| /* |
| * This implementation is based on code from uClibc-0.9.30.3 but was |
| * modified and extended for use within U-Boot. |
| * |
| * Copyright (C) 2010 Wolfgang Denk <wd@denx.de> |
| * |
| * Original license header: |
| * |
| * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc. |
| * This file is part of the GNU C Library. |
| * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993. |
| * |
| * The GNU C Library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * The GNU C Library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with the GNU C Library; if not, write to the Free |
| * Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA |
| * 02111-1307 USA. |
| */ |
| |
| #include <errno.h> |
| #include <malloc.h> |
| |
| #ifdef USE_HOSTCC /* HOST build */ |
| # include <string.h> |
| # include <assert.h> |
| |
| # ifndef debug |
| # ifdef DEBUG |
| # define debug(fmt,args...) printf(fmt ,##args) |
| # else |
| # define debug(fmt,args...) |
| # endif |
| # endif |
| #else /* U-Boot build */ |
| # include <common.h> |
| # include <linux/string.h> |
| #endif |
| |
| #ifndef CONFIG_ENV_MIN_ENTRIES /* minimum number of entries */ |
| #define CONFIG_ENV_MIN_ENTRIES 64 |
| #endif |
| #ifndef CONFIG_ENV_MAX_ENTRIES /* maximum number of entries */ |
| #define CONFIG_ENV_MAX_ENTRIES 512 |
| #endif |
| |
| #include "search.h" |
| |
| /* |
| * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986 |
| * [Knuth] The Art of Computer Programming, part 3 (6.4) |
| */ |
| |
| /* |
| * The reentrant version has no static variables to maintain the state. |
| * Instead the interface of all functions is extended to take an argument |
| * which describes the current status. |
| */ |
| typedef struct _ENTRY { |
| unsigned int used; |
| ENTRY entry; |
| } _ENTRY; |
| |
| |
| /* |
| * hcreate() |
| */ |
| |
| /* |
| * For the used double hash method the table size has to be a prime. To |
| * correct the user given table size we need a prime test. This trivial |
| * algorithm is adequate because |
| * a) the code is (most probably) called a few times per program run and |
| * b) the number is small because the table must fit in the core |
| * */ |
| static int isprime(unsigned int number) |
| { |
| /* no even number will be passed */ |
| unsigned int div = 3; |
| |
| while (div * div < number && number % div != 0) |
| div += 2; |
| |
| return number % div != 0; |
| } |
| |
| /* |
| * Before using the hash table we must allocate memory for it. |
| * Test for an existing table are done. We allocate one element |
| * more as the found prime number says. This is done for more effective |
| * indexing as explained in the comment for the hsearch function. |
| * The contents of the table is zeroed, especially the field used |
| * becomes zero. |
| */ |
| |
| int hcreate_r(size_t nel, struct hsearch_data *htab) |
| { |
| /* Test for correct arguments. */ |
| if (htab == NULL) { |
| __set_errno(EINVAL); |
| return 0; |
| } |
| |
| /* There is still another table active. Return with error. */ |
| if (htab->table != NULL) |
| return 0; |
| |
| /* Change nel to the first prime number not smaller as nel. */ |
| nel |= 1; /* make odd */ |
| while (!isprime(nel)) |
| nel += 2; |
| |
| htab->size = nel; |
| htab->filled = 0; |
| |
| /* allocate memory and zero out */ |
| htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY)); |
| if (htab->table == NULL) |
| return 0; |
| |
| /* everything went alright */ |
| return 1; |
| } |
| |
| |
| /* |
| * hdestroy() |
| */ |
| |
| /* |
| * After using the hash table it has to be destroyed. The used memory can |
| * be freed and the local static variable can be marked as not used. |
| */ |
| |
| void hdestroy_r(struct hsearch_data *htab) |
| { |
| int i; |
| |
| /* Test for correct arguments. */ |
| if (htab == NULL) { |
| __set_errno(EINVAL); |
| return; |
| } |
| |
| /* free used memory */ |
| for (i = 1; i <= htab->size; ++i) { |
| if (htab->table[i].used) { |
| ENTRY *ep = &htab->table[i].entry; |
| |
| free(ep->key); |
| free(ep->data); |
| } |
| } |
| free(htab->table); |
| |
| /* the sign for an existing table is an value != NULL in htable */ |
| htab->table = NULL; |
| } |
| |
| /* |
| * hsearch() |
| */ |
| |
| /* |
| * This is the search function. It uses double hashing with open addressing. |
| * The argument item.key has to be a pointer to an zero terminated, most |
| * probably strings of chars. The function for generating a number of the |
| * strings is simple but fast. It can be replaced by a more complex function |
| * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown. |
| * |
| * We use an trick to speed up the lookup. The table is created by hcreate |
| * with one more element available. This enables us to use the index zero |
| * special. This index will never be used because we store the first hash |
| * index in the field used where zero means not used. Every other value |
| * means used. The used field can be used as a first fast comparison for |
| * equality of the stored and the parameter value. This helps to prevent |
| * unnecessary expensive calls of strcmp. |
| * |
| * This implementation differs from the standard library version of |
| * this function in a number of ways: |
| * |
| * - While the standard version does not make any assumptions about |
| * the type of the stored data objects at all, this implementation |
| * works with NUL terminated strings only. |
| * - Instead of storing just pointers to the original objects, we |
| * create local copies so the caller does not need to care about the |
| * data any more. |
| * - The standard implementation does not provide a way to update an |
| * existing entry. This version will create a new entry or update an |
| * existing one when both "action == ENTER" and "item.data != NULL". |
| * - Instead of returning 1 on success, we return the index into the |
| * internal hash table, which is also guaranteed to be positive. |
| * This allows us direct access to the found hash table slot for |
| * example for functions like hdelete(). |
| */ |
| |
| int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval, |
| struct hsearch_data *htab) |
| { |
| unsigned int hval; |
| unsigned int count; |
| unsigned int len = strlen(item.key); |
| unsigned int idx; |
| |
| /* Compute an value for the given string. Perhaps use a better method. */ |
| hval = len; |
| count = len; |
| while (count-- > 0) { |
| hval <<= 4; |
| hval += item.key[count]; |
| } |
| |
| /* |
| * First hash function: |
| * simply take the modul but prevent zero. |
| */ |
| hval %= htab->size; |
| if (hval == 0) |
| ++hval; |
| |
| /* The first index tried. */ |
| idx = hval; |
| |
| if (htab->table[idx].used) { |
| /* |
| * Further action might be required according to the |
| * action value. |
| */ |
| unsigned hval2; |
| |
| if (htab->table[idx].used == hval |
| && strcmp(item.key, htab->table[idx].entry.key) == 0) { |
| /* Overwrite existing value? */ |
| if ((action == ENTER) && (item.data != NULL)) { |
| free(htab->table[idx].entry.data); |
| htab->table[idx].entry.data = |
| strdup(item.data); |
| if (!htab->table[idx].entry.data) { |
| __set_errno(ENOMEM); |
| *retval = NULL; |
| return 0; |
| } |
| } |
| /* return found entry */ |
| *retval = &htab->table[idx].entry; |
| return idx; |
| } |
| |
| /* |
| * Second hash function: |
| * as suggested in [Knuth] |
| */ |
| hval2 = 1 + hval % (htab->size - 2); |
| |
| do { |
| /* |
| * Because SIZE is prime this guarantees to |
| * step through all available indices. |
| */ |
| if (idx <= hval2) |
| idx = htab->size + idx - hval2; |
| else |
| idx -= hval2; |
| |
| /* |
| * If we visited all entries leave the loop |
| * unsuccessfully. |
| */ |
| if (idx == hval) |
| break; |
| |
| /* If entry is found use it. */ |
| if ((htab->table[idx].used == hval) |
| && strcmp(item.key, htab->table[idx].entry.key) == 0) { |
| /* Overwrite existing value? */ |
| if ((action == ENTER) && (item.data != NULL)) { |
| free(htab->table[idx].entry.data); |
| htab->table[idx].entry.data = |
| strdup(item.data); |
| if (!htab->table[idx].entry.data) { |
| __set_errno(ENOMEM); |
| *retval = NULL; |
| return 0; |
| } |
| } |
| /* return found entry */ |
| *retval = &htab->table[idx].entry; |
| return idx; |
| } |
| } |
| while (htab->table[idx].used); |
| } |
| |
| /* An empty bucket has been found. */ |
| if (action == ENTER) { |
| /* |
| * If table is full and another entry should be |
| * entered return with error. |
| */ |
| if (htab->filled == htab->size) { |
| __set_errno(ENOMEM); |
| *retval = NULL; |
| return 0; |
| } |
| |
| /* |
| * Create new entry; |
| * create copies of item.key and item.data |
| */ |
| htab->table[idx].used = hval; |
| htab->table[idx].entry.key = strdup(item.key); |
| htab->table[idx].entry.data = strdup(item.data); |
| if (!htab->table[idx].entry.key || |
| !htab->table[idx].entry.data) { |
| __set_errno(ENOMEM); |
| *retval = NULL; |
| return 0; |
| } |
| |
| ++htab->filled; |
| |
| /* return new entry */ |
| *retval = &htab->table[idx].entry; |
| return 1; |
| } |
| |
| __set_errno(ESRCH); |
| *retval = NULL; |
| return 0; |
| } |
| |
| |
| /* |
| * hdelete() |
| */ |
| |
| /* |
| * The standard implementation of hsearch(3) does not provide any way |
| * to delete any entries from the hash table. We extend the code to |
| * do that. |
| */ |
| |
| int hdelete_r(const char *key, struct hsearch_data *htab) |
| { |
| ENTRY e, *ep; |
| int idx; |
| |
| debug("hdelete: DELETE key \"%s\"\n", key); |
| |
| e.key = (char *)key; |
| |
| if ((idx = hsearch_r(e, FIND, &ep, htab)) == 0) { |
| __set_errno(ESRCH); |
| return 0; /* not found */ |
| } |
| |
| /* free used ENTRY */ |
| debug("hdelete: DELETING key \"%s\"\n", key); |
| |
| free(ep->key); |
| free(ep->data); |
| htab->table[idx].used = 0; |
| |
| --htab->filled; |
| |
| return 1; |
| } |
| |
| /* |
| * hexport() |
| */ |
| |
| /* |
| * Export the data stored in the hash table in linearized form. |
| * |
| * Entries are exported as "name=value" strings, separated by an |
| * arbitrary (non-NUL, of course) separator character. This allows to |
| * use this function both when formatting the U-Boot environment for |
| * external storage (using '\0' as separator), but also when using it |
| * for the "printenv" command to print all variables, simply by using |
| * as '\n" as separator. This can also be used for new features like |
| * exporting the environment data as text file, including the option |
| * for later re-import. |
| * |
| * The entries in the result list will be sorted by ascending key |
| * values. |
| * |
| * If the separator character is different from NUL, then any |
| * separator characters and backslash characters in the values will |
| * be escaped by a preceeding backslash in output. This is needed for |
| * example to enable multi-line values, especially when the output |
| * shall later be parsed (for example, for re-import). |
| * |
| * There are several options how the result buffer is handled: |
| * |
| * *resp size |
| * ----------- |
| * NULL 0 A string of sufficient length will be allocated. |
| * NULL >0 A string of the size given will be |
| * allocated. An error will be returned if the size is |
| * not sufficient. Any unused bytes in the string will |
| * be '\0'-padded. |
| * !NULL 0 The user-supplied buffer will be used. No length |
| * checking will be performed, i. e. it is assumed that |
| * the buffer size will always be big enough. DANGEROUS. |
| * !NULL >0 The user-supplied buffer will be used. An error will |
| * be returned if the size is not sufficient. Any unused |
| * bytes in the string will be '\0'-padded. |
| */ |
| |
| static int cmpkey(const void *p1, const void *p2) |
| { |
| ENTRY *e1 = *(ENTRY **) p1; |
| ENTRY *e2 = *(ENTRY **) p2; |
| |
| return (strcmp(e1->key, e2->key)); |
| } |
| |
| ssize_t hexport_r(struct hsearch_data *htab, const char sep, |
| char **resp, size_t size) |
| { |
| ENTRY *list[htab->size]; |
| char *res, *p; |
| size_t totlen; |
| int i, n; |
| |
| /* Test for correct arguments. */ |
| if ((resp == NULL) || (htab == NULL)) { |
| __set_errno(EINVAL); |
| return (-1); |
| } |
| |
| debug("EXPORT table = %p, htab.size = %d, htab.filled = %d, size = %d\n", |
| htab, htab->size, htab->filled, size); |
| /* |
| * Pass 1: |
| * search used entries, |
| * save addresses and compute total length |
| */ |
| for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) { |
| |
| if (htab->table[i].used) { |
| ENTRY *ep = &htab->table[i].entry; |
| |
| list[n++] = ep; |
| |
| totlen += strlen(ep->key) + 2; |
| |
| if (sep == '\0') { |
| totlen += strlen(ep->data); |
| } else { /* check if escapes are needed */ |
| char *s = ep->data; |
| |
| while (*s) { |
| ++totlen; |
| /* add room for needed escape chars */ |
| if ((*s == sep) || (*s == '\\')) |
| ++totlen; |
| ++s; |
| } |
| } |
| totlen += 2; /* for '=' and 'sep' char */ |
| } |
| } |
| |
| #ifdef DEBUG |
| /* Pass 1a: print unsorted list */ |
| printf("Unsorted: n=%d\n", n); |
| for (i = 0; i < n; ++i) { |
| printf("\t%3d: %p ==> %-10s => %s\n", |
| i, list[i], list[i]->key, list[i]->data); |
| } |
| #endif |
| |
| /* Sort list by keys */ |
| qsort(list, n, sizeof(ENTRY *), cmpkey); |
| |
| /* Check if the user supplied buffer size is sufficient */ |
| if (size) { |
| if (size < totlen + 1) { /* provided buffer too small */ |
| debug("### buffer too small: %d, but need %d\n", |
| size, totlen + 1); |
| __set_errno(ENOMEM); |
| return (-1); |
| } |
| } else { |
| size = totlen + 1; |
| } |
| |
| /* Check if the user provided a buffer */ |
| if (*resp) { |
| /* yes; clear it */ |
| res = *resp; |
| memset(res, '\0', size); |
| } else { |
| /* no, allocate and clear one */ |
| *resp = res = calloc(1, size); |
| if (res == NULL) { |
| __set_errno(ENOMEM); |
| return (-1); |
| } |
| } |
| /* |
| * Pass 2: |
| * export sorted list of result data |
| */ |
| for (i = 0, p = res; i < n; ++i) { |
| char *s; |
| |
| s = list[i]->key; |
| while (*s) |
| *p++ = *s++; |
| *p++ = '='; |
| |
| s = list[i]->data; |
| |
| while (*s) { |
| if ((*s == sep) || (*s == '\\')) |
| *p++ = '\\'; /* escape */ |
| *p++ = *s++; |
| } |
| *p++ = sep; |
| } |
| *p = '\0'; /* terminate result */ |
| |
| return size; |
| } |
| |
| |
| /* |
| * himport() |
| */ |
| |
| /* |
| * Import linearized data into hash table. |
| * |
| * This is the inverse function to hexport(): it takes a linear list |
| * of "name=value" pairs and creates hash table entries from it. |
| * |
| * Entries without "value", i. e. consisting of only "name" or |
| * "name=", will cause this entry to be deleted from the hash table. |
| * |
| * The "flag" argument can be used to control the behaviour: when the |
| * H_NOCLEAR bit is set, then an existing hash table will kept, i. e. |
| * new data will be added to an existing hash table; otherwise, old |
| * data will be discarded and a new hash table will be created. |
| * |
| * The separator character for the "name=value" pairs can be selected, |
| * so we both support importing from externally stored environment |
| * data (separated by NUL characters) and from plain text files |
| * (entries separated by newline characters). |
| * |
| * To allow for nicely formatted text input, leading white space |
| * (sequences of SPACE and TAB chars) is ignored, and entries starting |
| * (after removal of any leading white space) with a '#' character are |
| * considered comments and ignored. |
| * |
| * [NOTE: this means that a variable name cannot start with a '#' |
| * character.] |
| * |
| * When using a non-NUL separator character, backslash is used as |
| * escape character in the value part, allowing for example for |
| * multi-line values. |
| * |
| * In theory, arbitrary separator characters can be used, but only |
| * '\0' and '\n' have really been tested. |
| */ |
| |
| int himport_r(struct hsearch_data *htab, |
| const char *env, size_t size, const char sep, int flag) |
| { |
| char *data, *sp, *dp, *name, *value; |
| |
| /* Test for correct arguments. */ |
| if (htab == NULL) { |
| __set_errno(EINVAL); |
| return 0; |
| } |
| |
| /* we allocate new space to make sure we can write to the array */ |
| if ((data = malloc(size)) == NULL) { |
| debug("himport_r: can't malloc %d bytes\n", size); |
| __set_errno(ENOMEM); |
| return 0; |
| } |
| memcpy(data, env, size); |
| dp = data; |
| |
| if ((flag & H_NOCLEAR) == 0) { |
| /* Destroy old hash table if one exists */ |
| debug("Destroy Hash Table: %p table = %p\n", htab, |
| htab->table); |
| if (htab->table) |
| hdestroy_r(htab); |
| } |
| |
| /* |
| * Create new hash table (if needed). The computation of the hash |
| * table size is based on heuristics: in a sample of some 70+ |
| * existing systems we found an average size of 39+ bytes per entry |
| * in the environment (for the whole key=value pair). Assuming a |
| * size of 8 per entry (= safety factor of ~5) should provide enough |
| * safety margin for any existing environment definitions and still |
| * allow for more than enough dynamic additions. Note that the |
| * "size" argument is supposed to give the maximum enviroment size |
| * (CONFIG_ENV_SIZE). This heuristics will result in |
| * unreasonably large numbers (and thus memory footprint) for |
| * big flash environments (>8,000 entries for 64 KB |
| * envrionment size), so we clip it to a reasonable value. |
| * On the other hand we need to add some more entries for free |
| * space when importing very small buffers. Both boundaries can |
| * be overwritten in the board config file if needed. |
| */ |
| |
| if (!htab->table) { |
| int nent = CONFIG_ENV_MIN_ENTRIES + size / 8; |
| |
| if (nent > CONFIG_ENV_MAX_ENTRIES) |
| nent = CONFIG_ENV_MAX_ENTRIES; |
| |
| debug("Create Hash Table: N=%d\n", nent); |
| |
| if (hcreate_r(nent, htab) == 0) { |
| free(data); |
| return 0; |
| } |
| } |
| |
| /* Parse environment; allow for '\0' and 'sep' as separators */ |
| do { |
| ENTRY e, *rv; |
| |
| /* skip leading white space */ |
| while ((*dp == ' ') || (*dp == '\t')) |
| ++dp; |
| |
| /* skip comment lines */ |
| if (*dp == '#') { |
| while (*dp && (*dp != sep)) |
| ++dp; |
| ++dp; |
| continue; |
| } |
| |
| /* parse name */ |
| for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp) |
| ; |
| |
| /* deal with "name" and "name=" entries (delete var) */ |
| if (*dp == '\0' || *(dp + 1) == '\0' || |
| *dp == sep || *(dp + 1) == sep) { |
| if (*dp == '=') |
| *dp++ = '\0'; |
| *dp++ = '\0'; /* terminate name */ |
| |
| debug("DELETE CANDIDATE: \"%s\"\n", name); |
| |
| if (hdelete_r(name, htab) == 0) |
| debug("DELETE ERROR ##############################\n"); |
| |
| continue; |
| } |
| *dp++ = '\0'; /* terminate name */ |
| |
| /* parse value; deal with escapes */ |
| for (value = sp = dp; *dp && (*dp != sep); ++dp) { |
| if ((*dp == '\\') && *(dp + 1)) |
| ++dp; |
| *sp++ = *dp; |
| } |
| *sp++ = '\0'; /* terminate value */ |
| ++dp; |
| |
| /* enter into hash table */ |
| e.key = name; |
| e.data = value; |
| |
| hsearch_r(e, ENTER, &rv, htab); |
| if (rv == NULL) { |
| printf("himport_r: can't insert \"%s=%s\" into hash table\n", |
| name, value); |
| return 0; |
| } |
| |
| debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n", |
| htab, htab->filled, htab->size, |
| rv, name, value); |
| } while ((dp < data + size) && *dp); /* size check needed for text */ |
| /* without '\0' termination */ |
| debug("INSERT: free(data = %p)\n", data); |
| free(data); |
| |
| debug("INSERT: done\n"); |
| return 1; /* everything OK */ |
| } |