |
| |
| U_BOOT_DRIVER(zero_size_cells_bus) = { |
| .name = "zero_size_cells_bus_drv", |
| .id = UCLASS_TEST_DUMMY, |
| .of_match = zero_size_cells_bus_ids, |
| .bind = zero_size_cells_bus_bind, |
| }; |
| |
| static int zero_size_cells_bus_child_bind(struct udevice *dev) |
| { |
| ofnode child; |
| int err; |
| |
| ofnode_for_each_subnode(child, dev_ofnode(dev)) { |
| err = lists_bind_fdt(dev, child, NULL, false); |
| if (err) { |
| dev_err(dev, "%s: lists_bind_fdt, err=%d\n", |
| __func__, err); |
| return err; |
| } |
| } |
| |
| return 0; |
| } |
| |
| U_BOOT_DRIVER(zero_size_cells_bus_child_drv) = { |
| .name = "zero_size_cells_bus_child_drv", |
| .id = UCLASS_TEST_DUMMY, |
| .bind = zero_size_cells_bus_child_bind, |
| }; |
| |
| static int dm_test_fdt_translation(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| fdt32_t dma_addr[2]; |
| |
| /* Some simple translations */ |
| ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev)); |
| ut_asserteq_str("dev@0,0", dev->name); |
| ut_asserteq(0x8000, dev_read_addr(dev)); |
| |
| ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 1, &dev)); |
| ut_asserteq_str("dev@1,100", dev->name); |
| ut_asserteq(0x9000, dev_read_addr(dev)); |
| |
| ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 2, &dev)); |
| ut_asserteq_str("dev@2,200", dev->name); |
| ut_asserteq(0xA000, dev_read_addr(dev)); |
| |
| /* No translation for busses with #size-cells == 0 */ |
| ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 3, &dev)); |
| ut_asserteq_str("dev@42", dev->name); |
| /* No translation for busses with #size-cells == 0 */ |
| ut_asserteq(0x42, dev_read_addr(dev)); |
| |
| /* Translation for busses with #size-cells == 0 */ |
| gd->dm_flags |= GD_DM_FLG_SIZE_CELLS_0; |
| ut_asserteq(0x8042, dev_read_addr(dev)); |
| ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 4, &dev)); |
| ut_asserteq_str("dev@19", dev->name); |
| ut_asserteq(0xc019, dev_read_addr(dev)); |
| gd->dm_flags &= ~GD_DM_FLG_SIZE_CELLS_0; |
| |
| /* dma address translation */ |
| ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev)); |
| dma_addr[0] = cpu_to_be32(0); |
| dma_addr[1] = cpu_to_be32(0); |
| ut_asserteq(0x10000000, dev_translate_dma_address(dev, dma_addr)); |
| |
| ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 1, &dev)); |
| dma_addr[0] = cpu_to_be32(1); |
| dma_addr[1] = cpu_to_be32(0x100); |
| ut_asserteq(0x20000000, dev_translate_dma_address(dev, dma_addr)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_fdt_translation, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| static int dm_test_fdt_get_addr_ptr_flat(struct unit_test_state *uts) |
| { |
| struct udevice *gpio, *dev; |
| void *ptr; |
| |
| /* Test for missing reg property */ |
| ut_assertok(uclass_first_device_err(UCLASS_GPIO, &gpio)); |
| ut_assertnull(devfdt_get_addr_ptr(gpio)); |
| |
| ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev)); |
| ptr = devfdt_get_addr_ptr(dev); |
| ut_asserteq_ptr((void *)0x8000, ptr); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_fdt_get_addr_ptr_flat, |
| UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE); |
| |
| static int dm_test_fdt_remap_addr_flat(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| fdt_addr_t addr; |
| void *paddr; |
| |
| ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev)); |
| |
| addr = devfdt_get_addr(dev); |
| ut_asserteq(0x8000, addr); |
| |
| paddr = map_physmem(addr, 0, MAP_NOCACHE); |
| ut_assertnonnull(paddr); |
| ut_asserteq_ptr(paddr, devfdt_remap_addr(dev)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_fdt_remap_addr_flat, |
| UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE); |
| |
| static int dm_test_fdt_remap_addr_index_flat(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| fdt_addr_t addr; |
| fdt_size_t size; |
| void *paddr; |
| |
| ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev)); |
| |
| addr = devfdt_get_addr_size_index(dev, 0, &size); |
| ut_asserteq(0x8000, addr); |
| ut_asserteq(0x1000, size); |
| |
| paddr = map_physmem(addr, 0, MAP_NOCACHE); |
| ut_assertnonnull(paddr); |
| ut_asserteq_ptr(paddr, devfdt_remap_addr_index(dev, 0)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_fdt_remap_addr_index_flat, |
| UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE); |
| |
| static int dm_test_fdt_remap_addr_name_flat(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| fdt_addr_t addr; |
| fdt_size_t size; |
| void *paddr; |
| |
| ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev)); |
| |
| addr = devfdt_get_addr_size_name(dev, "sandbox-dummy-0", &size); |
| ut_asserteq(0x8000, addr); |
| ut_asserteq(0x1000, size); |
| |
| paddr = map_physmem(addr, 0, MAP_NOCACHE); |
| ut_assertnonnull(paddr); |
| ut_asserteq_ptr(paddr, devfdt_remap_addr_name(dev, "sandbox-dummy-0")); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_fdt_remap_addr_name_flat, |
| UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE); |
| |
| static int dm_test_fdt_remap_addr_live(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| fdt_addr_t addr; |
| void *paddr; |
| |
| ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev)); |
| |
| addr = dev_read_addr(dev); |
| ut_asserteq(0x8000, addr); |
| |
| paddr = map_physmem(addr, 0, MAP_NOCACHE); |
| ut_assertnonnull(paddr); |
| ut_asserteq_ptr(paddr, dev_remap_addr(dev)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_fdt_remap_addr_live, |
| UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| static int dm_test_fdt_remap_addr_index_live(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| fdt_addr_t addr; |
| fdt_size_t size; |
| void *paddr; |
| |
| ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev)); |
| |
| addr = dev_read_addr_size_index(dev, 0, &size); |
| ut_asserteq(0x8000, addr); |
| ut_asserteq(0x1000, size); |
| |
| paddr = map_physmem(addr, 0, MAP_NOCACHE); |
| ut_assertnonnull(paddr); |
| ut_asserteq_ptr(paddr, dev_remap_addr_index(dev, 0)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_fdt_remap_addr_index_live, |
| UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| static int dm_test_fdt_remap_addr_name_live(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| fdt_addr_t addr; |
| fdt_size_t size; |
| void *paddr; |
| |
| ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev)); |
| |
| addr = dev_read_addr_size_name(dev, "sandbox-dummy-0", &size); |
| ut_asserteq(0x8000, addr); |
| ut_asserteq(0x1000, size); |
| |
| paddr = map_physmem(addr, 0, MAP_NOCACHE); |
| ut_assertnonnull(paddr); |
| ut_asserteq_ptr(paddr, dev_remap_addr_name(dev, "sandbox-dummy-0")); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_fdt_remap_addr_name_live, |
| UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| static int dm_test_fdt_livetree_writing(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| ofnode node; |
| |
| if (!of_live_active()) { |
| printf("Live tree not active; ignore test\n"); |
| return 0; |
| } |
| |
| /* Test enabling devices */ |
| |
| node = ofnode_path("/usb@2"); |
| |
| ut_assert(!of_device_is_available(ofnode_to_np(node))); |
| ofnode_set_enabled(node, true); |
| ut_assert(of_device_is_available(ofnode_to_np(node))); |
| |
| device_bind_driver_to_node(dm_root(), "usb_sandbox", "usb@2", node, |
| &dev); |
| ut_assertok(uclass_find_device_by_seq(UCLASS_USB, 2, &dev)); |
| |
| /* Test string property setting */ |
| |
| ut_assert(device_is_compatible(dev, "sandbox,usb")); |
| ofnode_write_string(node, "compatible", "gdsys,super-usb"); |
| ut_assert(device_is_compatible(dev, "gdsys,super-usb")); |
| ofnode_write_string(node, "compatible", "sandbox,usb"); |
| ut_assert(device_is_compatible(dev, "sandbox,usb")); |
| |
| /* Test setting generic properties */ |
| |
| /* Non-existent in DTB */ |
| ut_asserteq(FDT_ADDR_T_NONE, dev_read_addr(dev)); |
| /* reg = 0x42, size = 0x100 */ |
| ut_assertok(ofnode_write_prop(node, "reg", 8, |
| "\x00\x00\x00\x42\x00\x00\x01\x00")); |
| ut_asserteq(0x42, dev_read_addr(dev)); |
| |
| /* Test disabling devices */ |
| |
| device_remove(dev, DM_REMOVE_NORMAL); |
| device_unbind(dev); |
| |
| ut_assert(of_device_is_available(ofnode_to_np(node))); |
| ofnode_set_enabled(node, false); |
| ut_assert(!of_device_is_available(ofnode_to_np(node))); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_fdt_livetree_writing, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| static int dm_test_fdt_disable_enable_by_path(struct unit_test_state *uts) |
| { |
| ofnode node; |
| |
| if (!of_live_active()) { |
| printf("Live tree not active; ignore test\n"); |
| return 0; |
| } |
| |
| node = ofnode_path("/usb@2"); |
| |
| /* Test enabling devices */ |
| |
| ut_assert(!of_device_is_available(ofnode_to_np(node))); |
| dev_enable_by_path("/usb@2"); |
| ut_assert(of_device_is_available(ofnode_to_np(node))); |
| |
| /* Test disabling devices */ |
| |
| ut_assert(of_device_is_available(ofnode_to_np(node))); |
| dev_disable_by_path("/usb@2"); |
| ut_assert(!of_device_is_available(ofnode_to_np(node))); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_fdt_disable_enable_by_path, UT_TESTF_SCAN_PDATA | |
| UT_TESTF_SCAN_FDT); |
| |
| /* Test a few uclass phandle functions */ |
| static int dm_test_fdt_phandle(struct unit_test_state *uts) |
| { |
| struct udevice *back, *dev, *dev2; |
| |
| ut_assertok(uclass_find_first_device(UCLASS_PANEL_BACKLIGHT, &back)); |
| ut_assertnonnull(back); |
| ut_asserteq(-ENOENT, uclass_find_device_by_phandle(UCLASS_REGULATOR, |
| back, "missing", &dev)); |
| ut_assertok(uclass_find_device_by_phandle(UCLASS_REGULATOR, back, |
| "power-supply", &dev)); |
| ut_assertnonnull(dev); |
| ut_asserteq(0, device_active(dev)); |
| ut_asserteq_str("ldo1", dev->name); |
| ut_assertok(uclass_get_device_by_phandle(UCLASS_REGULATOR, back, |
| "power-supply", &dev2)); |
| ut_asserteq_ptr(dev, dev2); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_fdt_phandle, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| /* Test device_find_first_child_by_uclass() */ |
| static int dm_test_first_child(struct unit_test_state *uts) |
| { |
| struct udevice *i2c, *dev, *dev2; |
| |
| ut_assertok(uclass_first_device_err(UCLASS_I2C, &i2c)); |
| ut_assertok(device_find_first_child_by_uclass(i2c, UCLASS_RTC, &dev)); |
| ut_asserteq_str("rtc@43", dev->name); |
| ut_assertok(device_find_child_by_name(i2c, "rtc@43", &dev2)); |
| ut_asserteq_ptr(dev, dev2); |
| ut_assertok(device_find_child_by_name(i2c, "rtc@61", &dev2)); |
| ut_asserteq_str("rtc@61", dev2->name); |
| |
| ut_assertok(device_find_first_child_by_uclass(i2c, UCLASS_I2C_EEPROM, |
| &dev)); |
| ut_asserteq_str("eeprom@2c", dev->name); |
| ut_assertok(device_find_child_by_name(i2c, "eeprom@2c", &dev2)); |
| ut_asserteq_ptr(dev, dev2); |
| |
| ut_asserteq(-ENODEV, device_find_first_child_by_uclass(i2c, |
| UCLASS_VIDEO, &dev)); |
| ut_asserteq(-ENODEV, device_find_child_by_name(i2c, "missing", &dev)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_first_child, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| /* Test integer functions in dm_read_...() */ |
| static int dm_test_read_int(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| u32 val32; |
| s32 sval; |
| uint val; |
| u64 val64; |
| |
| ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev)); |
| ut_asserteq_str("a-test", dev->name); |
| ut_assertok(dev_read_u32(dev, "int-value", &val32)); |
| ut_asserteq(1234, val32); |
| |
| ut_asserteq(-EINVAL, dev_read_u32(dev, "missing", &val32)); |
| ut_asserteq(6, dev_read_u32_default(dev, "missing", 6)); |
| |
| ut_asserteq(1234, dev_read_u32_default(dev, "int-value", 6)); |
| ut_asserteq(1234, val32); |
| |
| ut_asserteq(-EINVAL, dev_read_s32(dev, "missing", &sval)); |
| ut_asserteq(6, dev_read_s32_default(dev, "missing", 6)); |
| |
| ut_asserteq(-1234, dev_read_s32_default(dev, "uint-value", 6)); |
| ut_assertok(dev_read_s32(dev, "uint-value", &sval)); |
| ut_asserteq(-1234, sval); |
| |
| val = 0; |
| ut_asserteq(-EINVAL, dev_read_u32u(dev, "missing", &val)); |
| ut_assertok(dev_read_u32u(dev, "uint-value", &val)); |
| ut_asserteq(-1234, val); |
| |
| ut_assertok(dev_read_u64(dev, "int64-value", &val64)); |
| ut_asserteq_64(0x1111222233334444, val64); |
| |
| ut_asserteq_64(-EINVAL, dev_read_u64(dev, "missing", &val64)); |
| ut_asserteq_64(6, dev_read_u64_default(dev, "missing", 6)); |
| |
| ut_asserteq_64(0x1111222233334444, |
| dev_read_u64_default(dev, "int64-value", 6)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_read_int, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| static int dm_test_read_int_index(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| u32 val32; |
| |
| ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev)); |
| ut_asserteq_str("a-test", dev->name); |
| |
| ut_asserteq(-EINVAL, dev_read_u32_index(dev, "missing", 0, &val32)); |
| ut_asserteq(19, dev_read_u32_index_default(dev, "missing", 0, 19)); |
| |
| ut_assertok(dev_read_u32_index(dev, "int-array", 0, &val32)); |
| ut_asserteq(5678, val32); |
| ut_assertok(dev_read_u32_index(dev, "int-array", 1, &val32)); |
| ut_asserteq(9123, val32); |
| ut_assertok(dev_read_u32_index(dev, "int-array", 2, &val32)); |
| ut_asserteq(4567, val32); |
| ut_asserteq(-EOVERFLOW, dev_read_u32_index(dev, "int-array", 3, |
| &val32)); |
| |
| ut_asserteq(5678, dev_read_u32_index_default(dev, "int-array", 0, 2)); |
| ut_asserteq(9123, dev_read_u32_index_default(dev, "int-array", 1, 2)); |
| ut_asserteq(4567, dev_read_u32_index_default(dev, "int-array", 2, 2)); |
| ut_asserteq(2, dev_read_u32_index_default(dev, "int-array", 3, 2)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_read_int_index, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| static int dm_test_read_phandle(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| struct ofnode_phandle_args args; |
| int ret; |
| const char prop[] = "test-gpios"; |
| const char cell[] = "#gpio-cells"; |
| const char prop2[] = "phandle-value"; |
| |
| ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev)); |
| ut_asserteq_str("a-test", dev->name); |
| |
| /* Test dev_count_phandle_with_args with cell name */ |
| ret = dev_count_phandle_with_args(dev, "missing", cell, 0); |
| ut_asserteq(-ENOENT, ret); |
| ret = dev_count_phandle_with_args(dev, prop, "#invalid", 0); |
| ut_asserteq(-EINVAL, ret); |
| ut_asserteq(5, dev_count_phandle_with_args(dev, prop, cell, 0)); |
| |
| /* Test dev_read_phandle_with_args with cell name */ |
| ret = dev_read_phandle_with_args(dev, "missing", cell, 0, 0, &args); |
| ut_asserteq(-ENOENT, ret); |
| ret = dev_read_phandle_with_args(dev, prop, "#invalid", 0, 0, &args); |
| ut_asserteq(-EINVAL, ret); |
| ut_assertok(dev_read_phandle_with_args(dev, prop, cell, 0, 0, &args)); |
| ut_asserteq(1, args.args_count); |
| ut_asserteq(1, args.args[0]); |
| ut_assertok(dev_read_phandle_with_args(dev, prop, cell, 0, 1, &args)); |
| ut_asserteq(1, args.args_count); |
| ut_asserteq(4, args.args[0]); |
| ut_assertok(dev_read_phandle_with_args(dev, prop, cell, 0, 2, &args)); |
| ut_asserteq(5, args.args_count); |
| ut_asserteq(5, args.args[0]); |
| ut_asserteq(1, args.args[4]); |
| ret = dev_read_phandle_with_args(dev, prop, cell, 0, 3, &args); |
| ut_asserteq(-ENOENT, ret); |
| ut_assertok(dev_read_phandle_with_args(dev, prop, cell, 0, 4, &args)); |
| ut_asserteq(1, args.args_count); |
| ut_asserteq(12, args.args[0]); |
| ret = dev_read_phandle_with_args(dev, prop, cell, 0, 5, &args); |
| ut_asserteq(-ENOENT, ret); |
| |
| /* Test dev_count_phandle_with_args with cell count */ |
| ret = dev_count_phandle_with_args(dev, "missing", NULL, 2); |
| ut_asserteq(-ENOENT, ret); |
| ut_asserteq(3, dev_count_phandle_with_args(dev, prop2, NULL, 1)); |
| |
| /* Test dev_read_phandle_with_args with cell count */ |
| ut_assertok(dev_read_phandle_with_args(dev, prop2, NULL, 1, 0, &args)); |
| ut_asserteq(1, ofnode_valid(args.node)); |
| ut_asserteq(1, args.args_count); |
| ut_asserteq(10, args.args[0]); |
| ret = dev_read_phandle_with_args(dev, prop2, NULL, 1, 1, &args); |
| ut_asserteq(-EINVAL, ret); |
| ut_assertok(dev_read_phandle_with_args(dev, prop2, NULL, 1, 2, &args)); |
| ut_asserteq(1, ofnode_valid(args.node)); |
| ut_asserteq(1, args.args_count); |
| ut_asserteq(30, args.args[0]); |
| ret = dev_read_phandle_with_args(dev, prop2, NULL, 1, 3, &args); |
| ut_asserteq(-ENOENT, ret); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_read_phandle, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| /* Test iteration through devices by drvdata */ |
| static int dm_test_uclass_drvdata(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| |
| ut_assertok(uclass_first_device_drvdata(UCLASS_TEST_FDT, |
| DM_TEST_TYPE_FIRST, &dev)); |
| ut_asserteq_str("a-test", dev->name); |
| |
| ut_assertok(uclass_first_device_drvdata(UCLASS_TEST_FDT, |
| DM_TEST_TYPE_SECOND, &dev)); |
| ut_asserteq_str("d-test", dev->name); |
| |
| ut_asserteq(-ENODEV, uclass_first_device_drvdata(UCLASS_TEST_FDT, |
| DM_TEST_TYPE_COUNT, |
| &dev)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_uclass_drvdata, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| /* Test device_first_child_ofdata_err(), etc. */ |
| static int dm_test_child_ofdata(struct unit_test_state *uts) |
| { |
| struct udevice *bus, *dev; |
| int count; |
| |
| ut_assertok(uclass_first_device_err(UCLASS_TEST_BUS, &bus)); |
| count = 0; |
| device_foreach_child_of_to_plat(dev, bus) { |
| ut_assert(dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID); |
| ut_assert(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED)); |
| count++; |
| } |
| ut_asserteq(3, count); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_child_ofdata, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| /* Test device_first_child_err(), etc. */ |
| static int dm_test_first_child_probe(struct unit_test_state *uts) |
| { |
| struct udevice *bus, *dev; |
| int count; |
| |
| ut_assertok(uclass_first_device_err(UCLASS_TEST_BUS, &bus)); |
| count = 0; |
| device_foreach_child_probe(dev, bus) { |
| ut_assert(dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID); |
| ut_assert(dev_get_flags(dev) & DM_FLAG_ACTIVATED); |
| count++; |
| } |
| ut_asserteq(3, count); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_first_child_probe, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| /* Test that ofdata is read for parents before children */ |
| static int dm_test_ofdata_order(struct unit_test_state *uts) |
| { |
| struct udevice *bus, *dev; |
| |
| ut_assertok(uclass_find_first_device(UCLASS_I2C, &bus)); |
| ut_assertnonnull(bus); |
| ut_assert(!(dev_get_flags(bus) & DM_FLAG_PLATDATA_VALID)); |
| |
| ut_assertok(device_find_first_child(bus, &dev)); |
| ut_assertnonnull(dev); |
| ut_assert(!(dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID)); |
| |
| /* read the child's ofdata which should cause the parent's to be read */ |
| ut_assertok(device_of_to_plat(dev)); |
| ut_assert(dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID); |
| ut_assert(dev_get_flags(bus) & DM_FLAG_PLATDATA_VALID); |
| |
| ut_assert(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED)); |
| ut_assert(!(dev_get_flags(bus) & DM_FLAG_ACTIVATED)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_ofdata_order, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| /* Test dev_decode_display_timing() */ |
| static int dm_test_decode_display_timing(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| struct display_timing timing; |
| |
| ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev)); |
| ut_asserteq_str("a-test", dev->name); |
| |
| ut_assertok(dev_decode_display_timing(dev, 0, &timing)); |
| ut_assert(timing.hactive.typ == 240); |
| ut_assert(timing.hback_porch.typ == 7); |
| ut_assert(timing.hfront_porch.typ == 6); |
| ut_assert(timing.hsync_len.typ == 1); |
| ut_assert(timing.vactive.typ == 320); |
| ut_assert(timing.vback_porch.typ == 5); |
| ut_assert(timing.vfront_porch.typ == 8); |
| ut_assert(timing.vsync_len.typ == 2); |
| ut_assert(timing.pixelclock.typ == 6500000); |
| ut_assert(timing.flags & DISPLAY_FLAGS_HSYNC_HIGH); |
| ut_assert(!(timing.flags & DISPLAY_FLAGS_HSYNC_LOW)); |
| ut_assert(!(timing.flags & DISPLAY_FLAGS_VSYNC_HIGH)); |
| ut_assert(timing.flags & DISPLAY_FLAGS_VSYNC_LOW); |
| ut_assert(timing.flags & DISPLAY_FLAGS_DE_HIGH); |
| ut_assert(!(timing.flags & DISPLAY_FLAGS_DE_LOW)); |
| ut_assert(timing.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE); |
| ut_assert(!(timing.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE)); |
| ut_assert(timing.flags & DISPLAY_FLAGS_INTERLACED); |
| ut_assert(timing.flags & DISPLAY_FLAGS_DOUBLESCAN); |
| ut_assert(timing.flags & DISPLAY_FLAGS_DOUBLECLK); |
| |
| ut_assertok(dev_decode_display_timing(dev, 1, &timing)); |
| ut_assert(timing.hactive.typ == 480); |
| ut_assert(timing.hback_porch.typ == 59); |
| ut_assert(timing.hfront_porch.typ == 10); |
| ut_assert(timing.hsync_len.typ == 12); |
| ut_assert(timing.vactive.typ == 800); |
| ut_assert(timing.vback_porch.typ == 15); |
| ut_assert(timing.vfront_porch.typ == 17); |
| ut_assert(timing.vsync_len.typ == 16); |
| ut_assert(timing.pixelclock.typ == 9000000); |
| ut_assert(!(timing.flags & DISPLAY_FLAGS_HSYNC_HIGH)); |
| ut_assert(timing.flags & DISPLAY_FLAGS_HSYNC_LOW); |
| ut_assert(timing.flags & DISPLAY_FLAGS_VSYNC_HIGH); |
| ut_assert(!(timing.flags & DISPLAY_FLAGS_VSYNC_LOW)); |
| ut_assert(!(timing.flags & DISPLAY_FLAGS_DE_HIGH)); |
| ut_assert(timing.flags & DISPLAY_FLAGS_DE_LOW); |
| ut_assert(!(timing.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE)); |
| ut_assert(timing.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE); |
| ut_assert(!(timing.flags & DISPLAY_FLAGS_INTERLACED)); |
| ut_assert(!(timing.flags & DISPLAY_FLAGS_DOUBLESCAN)); |
| ut_assert(!(timing.flags & DISPLAY_FLAGS_DOUBLECLK)); |
| |
| ut_assertok(dev_decode_display_timing(dev, 2, &timing)); |
| ut_assert(timing.hactive.typ == 800); |
| ut_assert(timing.hback_porch.typ == 89); |
| ut_assert(timing.hfront_porch.typ == 164); |
| ut_assert(timing.hsync_len.typ == 11); |
| ut_assert(timing.vactive.typ == 480); |
| ut_assert(timing.vback_porch.typ == 23); |
| ut_assert(timing.vfront_porch.typ == 10); |
| ut_assert(timing.vsync_len.typ == 13); |
| ut_assert(timing.pixelclock.typ == 33500000); |
| ut_assert(!(timing.flags & DISPLAY_FLAGS_HSYNC_HIGH)); |
| ut_assert(!(timing.flags & DISPLAY_FLAGS_HSYNC_LOW)); |
| ut_assert(!(timing.flags & DISPLAY_FLAGS_VSYNC_HIGH)); |
| ut_assert(!(timing.flags & DISPLAY_FLAGS_VSYNC_LOW)); |
| ut_assert(!(timing.flags & DISPLAY_FLAGS_DE_HIGH)); |
| ut_assert(!(timing.flags & DISPLAY_FLAGS_DE_LOW)); |
| ut_assert(!(timing.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE)); |
| ut_assert(!(timing.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE)); |
| ut_assert(!(timing.flags & DISPLAY_FLAGS_INTERLACED)); |
| ut_assert(!(timing.flags & DISPLAY_FLAGS_DOUBLESCAN)); |
| ut_assert(!(timing.flags & DISPLAY_FLAGS_DOUBLECLK)); |
| |
| ut_assert(dev_decode_display_timing(dev, 3, &timing)); |
| return 0; |
| } |
| DM_TEST(dm_test_decode_display_timing, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |