| // SPDX-License-Identifier: GPL-2.0+ |
| |
| #include <common.h> |
| #include <env.h> |
| #include <malloc.h> |
| #include <net.h> |
| #include <netdev.h> |
| #include <pci.h> |
| |
| #undef DEBUG_SROM |
| #undef DEBUG_SROM2 |
| |
| #undef UPDATE_SROM |
| |
| /* PCI Registers. |
| */ |
| #define PCI_CFDA_PSM 0x43 |
| |
| #define CFRV_RN 0x000000f0 /* Revision Number */ |
| |
| #define WAKEUP 0x00 /* Power Saving Wakeup */ |
| #define SLEEP 0x80 /* Power Saving Sleep Mode */ |
| |
| #define DC2114x_BRK 0x0020 /* CFRV break between DC21142 & DC21143 */ |
| |
| /* Ethernet chip registers. |
| */ |
| #define DE4X5_BMR 0x000 /* Bus Mode Register */ |
| #define DE4X5_TPD 0x008 /* Transmit Poll Demand Reg */ |
| #define DE4X5_RRBA 0x018 /* RX Ring Base Address Reg */ |
| #define DE4X5_TRBA 0x020 /* TX Ring Base Address Reg */ |
| #define DE4X5_STS 0x028 /* Status Register */ |
| #define DE4X5_OMR 0x030 /* Operation Mode Register */ |
| #define DE4X5_SICR 0x068 /* SIA Connectivity Register */ |
| #define DE4X5_APROM 0x048 /* Ethernet Address PROM */ |
| |
| /* Register bits. |
| */ |
| #define BMR_SWR 0x00000001 /* Software Reset */ |
| #define STS_TS 0x00700000 /* Transmit Process State */ |
| #define STS_RS 0x000e0000 /* Receive Process State */ |
| #define OMR_ST 0x00002000 /* Start/Stop Transmission Command */ |
| #define OMR_SR 0x00000002 /* Start/Stop Receive */ |
| #define OMR_PS 0x00040000 /* Port Select */ |
| #define OMR_SDP 0x02000000 /* SD Polarity - MUST BE ASSERTED */ |
| #define OMR_PM 0x00000080 /* Pass All Multicast */ |
| |
| /* Descriptor bits. |
| */ |
| #define R_OWN 0x80000000 /* Own Bit */ |
| #define RD_RER 0x02000000 /* Receive End Of Ring */ |
| #define RD_LS 0x00000100 /* Last Descriptor */ |
| #define RD_ES 0x00008000 /* Error Summary */ |
| #define TD_TER 0x02000000 /* Transmit End Of Ring */ |
| #define T_OWN 0x80000000 /* Own Bit */ |
| #define TD_LS 0x40000000 /* Last Segment */ |
| #define TD_FS 0x20000000 /* First Segment */ |
| #define TD_ES 0x00008000 /* Error Summary */ |
| #define TD_SET 0x08000000 /* Setup Packet */ |
| |
| /* The EEPROM commands include the alway-set leading bit. */ |
| #define SROM_WRITE_CMD 5 |
| #define SROM_READ_CMD 6 |
| #define SROM_ERASE_CMD 7 |
| |
| #define SROM_HWADD 0x0014 /* Hardware Address offset in SROM */ |
| #define SROM_RD 0x00004000 /* Read from Boot ROM */ |
| #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */ |
| #define EE_WRITE_0 0x4801 |
| #define EE_WRITE_1 0x4805 |
| #define EE_DATA_READ 0x08 /* EEPROM chip data out. */ |
| #define SROM_SR 0x00000800 /* Select Serial ROM when set */ |
| |
| #define DT_IN 0x00000004 /* Serial Data In */ |
| #define DT_CLK 0x00000002 /* Serial ROM Clock */ |
| #define DT_CS 0x00000001 /* Serial ROM Chip Select */ |
| |
| #define POLL_DEMAND 1 |
| |
| #define RESET_DE4X5(dev) {\ |
| int i;\ |
| i=INL(dev, DE4X5_BMR);\ |
| udelay(1000);\ |
| OUTL(dev, i | BMR_SWR, DE4X5_BMR);\ |
| udelay(1000);\ |
| OUTL(dev, i, DE4X5_BMR);\ |
| udelay(1000);\ |
| for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\ |
| udelay(1000);\ |
| } |
| |
| #define START_DE4X5(dev) {\ |
| s32 omr; \ |
| omr = INL(dev, DE4X5_OMR);\ |
| omr |= OMR_ST | OMR_SR;\ |
| OUTL(dev, omr, DE4X5_OMR); /* Enable the TX and/or RX */\ |
| } |
| |
| #define STOP_DE4X5(dev) {\ |
| s32 omr; \ |
| omr = INL(dev, DE4X5_OMR);\ |
| omr &= ~(OMR_ST|OMR_SR);\ |
| OUTL(dev, omr, DE4X5_OMR); /* Disable the TX and/or RX */ \ |
| } |
| |
| #define NUM_RX_DESC PKTBUFSRX |
| #define NUM_TX_DESC 1 /* Number of TX descriptors */ |
| #define RX_BUFF_SZ PKTSIZE_ALIGN |
| |
| #define TOUT_LOOP 1000000 |
| |
| #define SETUP_FRAME_LEN 192 |
| |
| struct de4x5_desc { |
| volatile s32 status; |
| u32 des1; |
| u32 buf; |
| u32 next; |
| }; |
| |
| static struct de4x5_desc rx_ring[NUM_RX_DESC] __attribute__ ((aligned(32))); /* RX descriptor ring */ |
| static struct de4x5_desc tx_ring[NUM_TX_DESC] __attribute__ ((aligned(32))); /* TX descriptor ring */ |
| static int rx_new; /* RX descriptor ring pointer */ |
| static int tx_new; /* TX descriptor ring pointer */ |
| |
| static char rxRingSize; |
| static char txRingSize; |
| |
| static void sendto_srom(struct eth_device* dev, u_int command, u_long addr); |
| static int getfrom_srom(struct eth_device* dev, u_long addr); |
| static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr,int cmd,int cmd_len); |
| static int do_read_eeprom(struct eth_device *dev,u_long ioaddr,int location,int addr_len); |
| #ifdef UPDATE_SROM |
| static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value); |
| static void update_srom(struct eth_device *dev, bd_t *bis); |
| #endif |
| static int read_srom(struct eth_device *dev, u_long ioaddr, int index); |
| static void read_hw_addr(struct eth_device* dev, bd_t * bis); |
| static void send_setup_frame(struct eth_device* dev, bd_t * bis); |
| |
| static int dc21x4x_init(struct eth_device* dev, bd_t* bis); |
| static int dc21x4x_send(struct eth_device *dev, void *packet, int length); |
| static int dc21x4x_recv(struct eth_device* dev); |
| static void dc21x4x_halt(struct eth_device* dev); |
| |
| #if defined(CONFIG_E500) |
| #define phys_to_bus(a) (a) |
| #else |
| #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a) |
| #endif |
| |
| static int INL(struct eth_device* dev, u_long addr) |
| { |
| return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase)); |
| } |
| |
| static void OUTL(struct eth_device* dev, int command, u_long addr) |
| { |
| *(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command); |
| } |
| |
| static struct pci_device_id supported[] = { |
| { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST }, |
| { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 }, |
| { } |
| }; |
| |
| int dc21x4x_initialize(bd_t *bis) |
| { |
| struct eth_device *dev; |
| unsigned short status; |
| unsigned char timer; |
| unsigned int iobase; |
| int card_number = 0; |
| pci_dev_t devbusfn; |
| unsigned int cfrv; |
| int idx = 0; |
| |
| while (1) { |
| devbusfn = pci_find_devices(supported, idx++); |
| if (devbusfn == -1) |
| break; |
| |
| /* Get the chip configuration revision register. */ |
| pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv); |
| |
| if ((cfrv & CFRV_RN) < DC2114x_BRK) { |
| printf("Error: The chip is not DC21143.\n"); |
| continue; |
| } |
| |
| pci_read_config_word(devbusfn, PCI_COMMAND, &status); |
| status |= PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER; |
| pci_write_config_word(devbusfn, PCI_COMMAND, status); |
| |
| pci_read_config_word(devbusfn, PCI_COMMAND, &status); |
| if (!(status & PCI_COMMAND_MEMORY)) { |
| printf("Error: Can not enable MEMORY access.\n"); |
| continue; |
| } |
| |
| if (!(status & PCI_COMMAND_MASTER)) { |
| printf("Error: Can not enable Bus Mastering.\n"); |
| continue; |
| } |
| |
| /* Check the latency timer for values >= 0x60. */ |
| pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer); |
| |
| if (timer < 0x60) { |
| pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, |
| 0x60); |
| } |
| |
| /* read BAR for memory space access */ |
| pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase); |
| iobase &= PCI_BASE_ADDRESS_MEM_MASK; |
| debug("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase); |
| |
| dev = (struct eth_device *)malloc(sizeof(*dev)); |
| if (!dev) { |
| printf("Can not allocalte memory of dc21x4x\n"); |
| break; |
| } |
| |
| memset(dev, 0, sizeof(*dev)); |
| |
| sprintf(dev->name, "dc21x4x#%d", card_number); |
| |
| dev->iobase = pci_mem_to_phys(devbusfn, iobase); |
| dev->priv = (void *)devbusfn; |
| dev->init = dc21x4x_init; |
| dev->halt = dc21x4x_halt; |
| dev->send = dc21x4x_send; |
| dev->recv = dc21x4x_recv; |
| |
| /* Ensure we're not sleeping. */ |
| pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP); |
| |
| udelay(10 * 1000); |
| |
| read_hw_addr(dev, bis); |
| |
| eth_register(dev); |
| |
| card_number++; |
| } |
| |
| return card_number; |
| } |
| |
| static int dc21x4x_init(struct eth_device *dev, bd_t *bis) |
| { |
| int i; |
| int devbusfn = (int)dev->priv; |
| |
| /* Ensure we're not sleeping. */ |
| pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP); |
| |
| RESET_DE4X5(dev); |
| |
| if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) { |
| printf("Error: Cannot reset ethernet controller.\n"); |
| return -1; |
| } |
| |
| OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR); |
| |
| for (i = 0; i < NUM_RX_DESC; i++) { |
| rx_ring[i].status = cpu_to_le32(R_OWN); |
| rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ); |
| rx_ring[i].buf = |
| cpu_to_le32(phys_to_bus((u32)net_rx_packets[i])); |
| rx_ring[i].next = 0; |
| } |
| |
| for (i = 0; i < NUM_TX_DESC; i++) { |
| tx_ring[i].status = 0; |
| tx_ring[i].des1 = 0; |
| tx_ring[i].buf = 0; |
| tx_ring[i].next = 0; |
| } |
| |
| rxRingSize = NUM_RX_DESC; |
| txRingSize = NUM_TX_DESC; |
| |
| /* Write the end of list marker to the descriptor lists. */ |
| rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER); |
| tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER); |
| |
| /* Tell the adapter where the TX/RX rings are located. */ |
| OUTL(dev, phys_to_bus((u32)&rx_ring), DE4X5_RRBA); |
| OUTL(dev, phys_to_bus((u32)&tx_ring), DE4X5_TRBA); |
| |
| START_DE4X5(dev); |
| |
| tx_new = 0; |
| rx_new = 0; |
| |
| send_setup_frame(dev, bis); |
| |
| return 0; |
| } |
| |
| static int dc21x4x_send(struct eth_device *dev, void *packet, int length) |
| { |
| int status = -1; |
| int i; |
| |
| if (length <= 0) { |
| printf("%s: bad packet size: %d\n", dev->name, length); |
| goto done; |
| } |
| |
| for (i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) { |
| if (i < TOUT_LOOP) |
| continue; |
| |
| printf("%s: tx error buffer not ready\n", dev->name); |
| goto done; |
| } |
| |
| tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32)packet)); |
| tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_LS | TD_FS | length); |
| tx_ring[tx_new].status = cpu_to_le32(T_OWN); |
| |
| OUTL(dev, POLL_DEMAND, DE4X5_TPD); |
| |
| for (i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) { |
| if (i < TOUT_LOOP) |
| continue; |
| |
| printf(".%s: tx buffer not ready\n", dev->name); |
| goto done; |
| } |
| |
| if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) { |
| tx_ring[tx_new].status = 0x0; |
| goto done; |
| } |
| |
| status = length; |
| |
| done: |
| tx_new = (tx_new + 1) % NUM_TX_DESC; |
| return status; |
| } |
| |
| static int dc21x4x_recv(struct eth_device* dev) |
| { |
| s32 status; |
| int length = 0; |
| |
| for ( ; ; ) { |
| status = (s32)le32_to_cpu(rx_ring[rx_new].status); |
| |
| if (status & R_OWN) { |
| break; |
| } |
| |
| if (status & RD_LS) { |
| /* Valid frame status. |
| */ |
| if (status & RD_ES) { |
| |
| /* There was an error. |
| */ |
| printf("RX error status = 0x%08X\n", status); |
| } else { |
| /* A valid frame received. |
| */ |
| length = (le32_to_cpu(rx_ring[rx_new].status) >> 16); |
| |
| /* Pass the packet up to the protocol |
| * layers. |
| */ |
| net_process_received_packet( |
| net_rx_packets[rx_new], length - 4); |
| } |
| |
| /* Change buffer ownership for this frame, back |
| * to the adapter. |
| */ |
| rx_ring[rx_new].status = cpu_to_le32(R_OWN); |
| } |
| |
| /* Update entry information. |
| */ |
| rx_new = (rx_new + 1) % rxRingSize; |
| } |
| |
| return length; |
| } |
| |
| static void dc21x4x_halt(struct eth_device* dev) |
| { |
| int devbusfn = (int) dev->priv; |
| |
| STOP_DE4X5(dev); |
| OUTL(dev, 0, DE4X5_SICR); |
| |
| pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP); |
| } |
| |
| static void send_setup_frame(struct eth_device* dev, bd_t *bis) |
| { |
| int i; |
| char setup_frame[SETUP_FRAME_LEN]; |
| char *pa = &setup_frame[0]; |
| |
| memset(pa, 0xff, SETUP_FRAME_LEN); |
| |
| for (i = 0; i < ETH_ALEN; i++) { |
| *(pa + (i & 1)) = dev->enetaddr[i]; |
| if (i & 0x01) { |
| pa += 4; |
| } |
| } |
| |
| for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) { |
| if (i >= TOUT_LOOP) { |
| printf("%s: tx error buffer not ready\n", dev->name); |
| goto Done; |
| } |
| } |
| |
| tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0])); |
| tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN); |
| tx_ring[tx_new].status = cpu_to_le32(T_OWN); |
| |
| OUTL(dev, POLL_DEMAND, DE4X5_TPD); |
| |
| for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) { |
| if (i >= TOUT_LOOP) { |
| printf("%s: tx buffer not ready\n", dev->name); |
| goto Done; |
| } |
| } |
| |
| if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) { |
| printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status)); |
| } |
| tx_new = (tx_new+1) % NUM_TX_DESC; |
| |
| Done: |
| return; |
| } |
| |
| /* SROM Read and write routines. */ |
| static void |
| sendto_srom(struct eth_device* dev, u_int command, u_long addr) |
| { |
| OUTL(dev, command, addr); |
| udelay(1); |
| } |
| |
| static int |
| getfrom_srom(struct eth_device* dev, u_long addr) |
| { |
| s32 tmp; |
| |
| tmp = INL(dev, addr); |
| udelay(1); |
| |
| return tmp; |
| } |
| |
| /* Note: this routine returns extra data bits for size detection. */ |
| static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len) |
| { |
| int i; |
| unsigned retval = 0; |
| int read_cmd = location | (SROM_READ_CMD << addr_len); |
| |
| sendto_srom(dev, SROM_RD | SROM_SR, ioaddr); |
| sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr); |
| |
| #ifdef DEBUG_SROM |
| printf(" EEPROM read at %d ", location); |
| #endif |
| |
| /* Shift the read command bits out. */ |
| for (i = 4 + addr_len; i >= 0; i--) { |
| short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0; |
| sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr); |
| udelay(10); |
| sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr); |
| udelay(10); |
| #ifdef DEBUG_SROM2 |
| printf("%X", getfrom_srom(dev, ioaddr) & 15); |
| #endif |
| retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0); |
| } |
| |
| sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr); |
| |
| #ifdef DEBUG_SROM2 |
| printf(" :%X:", getfrom_srom(dev, ioaddr) & 15); |
| #endif |
| |
| for (i = 16; i > 0; i--) { |
| sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr); |
| udelay(10); |
| #ifdef DEBUG_SROM2 |
| printf("%X", getfrom_srom(dev, ioaddr) & 15); |
| #endif |
| retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0); |
| sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr); |
| udelay(10); |
| } |
| |
| /* Terminate the EEPROM access. */ |
| sendto_srom(dev, SROM_RD | SROM_SR, ioaddr); |
| |
| #ifdef DEBUG_SROM2 |
| printf(" EEPROM value at %d is %5.5x.\n", location, retval); |
| #endif |
| |
| return retval; |
| } |
| |
| /* |
| * This executes a generic EEPROM command, typically a write or write |
| * enable. It returns the data output from the EEPROM, and thus may |
| * also be used for reads. |
| */ |
| static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len) |
| { |
| unsigned retval = 0; |
| |
| #ifdef DEBUG_SROM |
| printf(" EEPROM op 0x%x: ", cmd); |
| #endif |
| |
| sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr); |
| |
| /* Shift the command bits out. */ |
| do { |
| short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0; |
| sendto_srom(dev,dataval, ioaddr); |
| udelay(10); |
| |
| #ifdef DEBUG_SROM2 |
| printf("%X", getfrom_srom(dev,ioaddr) & 15); |
| #endif |
| |
| sendto_srom(dev,dataval | DT_CLK, ioaddr); |
| udelay(10); |
| retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0); |
| } while (--cmd_len >= 0); |
| sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr); |
| |
| /* Terminate the EEPROM access. */ |
| sendto_srom(dev,SROM_RD | SROM_SR, ioaddr); |
| |
| #ifdef DEBUG_SROM |
| printf(" EEPROM result is 0x%5.5x.\n", retval); |
| #endif |
| |
| return retval; |
| } |
| |
| static int read_srom(struct eth_device *dev, u_long ioaddr, int index) |
| { |
| int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6; |
| |
| return do_eeprom_cmd(dev, ioaddr, |
| (((SROM_READ_CMD << ee_addr_size) | index) << 16) |
| | 0xffff, 3 + ee_addr_size + 16); |
| } |
| |
| #ifdef UPDATE_SROM |
| static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value) |
| { |
| int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6; |
| int i; |
| unsigned short newval; |
| |
| udelay(10*1000); /* test-only */ |
| |
| #ifdef DEBUG_SROM |
| printf("ee_addr_size=%d.\n", ee_addr_size); |
| printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index); |
| #endif |
| |
| /* Enable programming modes. */ |
| do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size); |
| |
| /* Do the actual write. */ |
| do_eeprom_cmd(dev, ioaddr, |
| (((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value, |
| 3 + ee_addr_size + 16); |
| |
| /* Poll for write finished. */ |
| sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr); |
| for (i = 0; i < 10000; i++) /* Typical 2000 ticks */ |
| if (getfrom_srom(dev, ioaddr) & EE_DATA_READ) |
| break; |
| |
| #ifdef DEBUG_SROM |
| printf(" Write finished after %d ticks.\n", i); |
| #endif |
| |
| /* Disable programming. */ |
| do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size); |
| |
| /* And read the result. */ |
| newval = do_eeprom_cmd(dev, ioaddr, |
| (((SROM_READ_CMD<<ee_addr_size)|index) << 16) |
| | 0xffff, 3 + ee_addr_size + 16); |
| #ifdef DEBUG_SROM |
| printf(" New value at offset %d is %4.4x.\n", index, newval); |
| #endif |
| return 1; |
| } |
| #endif |
| |
| static void read_hw_addr(struct eth_device *dev, bd_t *bis) |
| { |
| u_short tmp, *p = (u_short *)(&dev->enetaddr[0]); |
| int i, j = 0; |
| |
| for (i = 0; i < (ETH_ALEN >> 1); i++) { |
| tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i)); |
| *p = le16_to_cpu(tmp); |
| j += *p++; |
| } |
| |
| if ((j == 0) || (j == 0x2fffd)) { |
| memset (dev->enetaddr, 0, ETH_ALEN); |
| debug ("Warning: can't read HW address from SROM.\n"); |
| goto Done; |
| } |
| |
| return; |
| |
| Done: |
| #ifdef UPDATE_SROM |
| update_srom(dev, bis); |
| #endif |
| return; |
| } |
| |
| #ifdef UPDATE_SROM |
| static void update_srom(struct eth_device *dev, bd_t *bis) |
| { |
| int i; |
| static unsigned short eeprom[0x40] = { |
| 0x140b, 0x6610, 0x0000, 0x0000, /* 00 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, /* 04 */ |
| 0x00a3, 0x0103, 0x0000, 0x0000, /* 08 */ |
| 0x0000, 0x1f00, 0x0000, 0x0000, /* 0c */ |
| 0x0108, 0x038d, 0x0000, 0x0000, /* 10 */ |
| 0xe078, 0x0001, 0x0040, 0x0018, /* 14 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, /* 18 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, /* 1c */ |
| 0x0000, 0x0000, 0x0000, 0x0000, /* 20 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, /* 24 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, /* 28 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, /* 2c */ |
| 0x0000, 0x0000, 0x0000, 0x0000, /* 30 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, /* 34 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, /* 38 */ |
| 0x0000, 0x0000, 0x0000, 0x4e07, /* 3c */ |
| }; |
| uchar enetaddr[6]; |
| |
| /* Ethernet Addr... */ |
| if (!eth_env_get_enetaddr("ethaddr", enetaddr)) |
| return; |
| eeprom[0x0a] = (enetaddr[1] << 8) | enetaddr[0]; |
| eeprom[0x0b] = (enetaddr[3] << 8) | enetaddr[2]; |
| eeprom[0x0c] = (enetaddr[5] << 8) | enetaddr[4]; |
| |
| for (i=0; i<0x40; i++) { |
| write_srom(dev, DE4X5_APROM, i, eeprom[i]); |
| } |
| } |
| #endif /* UPDATE_SROM */ |